
Timing Validation of Automotive Software

Daniel Kästner1, Reinhard Wilhelm2, Reinhold Heckmann1, Marc
Schlickling12, Markus Pister12, Marek Jersak3, Kai Richter3, Christian

Ferdinand1

1 AbsInt GmbH, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany

3 Symtavision GmbH, Braunschweig, Germany

Abstract Embedded hard real-time systems need reliable guarantees
for the satisfaction of their timing constraints. During the last years so-
phisticated analysis tools for timing analysis at the code-level, controller-
level and networked system-level have been developed. This trend is
exemplified by two tools: AbsInt’s timing analyzer aiT, and and Sym-
tavision’s SymTA/S. aiT determines safe upper bounds for the execu-
tion times (WCETs) of non-interrupted tasks. SymTA/S computes the
worst-case response times (WCRTs) of an entire system from the task
WCETs and from information about possible interrupts and their pri-
orities. A seamless integration between both tools provides for a holistic
approach to timing validation: starting from a system model, a designer
can perform timing budgeting, performance optimization and timing ver-
ification, thus covering both the code and the system aspects. However,
the precision of the results and the efficiency of the analysis methods
are highly dependent on the predictability of the execution platform.
Especially on multi-core architectures this aspect becomes of critical im-
portance. This paper describes an industry-strength tool flow for timing
validation, and discusses prerequisites at the hardware level for ascer-
taining high analysis precision.

1 Introduction

Developers of safety-critical real-time systems have to ensure that their systems
react within given time bounds. Tests and measurements help to detect violations
of time bounds, but cannot prove their absence, unless all possible scenarios are
covered. Face to the complexity of today’s embedded software and the complexity
of contemporary hardware architectures this is virtually impossible. Moreover,
tests and measurements are only available late in the development cycle. Tools
for static program analysis can obtain results valid for all possible system runs
and inputs, even before the first real prototypes are available. Examples for such
tools are AbsInt’s timing analyzer aiT, and Symtavision’s SymTA/S tool. aiT
is a code-level analysis tool determining safe upper bounds for the execution
times (WCETs) of non-interrupted tasks. SymTA/S works at the system level;



it computes the worst-case response times (WCRTs) of an entire system from the
task WCETs and from information about possible interrupts and their priorities.

A tool coupling between aiT and SymTA/S paves the path towards a holistic
timing validation tool chain. The system developer creates a system model in
SymTA/S, consisting of a task graph, information on task scheduling (priorities,
time slots, etc.), and information on task activation (time tables, interrupts, etc.).
To determine the WCRTs of the tasks with possible interrupts, the WCETs of
the non-interrupted tasks are required. To obtain these WCETs, SymTA/S sends
requests to aiT. Then aiT asks the developer for necessary information on hard-
ware configuration and executables, determines the requested WCETs, and sends
them back to SymTA/S. The coupling of SymTA/S with aiT allows SymTA/S
to determine end-to-end timings in an early development phase, with automatic
identification of problematic system configurations and automatic system opti-
mization as a next step. In the EU projects INTEREST and INTERESTED
the tool coupling is extended towards model-based code generation tools such as
ASCET[8] and SCADE[7] to support the entire development process from the
model till the implementation with formally verified timing behavior.

Static-analysis-based methods can give timing guarantees even for complex
processor architectures exhibiting a huge execution-time variability and a strong
dependency of the execution time on the initial execution state. Nevertheless,
the efficiency and the precision of the result of timing analysis highly depends on
the hardware architecture. As an example, a cache with a random replacement
strategy does not allow for a cache analysis with good precision. The design
of the internal and external buses, if done wrongly, leads to hardly analyzable
behavior and great loss in precision. Multi-core architectures with shared caches,
finally, will create a space of interleavings of interactions on these caches that
will make sound and precise timing analysis practically infeasible at all.

The trend in automotive embedded systems is towards unifying frameworks
like AUTOSAR. Such frameworks aim at managing the increasing functional
complexity and allowing for better reconfigurability and maintainability. Stan-
dardized interfaces allow to compose components, independently developed by
different suppliers, on ECUs. A runtime environment provides basic services, like
intra- or inter-ECU communication between components. At a lower level AU-
TOSAR abstracts from the underlying hardware, the actually deployed ECUs.
From a functional point of view this framework is appealing because of the gained
compositionality.

The AUTOSAR timing model currently being developed concerns mainly
the integration of scheduling requirements. The success of scheduling analy-
sis depends on the predictability of the execution times of the AUTOSAR-
“runnables”, the basic building blocks of a software component. When multiple
components are mapped to a hardware architecture where a high degree of inter-
ference between the components cannot be avoided (e.g., due to shared caches
or buses) execution times of runnables may vary considerably and the possi-
bilities to predict safe and precise execution time bounds can be rather limited.
This limits the success of the scheduling analysis and this counteracts the idea of



composing software components. Thus, the applicability of the AUTOSAR idea
depends on availability of architectures on which software composition doesn’t
lead to unpredictable timing behavior.

In the following, we present a tool flow for validating timing behavior based
on aiT and SymTA/S. In Sec. 2-Sec. 3 we discuss the influence of the hard-
ware architecture on the timing validation process, based on experience with
static timing-analysis in the embedded-systems industry [30,13] and theoretical
insights [23,22,11]. Sec. 5 first address hardware issues that have to be respected
both in single core and in multi-core architectures. Face to the increased com-
plexity of multi-core designs, there these aspects become even more critical than
they are in the single core domain. Sec. 5 concludes with discussing specific issues
for multi-core architectures.

2 The System Level: Schedulability Analysis

Scheduling analysis is a systematic approach that automatically finds and eval-
uates critical timing situations resulting from function and system integration.
Such corner case identification is the opposite of traditional test-based meth-
ods: instead of massive testing to try to find all corner cases, scheduling analysis
systematically constructs scenarios leading to worst-case timing.

SymTA/S [14] is Symtavision’s tool for timing and scheduling analysis and
optimization for controllers, networks and entire systems. SymTA/S computes
the worst-case response times (WCRTs) of tasks and the worst-case end-to-end
communication delays. It takes into account the worst-case execution times of
the tasks as well as information about RTOS scheduling, bus arbitration, pos-
sible interrupts and their priorities. The graphical user interface of SymTA/S
offers ways to specify a system architecture, select scheduling on controllers and
arbitration on buses, map functions to controllers and communication to busses,
and to describe dataflow, activation conditions, deadlines and other timing con-
straints.

The analysis results are displayed in a variety of ways. The most powerful
and easy to understand are Gantt-Charts that visualize to the designer why and
under which conditions deadlines can be violated. There are two main use cases
for SymTA/S:

1. timing design / budgeting during early design stages and
2. timing verification during later design stages.

The added value for verification is exemplified in Figure 1: the upper part of
the diagram displays a typical timing trace, showing a response time of 6.9 ms for
a task executed every 10 ms – well below the 10 ms deadline. In the lower part,
SymTA/S scheduling analysis has constructed a worst-case schedule leading to a
WCRT of 9 ms for the 10 ms task – still below the deadline, but much closer. The
key message is that no other schedule will produce a longer WCRT. SymTA/S
thus safeguards against deadline violations resulting from worst-case schedules.
Furthermore, the Gantt-display enables the designer to check the reasoning of



Figure 1. Safeguarding timing using scheduling analysis (as compared to mea-
surement)

SymTA/S and thus to see if some important information has been omitted in
the model.

Furthermore SymTA/S also supports the system design stage. With a what-
if scheduling analysis it is easily possible to estimate how additional functions
and their scheduling will influence overall system timing, and whether deadlines
can be safely met for a specific design alternative. As a result, timing budgets
for individual functions of sub-systems can be derived early on, and given to a
designer as part of a requirements specification. Additionally, SymTA/S offers
a plugin for design-space exploration allowing designers to automatically evalu-
ate the strengths and weaknesses of alternative designs with respect to timing
and performance. A plugin for sensitivity analysis allows users to automatically
determine the amount of extra load (e.g., caused by additional functions) per-
missible without violating deadlines.

3 The Code Level: Static Timing Analysis

aiT computes safe upper bounds on the worst-case execution times (WCETs) of
sequential tasks. For a precise computation of the WCET, aiT operates on the
executable. If available, aiT can also read the source files for further information.
The WCET is computed in several phases [9] (see Figure 2).

In the first step a decoder reads the executable and reconstructs its control
flow [27]. Then, value analysis determines lower and upper bounds for the values
in the processor registers for every program point and execution context, which
lead to bounds for the addresses of memory accesses (important for cache analysis
and if memory areas with different access times exist). Value analysis can also
determine that certain conditions always evaluate to true or always evaluate



Figure 2. Phases of WCET Computation

to false. As consequence, certain paths controlled by such conditions are never
executed. Thus value analysis can detect and mark some unreachable code.

WCET analysis requires that upper bounds for the iteration numbers of all
loops be known. aiT tries to determine the number of loop iterations by loop
bound analysis [10], but succeeds in doing so for simple loops only. Bounds for
the remaining loops must be provided as specifications in a separate parameter
file (.ais file) or annotations in the C source. The micro-architectural analy-
sis [6,29,11] determines bounds on the execution time of individual basic blocks
by performing an abstract interpretation of the program. It thereby takes into
account the processor’s pipeline, caches, and speculation concepts: static cache
analyses determine safe approximations to the contents of caches at each pro-
gram point. All accesses into main memory are classified into hits, misses, or
accesses of unknown nature. A pipeline analysis analyzes how instructions pass
through the pipeline accounting for occupancy of shared resources like queues
and functional units etc., and for the classification of memory references by the
cache analysis etc [26]. Ignoring these average-case-enhancing features would re-
sult in imprecise bounds. Using this information, path analysis determines a safe
estimate of the WCET. The program’s control flow is modeled by an integer lin-
ear program [16,28] so that the solution to the objective function is the predicted
worst-case execution time for the input program.

After a successful analysis, aiT reports its results in several ways: aiT can
produce a graphical output showing the call graph and control flow graph of the
analyzed part of the application. Alternatively, aiT can write a text report meant
to be human readable, and a more formal XML report. These reports contain
detailed results for all analyzed routines in all calling contexts, including specific
results for the first few iterations of loops vs. a result for the remaining iterations.



Figure 3. Call graph with WCET result

4 The Interaction between SymTA/S and aiT

Timing analysis is a novel domain, and the requirements for coupling code-
level and system-level tools were not suitably covered by any existing exchange
format. Therefore, the concept of “Timing Cookies” has been developed in the
INTEREST project to avoid the duplication of the sophisticated user-interfaces
of the tools. The information exchanged is stored in such a Timing Cookie in
the first round of communication between the tools. During the next round of
communication this information is retrieved from that cookie so that invariant
parts do not have to be re-entered manually.

The Timing Cookie Exchange Format XTC is defined as an XML schema.
It is organized hierarchically since some information can be reused for different
analyses. For instance, a CPU configuration can be reused for different runnables
sharing the same CPU. The information in the common section is structured in
four blocks: general, CPU, runnable (i.e., an atomic piece of software4), and
mode (a specific control-flow path through the runnable).

The interaction between SymTA/S and aiT follows the following pattern:
From a system model, SymTA/S launches a request for WCET information for
specific pieces of code (see Figure 4). This request is tagged with a unique ID
and sent to aiT in an XTC. If necessary, aiT queries the user for all missing
information required to service the request. For the first request issued for a
system model, this typically includes the type of processor, the location of the
executable code, the starting point of the analysis etc. When aiT answers the
request by sending an XTC with a response back to SymTA/S, it stores this
information in the private aiT-part of the cookie. This aiT-specific information
will be included in subsequent requests so that aiT can use the information
already gathered without the need to ask the user again.

4 AUTOSAR [2] terminology has been adopted



Figure 4. Flow of requests and responses

5 Hardware and Predictability

In modern microprocessor architectures caches, pipelines, and all kinds of spec-
ulation are key features for improving (average-case) performance. Caches are
used to bridge the gap between processor speed and the access time of main
memory. Pipelines enable acceleration by overlapping the executions of different
instructions. Multi-core designs combine two or more independent cores into a
single die. Cores in a multi-core device may share a single coherent cache at the
highest on-device cache level or may have separate caches. The processors also
share the same interconnect to the rest of the system. Each core independently
implements the typical hardware features described above for the single core
domain.

The consequence is that the execution time of individual instructions, and
thus the contribution of one execution of an instruction to the program’s execu-
tion time can vary widely. This variation depends on the execution state, e.g., ,
the contents of the cache(s), the occupancy of other resources, and thus on the
execution history. It is therefore obvious that the attempt to predict or exclude
timing accidents needs information about the execution history.

For WCET computation, the state space of input data and initial states is
too large to exhaustively explore all possible executions in order to determine the
exact worst-case execution times. Instead, bounds for the execution times of basic
blocks are determined, from which bounds for the whole system’s execution time
are derived. Some abstraction of the execution platform is necessary to make a
timing analysis of the system feasible. These abstractions lose information, and
thus are in part responsible for the gap between WCETs and upper bounds.
How much is lost depends both on the methods used for timing analysis and on
system properties, such as the hardware architecture and the analyzability of
the software.

Most of the problems posed to timing analysis are caused by the interfer-
ence on shared resources. Resources are shared for cost, energy and performance



reasons. Different users of a shared resource may often access the resource in a
statically unknown way. Different access sequences may result in different states
of the resource. The different sequences may already exhibit different execution
times, and the resulting resource states may again cause differences in the future
timing behavior. An out-of-order processor will execute an instruction stream in
one sequential order. Exhaustive exploration could, in principle, identify this
one sequence for each input and initial state, while in practice, this is infeasible.
Thus, this order is assumed to be not statically known. This forces the analysis
to consider all possible sequences. Different sequences may have different effects
on the cache contents. Examples of shared resources with interferences are buses
and memory: Buses are used by several masters, which may access the buses in
unpredictable ways. On a multi-core system the interference on shared resources
is significantly increased wrt a single core system. Memory and caches are shared
between several processors or cores. One thread executed on one core does not
know when accesses by another thread on another core will happen.

In the following we will first investigate the predictability of common ele-
mentary hardware features: pipelines, caches, and buses. This discussion applies
both for single core and multi-core architectures, since they determine the “in-
ternal´´ behavior of each core in a multi-core design. In Sec. 5.4 we additionally
discuss specific features of multi-core designs.

5.1 Pipelines

For non-pipelined architectures one can simply add up the execution times of
individual instructions to obtain a bound on the execution time of a basic block.
Pipelines increase performance by overlapping the executions of different in-
structions. Hence, a timing analysis cannot consider individual instructions in
isolation. Instead, they have to be considered collectively – together with their
mutual interactions – to obtain tight timing bounds. Superscalar- and out-of-
order execution increase the number of possible interleavings. The larger the
buffers (e.g., fetch buffers, retirement queues, etc.) are the longer lasts the in-
fluence of past events. Dynamic branch prediction, cache-like structures, and
branch history tables increase history dependence even more.

The analysis of a given program for its pipeline behavior is based on an
abstract model of the pipeline. All components that contribute to the timing
of instructions have to be modeled conservatively. Depending on the employed
pipeline features, the number of states the analysis has to consider varies greatly.
To compute a precise bound on the execution time of a basic block, the analysis
needs to exclude as many timing accidents, i.e., incidents that cause an increase
of an instruction’s execution time, as possible. Such accidents are data hazards,
branch mispredictions, occupied functional units, full queues, etc.

Abstract states may lack information about the state of some processor com-
ponents, e.g., caches, queues, or predictors. Transitions of the pipeline may
depend on such missing information. Then the analysis must take all alternative
scenarios into account. One could be tempted to design the analysis such that



only the locally most expensive pipeline transition is chosen. However, in the
presence of timing anomalies [17,23] this approach is unsound.

The notion of timing anomalies was introduced by Lundqvist and Stenström
in [17]. In the context of WCET analysis, [23] presents a formal definition. In-
tuitively, a timing anomaly is a situation where the local worst-case does not
contribute to the global worst-case. For instance, a cache miss–the local worst-
case–may result in a globally shorter execution time than a cache hit. A scenario
where this can occur is when the cache miss penalty prevents the branch unit
from misspeculating and prefetching along the wrong path. An especially severe
timing anomaly is the so-called domino effect [17] that causes the difference in
execution time of the same program starting in two different hardware states
to become arbitrarily high. The existence of domino effects is undesirable for
timing analysis. Otherwise, one could safely discard states during the analysis
and make up for it by adding a predetermined constant. Unfortunately, domino
effects show up in real hardware. In [25], Schneider describes a domino effect
in the pipeline of the PowerPC 755. Another example is given by Berg [3] who
considers the PLRU replacement policy of caches. Thus, in general, the analysis
has to follow all possible successor states.

Architectures can be classified into three categories depending on whether
they exhibit timing anomalies or domino effects.

– Fully timing compositional architectures: The (abstract model of) an
architecture does not exhibit timing anomalies. Hence, the analysis can safely
follow local worst-case paths only. One example for this class is the ARM7.

– Compositional architectures with constant-bounded effects: These
exhibit timing anomalies but no domino effects. In general, an analysis has
to consider all paths. To trade precision with efficiency, it would be possible
to safely discard local non-worst-case paths by adding a constant number
of cycles to the local worst-case path. The Infineon TriCore is assumed, but
not formally proven, to belong to this class.

– Non-compositional architectures: These architectures, e.g., the Pow-
erPC 755 exhibit domino effects and timing anomalies. For such architec-
tures timing analyses always have to follow all paths since a local effect may
influence the future execution arbitrarily.

5.2 Caches

To obtain tight bounds on the execution time of a task, timing analyses must
take into account the cache architecture. The cache analysis tries to classify
memory accesses as hits or misses. Memory accesses that cannot be safely clas-
sified as a hit or a miss have to be conservatively accounted for by considering
both possibilities. The precision of a cache analysis is strongly dependent on the
predictability of the cache architecture, especially on its replacement policy. The
three most common replacement strategies are the following:



– The LRU(Least Recently Used) replacement strategy uses age bits to discard
the least recently used cache line in case of a cache miss. When a cache hit
occurs, the age information of all cache lines is updated. It is used in the
Freescale PPC603e core and the MIPS 24K/34K.

– With the FIFOstrategy the cache is organized like a queue: new elements are
inserted at the front evicting elements at the end of the queue. In contrast
to LRU, hits do not change the queue. FIFO is used in the Intel XScale
and some ARM9 and ARM11 based processor cells.

– PLRU(Pseudo-LRU) is a tree-based approximation of the LRU policy. It
arranges the cache lines at the leaves of a tree with k − 1 “tree bits” point-
ing to the line to be replaced next. For an in detail explanation of PLRU
consider [22,1]. It is used in the PowerPC 75x and the Intel Pentium
II-IV.

In [21] the influence of these three replacement strategies on the precision of
static cache analyses is analyzed. The results show that LRU-replacement has
the best predictability properties of all replacement policies. Employing other
policies, like PLRU or FIFO, yields less precise WCET bounds, because fewer
memory accesses can be classified as hits of misses. This also has the consequence
that timing analysis has to explore more possibilities so that the efficiency is
lower than with LRU.

Static cache analyses usually cannot make any assumptions about the initial
cache contents. Cache contents on entrance depend on previously executed tasks.
Even assuming a completely empty cache may not be conservative as shown
in [3,21], the notable exception being LRU. FIFO and PLRU are much more
sensitive to their state than LRU. Depending on its state, FIFO(k) may have up
to k times as many misses and arbitrarily more hits, on the same access sequence.
PLRU and LRU coincide at associativity 2. For greater associativities, the same
access sequence under a PLRU strategy may incur arbitrarily many more misses
for one starting state than for another. For PLRU(8), the number of hits of the
same access sequence with different starting states may differ by a factor of 11.
In [21] also the aggregated effect of the initial cache setting on WCET has been
investigated for a realistic hardware setting. For a 4-way set-associative FIFO
cache with a cache miss penalty of 50 cycles, the worst-case execution time may
be a factor of 3 higher than the measured time of the same access sequence,
only due to the influence of the initial cache state. If PLRU were used as a
replacement policy the difference could be even greater.

This is especially detrimental for measurement-based approaches [18,4,32].
Measurement would trivially be sound if all initial states and inputs would be
covered. Due to their huge number this is usually not feasible. Some measurement-
based approaches consider distributions of execution times (execution time pro-
files) of program snippets, which are then composed according to the control
flow. Each program fragment is measured with a subset of the possible initial
states and inputs so that the maximum of the measured execution times is in
general an underestimation of the worst-case execution time. Using corrective



bounds for the so-called execution time profiles can introduce large pessimism
since they don’t exploit context and flow information [19].

Relatively simple architectures without any performance-enhancing features
like pipelines, caches, etc., exhibit the same timing independently of the initial
state. For such architectures, measurement-based timing analysis is sound [32].
[5] and [32] propose to lock the cache contents [20,31] and to flush the pipeline at
program points where measurement starts. This is not possible on all architec-
tures and it also has a detrimental effect on both the average- and the worst-case
execution times of tasks.

5.3 Buses

A bus is a subsystem for transferring data between different components inside
a computer, between a computer and its peripheral devices, or between different
computers. Examples are system buses like the 60x-bus [12], internal computer
buses like PCI and external computer buses like CAN or FlexRay.

In general, busses are clocked with a lower frequency than the CPU. The
number of possible displacements of phase between CPU- and bus-clock signal
is bounded, i.e. at the start of a CPU cycle the bus cycle can only be in a finite
number of states. For example, if the CPU operates at fCPU = 100 MHz and
the bus at fBUS = 25 MHz, there are 4 different states. In general, the number
of states is determined by fCP U

gcd(fCP U ,fBUS) .

Analyzing timing behavior of memory accesses is special because these ac-
cesses cross the CPU/bus clock boundary. Since the time unit for timing analyzes
is one CPU cycle, the analysis needs to know when the next bus cycle begins.
Otherwise it would have to account for the worst case: the bus cycle has just
begun and the CPU needs to wait nearly a full bus cycle to perform a bus ac-
tion. This pessimism would lead to less precise WCET bounds. Therefore, the
displacement of phase has to modeled within a micro-architectural analysis so
that the search space for the analysis is augmented by the number of different
bus-clock-states.

Parallel buses (e.g., SCSI) introduce further complication. The execution
of consecutive memory accesses can be overlapped, i.e. for two accesses, the
address phase of the second access can be overlapped with the data phase of the
first access (bus pipelining). Pipelined buses need to arbitrate the incoming bus
requests, e.g. if there is an instruction fetch and a memory access at the same
time, the arbitration logic needs to decide which bus request is issued first.

Asynchronous mechanisms such as DMA or DRAM refresh cannot be ana-
lyzed with the methods described so far. A DMA transmission and a DRAM
refresh and their associated costs cannot be contributed to the execution of an
instruction. The costs of a DRAM refresh must be amortized over time. A similar
approach can be used if the frequency of DMA is statically known.



5.4 Multi-core Architectures

There is a tendency towards the use of multi-core architectures for their good
energy/performance ratio. Shared memories (Flash, RAM) and peripherals are
connected to the cores by shared buses or cross-bars. Conflicts when accessing
shared resources are usually resolved by assigning fixed priorities. Depending
on the architecture, conflicts on shared resources can be expected to happen
frequently. For example, if the cores have no private RAM, a potential conflict
might occur for each access (typically 20-30% of all executed instructions). Ex-
amples for current automotive multi-core architectures are the Infineon TriCore
TC1797, the Freescale MC9S12X and the Freescale MPC5516. They consist of a
powerful main processor and a less powerful co-processor. For future automotive
multi-core architectures we see a design trend towards the use of identical cores
mostly with shared memories.

Under the aspect of predictability, some existing and upcoming multi-core
architectures are unacceptable because of the interference of the different cores
on shared resources such as caches and buses. The execution time of a task
running on one core typically depends on the activities on the other cores. Static
worst-case execution time analysis usually assumes the absence of interferences.
The additional time (or penalty) caused by interferences must be bounded for a
scheduling analysis. For architectures with domino effects and timing anomalies
inside the cores the additional inter-core interferences represent a huge obstacle
to determining such a bound. Especially the unconstrained use of shared caches
can make a sound and precise analysis of the cache performance impossible. The
set of potential interleavings of the threads running on the different cores result
in a huge state space to be explored resulting in poor precision.

There exist first approaches to the analysis of the cache performance of shared
caches in multi-core systems. All approaches implicitly assume fully timing com-
positional architectures (see Sec. 5.1). They compute the cache footprint of pre-
empted and preempting tasks, determine the intersection, and assume the rest
as being eliminated (cf. [15]). This approach is neither context-sensitive nor flow-
sensitive and therefore overly pessimistic. For a fully timing-compositional archi-
tecture, Schlieker, Ivers, and Ernst [24] determine upper bounds of the penalties
by computing the number of potential conflicts when accessing shared mem-
ory by counting the number of memory accesses possibly generated on different
cores. Thus it becomes apparent that in order to achieve good predictability
results on a multi-core system choosing a fully timing compositional intra-core
architecture combined with separate caches is of utmost importance.

6 Conclusion

Embedded hard real-time systems need reliable guarantees for the satisfaction of
their timing constraints. In order to provide software and system designers with
an efficient way to verify timing properties of ECU software, the code-level timing
analysis tool aiT and the system-level timing analysis tool SymTA/S have been
coupled. Starting from a system model, a designer can perform timing budgeting,



performance optimization and timing verification, thus covering both the code
and the system aspects. XML Timing Cookies (XTC) provide for a user-friendly,
open, and efficient tool integration. SymTA/S communicates with aiT via XTC,
sending analysis requests and receiving responses. While providing a holistic tool
flow for timing validation to system designers, the precision of the results and the
efficiency of the analysis methods depend on the predictability of the execution
platform.

This is particularly important face to the trend towards unifying frame-
works like AUTOSAR in automotive embedded systems. The goal is to es-
tablish a standard in which components, possibly independently developed by
different suppliers, can be integrated on ECUs by standardized interfaces. To
this end AUTOSAR abstracts from the underlying hardware, the actually de-
ployed ECUs. The AUTOSAR timing model currently being developed con-
cerns mainly the integration of scheduling requirements. However, the success
of scheduling analysis depends on the predictability of the execution times of
the AUTOSAR-“runnables”. Thus, the applicability of the AUTOSAR idea
depends on availability of architectures on which software composition doesn’t
lead to unpredictable timing behavior.

The experience with the use of static timing analysis methods and the tools
based on it in the automotive and the aeronautics industries is positive. Static-
analysis-based methods can give timing guarantees even for complex processor
architectures exhibiting a huge execution-time variability and a strong depen-
dency of the execution time on the initial execution state. However, when mul-
tiple components are mapped to a hardware architecture where a high degree
of interference between the components cannot be avoided (e.g., due to shared
caches or buses) execution times of runnables may vary considerably and the
possibilities to predict safe and precise execution time bounds can be rather
limited. This limits the success of the scheduling analysis and this counteracts
the idea of composing software components. In contrast, choosing a fully timing
compositional intra-core architecture combined with separate caches will lead to
good predictability results. In consequence, the underlying hardware architecture
has to be chosen with timing predictability in mind.

This paper discusses the most important hardware components affecting tim-
ing predictability and summarizes their effect on the applicability of measurement-
based approaches and on the efficiency and precision of static analysis methods.
An industry-strength tool flow for timing validation is presented, and the prereq-
uisites at the hardware level for ascertaining high analysis precision are detailed.

References

1. H. Al-Zoubi, A. Milenkovic, and M. Milenkovic. Performance evaluation of cache
replacement policies for the SPEC CPU2000 benchmark suite. In ACM-SE 42:
Proceedings of the 42nd Annual Southeast Regional Conference, pages 267–272,
New York, NY, USA, 2004. ACM Press.

2. T. AUTOSAR Development Partnership. Automotive Open System Architecture
(AUTOSAR). URL: http://www.autosar.org, 2003.

http://www.autosar.org


3. C. Berg. PLRU cache domino effects. In Proceedings of 6th International Workshop
on Worst-Case Execution Time (WCET) Analysis, July 2006.

4. G. Bernat, A. Colin, and S. M. Petters. WCET analysis of probabilistic hard
real-time systems. In RTSS ’02: Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS’02), page 279, Washington, DC, USA, 2002. IEEE Computer
Society.

5. J.-F. Deverge and I. Puaut. Safe measurement-based WCET estimation. In R. Wil-
helm, editor, 5th Intl. Workshop on Worst-Case Execution Time (WCET) Analy-
sis, Dagstuhl, Germany, 2005. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany.

6. J. Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis.
PhD thesis, Dept. of Information Technology, Uppsala University, 2002.

7. Esterel Technologies. SCADE Suite.
http://www.esterel-technologies.com/products/scade-suite.

8. ETAS Group. ASCET Software Products.
http://www.etas.com/en/products/ascet_software_products.php.

9. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theil-
ing, S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a
real-life processor. In Proceedings of EMSOFT 2001, First Workshop on Embed-
ded Software, volume 2211 of Lecture Notes in Computer Science, pages 469–485.
Springer-Verlag, 2001.

10. C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling, I. Stein, S. Thesing, and
R. Heckmann. New developments in WCET analysis. In T. Reps, M. Sagiv, and
J. Bauer, editors, Program Analysis and Compilation, Theory and Practice, volume
4444 of Lecture Notes in Computer Science, pages 12–52. Springer-Verlag, 2007.

11. C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior prediction for
real-time systems. Real-Time Systems, 17(2-3):131–181, 1999.

12. Freescale Semiconductor, Inc. PowerPC Microprocessor Family: The Bus Interface
for 32-Bit Microprocessors, 2004. Rev. 0.1.

13. R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The influence of pro-
cessor architecture on the design and the results of WCET tools. IEEE Proceedings
on Real-Time Systems, 91(7):1038–1054, 2003.

14. R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level
performance analysis – the SymTA/S approach. IEEE Proceedings on Computers
and Digital Techniques, 152(2), Mar. 2005.

15. C.-G. Lee, J. Hahn, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim.
Analysis of cache-related preemption delay in fixed-priority preemptive scheduling.
In RTSS ’96: Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS
’96), page 264, Washington, DC, USA, 1996. IEEE Computer Society.

16. Y.-T. S. Li and S. Malik. Performance Analysis of Embedded Software Using
Implicit Path Enumeration. In Proceedings of the 32nd ACM/IEEE Design Au-
tomation Conference, 1995.

17. T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled mi-
croprocessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium
(RTSS’99), pages 12–21, December 1999.

18. S. M. Petters. Worst Case Execution Time Estimation for Advanced Processor
Architectures. PhD thesis, Technische Universität München, Munich, Germany,
Sept. 2002.

19. S. M. Petters, P. Zadarnowski, and G. Heiser. Measurements or static analysis or
both? In C. Rochange, editor, WCET, 2007.

http://www.esterel-technologies.com/products/scade-suite
http://www.etas.com/en/products/ascet_software_products.php


20. I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking in
multitasking hard real-time systems. In RTSS ’02: Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS’02), page 114, Washington, DC, USA, 2002.
IEEE Computer Society.

21. J. Reineke and D. Grund. Sensitivity of cache replacement policies. Reports
of SFB/TR 14 AVACS 36, SFB/TR 14 AVACS, March 2008. ISSN: 1860-9821,
http://www.avacs.org.

22. J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache
replacement policies. Real-Time Systems, 37(2):99–122, 2007.

23. J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and
B. Becker. A definition and classification of timing anomalies. In Proceedings
of 6th International Workshop on Worst-Case Execution Time (WCET) Analysis,
July 2006.

24. S. Schliecker, M. Ivers, and R. Ernst. Integrated analysis of communicating tasks in
MPSoCs. In Proceedings of the 4th International Conference on Hardware/Software
Codesign and System Synthesis, pages 288–293. ACM Press New York, NY, USA,
2006.

25. J. Schneider. Combined Schedulability and WCET Analysis for Real-Time Oper-
ating Systems. PhD thesis, Saarland University, 2003.

26. J. Schneider and C. Ferdinand. Pipeline Behavior Prediction for Superscalar Pro-
cessors by Abstract Interpretation. In Proceedings of the ACM SIGPLAN Work-
shop on Languages, Compilers and Tools for Embedded Systems, volume 34, pages
35–44, May 1999.

27. H. Theiling. Extracting Safe and Precise Control Flow from Binaries. In Proceed-
ings of the 7th Conference on Real-Time Computing Systems and Applications,
Cheju Island, South Korea, 2000.

28. H. Theiling and C. Ferdinand. Combining abstract interpretation and ILP for
microarchitecture modelling and program path analysis. In Proceedings of the 19th
IEEE Real-Time Systems Symposium, pages 144–153, Madrid, Spain, Dec. 1998.

29. S. Thesing. Safe and Precise WCET Determinations by Abstract Interpretation of
Pipeline Models. PhD thesis, Saarland University, 2004.

30. S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach,
R. Wilhelm, and C. Ferdinand. An abstract interpretation-based timing valida-
tion of hard real-time avionics software systems. In Proceedings of the 2003 In-
ternational Conference on Dependable Systems and Networks (DSN 2003), pages
625–632. IEEE Computer Society, June 2003.

31. X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program predictabil-
ity. SIGMETRICS Perform. Eval. Rev., 31(1):272–282, 2003.

32. I. Wenzel. Measurement-Based Timing Analysis of Superscalar Processors. PhD
thesis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria, 2006.


	Timing Validation of Automotive Software
	 Daniel Kästner, Reinhard Wilhelm, Reinhold Heckmann, Marc Schlickling, Markus Pister, Marek Jersak, Kai Richter, Christian Ferdinand 
	Abstract
	Introduction
	The System Level: Schedulability Analysis
	The Code Level: Static Timing Analysis
	The Interaction between SymTA/S and aiT
	Hardware and Predictability
	Pipelines
	Caches
	Buses
	Multi-core Architectures

	Conclusion
	References

