
Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 1 of 25 

EMSOFT 2007 – Salzburg – Austria

Optimal Task Placement to 
Improve Cache Performance

Sebastian Altmeyer and Gernot Gebhard
Compiler Design Lab
Saarland University

Wednesday, 3rd October, 2007



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 2 of 25 

Introduction



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 3 of 25 

Scope

● Single-processor Embedded System
● Cache using any Replacement Policy
● Straight memory-to-cache mapping

– No virtual memory

– Memory maps consecutively to cache sets

● Preemptive task scheduling
● Schedule statically known



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 4 of 25 

Motivation

● Cache performance optimization reasonable
– Increasing demands at Embedded Systems

– Steadily growing cache size

● Preemptive task scheduling
– Some task sets only schedulable in this fashion

– Renders previous timing guarantees invalid

– Induces dynamic context-switch costs



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 5 of 25 

Observation

● Memory placement influences cache performance
● Example:

– Tasks T1 and T2 execute mutual exclusively

– Task T3 executes frequently, interrupting T1 and T2

T1

Direct-Mapped Cache:

T2

T3

0 n 2n

Main Memory:

T1

T2

T3

0

n

2n

3n
⇒ Bad Performance



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 6 of 25 

Observation cont.

● Memory placement influences cache performance
● Example:

– Tasks T1 and T2 execute mutual exclusively

– Task T3 executes frequently, interrupting T1 and T2

T1

Direct-Mapped Cache:

T3

T2

0 n 2n

Main Memory:

T1

T3

T2

0

n

2n

3n
⇒ Good Performance



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 7 of 25 

Goals

● Improve performance of Embedded Systems by
– Trying to keep cached data persistent

– Reducing context-switch costs

● Make static timing analyses feasible by
– Identifying persistent cache sets

– Being able to derive tight WCET bounds



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 8 of 25 

Optimization Method



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 9 of 25 

Method

● Determine performance factors
– Cache configuration

– Tasks

– Schedule

● Compute optimal task placement
– Building cost function

– Determining start address of each task

● Arrange code according to placement



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 10 of 25 

Performance Factor: Cache

● Cache size
– Determines room for possible optimization

– Some tasks should fit inside the cache

● Associativity and Replacement Policy
– Strongly influences cache performance

– Affects predictability of cache behavior (minimum life 
span [1]):

1

2

4

PLRU LRU

1 1

2 2

3 4

n log
2
(n) + 1 n

Replacement Policy

A
ss

oc
ia

tiv
ity



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 11 of 25 

Performance Factor: Task

● Notion Task used ambiguously
– Describes an operation processing data

– Denotes a set of interdependent procedures

● Performance-affecting factors
– Period: Indicates severity of data being evicted

– Start Address & Size: Determine occupied cache sets

● Example:

P3P1

0 n 2n

Task (Procedures P1-3):

P2

4n

P2

Cache:

0 2n

P1

n

P3



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 12 of 25 

Performance Factor: Schedule

● Schedule induces Task Interdependency Relation
– Defines which tasks a task might interrupt

– Conflicting tasks should avoid each other

● Example:

T1

Optimal Task Placement:

T3

T2

0 n 2n

Task Interdependency:

T1 T2

T3



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 13 of 25 

Optimization Problem

● Find task placement with minimal costs
– Count conflicts with preempting tasks for cache sets

– Ignore if number of conflicts < minimum life span

– Weight conflicts proportional to task period

● Compute optimal solution via ILP
– Complexity linear in number of tasks and cache sets



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 14 of 25 

Example

Taskset:

T1
T2
T3
T4

4n

0

2n

Task Interdependency:

T1 T2

T4

T3

Main Memory:

0

2n

4n

T1

T2

T3

T4

Direct-Mapped Cache:

0 n 2n

T1
T2
T3

T4



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 15 of 25 

Simplified Optimization Problem

● Problems of ILP-based approach
– Introduces memory gaps

– NP-completeness (k-colorability [2])

– Long solving time for large tasksets

● Idea: Reduce search space
– Always arrange tasks consecutively in memory

– Determine optimal permutation of tasks

● Simulated Annealing
– Approximate optimal solution



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 16 of 25 

Example

Taskset:

T1
T2
T3
T4

4n

0

2n

Task Interdependency:

T1 T2

T4

T3

Main Memory:

0

2n

4n

T1

T3
T2
T4

Direct-Mapped Cache:

0 n 2n

T1
T2 T3

T4



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 17 of 25 

Practice



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 18 of 25 

Task Placement Framework

Source Code

Compiler

Object Files

Linker

Memory Image

Schedule Cache Config.

Optimizer

Placement



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 19 of 25 

Experimental Results

● Optimized three task sets
– Selected ten tasks from WCET Benchmark [3]

– Executed under RTEMS operating system [4]

– Simulated with ARM7 emulation MPARM [5]

● Performed optimization for three caches (LRU)
– 16kb direct-mapped

– 32kb two-way set-associative

– 32kb four-way set-associative

● Task sets do not fit in any cache



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 20 of 25 

direct 2-way 4-way direct 2-way 4-way direct 2-way 4-way

45

47.5

50

52.5

55

57.5

60

62.5

65

67.5

70

72.5

75

77.5

80

82.5

85

87.5

90

92.5

95

97.5

100

Experimental Results cont.

● Cost-function compared to cache misses
– Cheaper placement leads to better avg. performance

– Model not (yet) accurate enough

Task Set A

Task Set B

Task Set C

Cost Ratio

Miss Ratio

P
er

ce
nt

ag
e



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 21 of 25 

Experimental Results cont.

● Persistent cache sets for specific task (compress)

direct 2-way 4-way direct 2-way 4-way direct 2-way 4-way

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Task Set A

Task Set B

Task Set C

Best Placement

Worst Placement

P
er

ce
nt

ag
e



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 22 of 25 

Conclusion



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 23 of 25 

Achievements

● New method to optimize cache-performance
– Program code needs not be modified

– Arrange instructions and data differently in memory

● Computation of optimal task placement
– Globally minimizes threat of eviction

– Leads to better average performance

● Classification of cache sets (non-/persistent)
– Allow tight timing guarantees for preemptive scheduling



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 24 of 25 

Future Work

● Improve cost function
– Weight loops differently than straight-lined code

● Place procedures instead of whole tasks
– Allows higher variability

– Achieve better results

● Restrict to preemption points
● Evaluation using real-world task sets



Sebastian Altmeyer and Gernot Gebhard – Compiler Design Lab – Saarland University 25 of 25 

[1] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Predictability of 
Cache Replacement Policies. Reports of SFB/TR 14 AVACS 9, 
SFB/TR 14 AVACS, September 2006.

[2] C. Guillon, F. Rastello, T. Bidault, and F. Bouchez. Procedure 
placement using temporal-ordering information: Dealing with code 
size expansion. Journal of Embedded Computing, 1(4):437–459, 
2005.

[3] Benchmarks:
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[4] RTEMS Operating System:
http://www.rtems.com/

[5] MPARM:
http://www-micrel.deis.unibo.it/sitonew/research/mparm.html

References

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.rtems.com/
http://www-micrel.deis.unibo.it/sitonew/research/mparm.html

