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Introduction
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Scope

● Single-processor Embedded System
● Cache using any Replacement Policy
● Straight memory-to-cache mapping

– No virtual memory

– Memory maps consecutively to cache sets

● Preemptive task scheduling
● Schedule statically known
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Motivation

● Cache performance optimization reasonable
– Increasing demands at Embedded Systems

– Steadily growing cache size

● Preemptive task scheduling
– Some task sets only schedulable in this fashion

– Renders previous timing guarantees invalid

– Induces dynamic context-switch costs
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Observation

● Memory placement influences cache performance
● Example:

– Tasks T1 and T2 execute mutual exclusively

– Task T3 executes frequently, interrupting T1 and T2
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Observation cont.

● Memory placement influences cache performance
● Example:

– Tasks T1 and T2 execute mutual exclusively

– Task T3 executes frequently, interrupting T1 and T2

T1

Direct-Mapped Cache:

T3
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0 n 2n

Main Memory:
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Goals

● Improve performance of Embedded Systems by
– Trying to keep cached data persistent

– Reducing context-switch costs

● Make static timing analyses feasible by
– Identifying persistent cache sets

– Being able to derive tight WCET bounds
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Optimization Method
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Method

● Determine performance factors
– Cache configuration

– Tasks

– Schedule

● Compute optimal task placement
– Building cost function

– Determining start address of each task

● Arrange code according to placement
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Performance Factor: Cache

● Cache size
– Determines room for possible optimization

– Some tasks should fit inside the cache

● Associativity and Replacement Policy
– Strongly influences cache performance

– Affects predictability of cache behavior (minimum life 
span [1]):
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Performance Factor: Task

● Notion Task used ambiguously
– Describes an operation processing data

– Denotes a set of interdependent procedures

● Performance-affecting factors
– Period: Indicates severity of data being evicted

– Start Address & Size: Determine occupied cache sets

● Example:

P3P1

0 n 2n

Task (Procedures P1-3):

P2

4n

P2

Cache:

0 2n

P1

n

P3
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Performance Factor: Schedule

● Schedule induces Task Interdependency Relation
– Defines which tasks a task might interrupt

– Conflicting tasks should avoid each other

● Example:

T1

Optimal Task Placement:

T3

T2

0 n 2n

Task Interdependency:

T1 T2

T3
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Optimization Problem

● Find task placement with minimal costs
– Count conflicts with preempting tasks for cache sets

– Ignore if number of conflicts < minimum life span

– Weight conflicts proportional to task period

● Compute optimal solution via ILP
– Complexity linear in number of tasks and cache sets
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Example

Taskset:
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Simplified Optimization Problem

● Problems of ILP-based approach
– Introduces memory gaps

– NP-completeness (k-colorability [2])

– Long solving time for large tasksets

● Idea: Reduce search space
– Always arrange tasks consecutively in memory

– Determine optimal permutation of tasks

● Simulated Annealing
– Approximate optimal solution
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Example

Taskset:
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Task Interdependency:
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Practice
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Task Placement Framework

Source Code

Compiler

Object Files

Linker

Memory Image

Schedule Cache Config.

Optimizer

Placement
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Experimental Results

● Optimized three task sets
– Selected ten tasks from WCET Benchmark [3]

– Executed under RTEMS operating system [4]

– Simulated with ARM7 emulation MPARM [5]

● Performed optimization for three caches (LRU)
– 16kb direct-mapped

– 32kb two-way set-associative

– 32kb four-way set-associative

● Task sets do not fit in any cache
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Experimental Results cont.

● Cost-function compared to cache misses
– Cheaper placement leads to better avg. performance

– Model not (yet) accurate enough
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Experimental Results cont.

● Persistent cache sets for specific task (compress)

direct 2-way 4-way direct 2-way 4-way direct 2-way 4-way
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Conclusion
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Achievements

● New method to optimize cache-performance
– Program code needs not be modified

– Arrange instructions and data differently in memory

● Computation of optimal task placement
– Globally minimizes threat of eviction

– Leads to better average performance

● Classification of cache sets (non-/persistent)
– Allow tight timing guarantees for preemptive scheduling
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Future Work

● Improve cost function
– Weight loops differently than straight-lined code

● Place procedures instead of whole tasks
– Allows higher variability

– Achieve better results

● Restrict to preemption points
● Evaluation using real-world task sets
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