Semi-Automatic Derivation of aiT
Timing Models from HW Specifications

Markus Pister ~ Marc Schlickling

Compiler Design Lab AbsInt GmbH
Computer Science Dept. Science Park 1
Saarland University Saarbriicken

Verisoft XT project meeting - 11.12.2007

Compiler
Design
Lalo Ahsm

* Motivation

® Semi-automatic pipeline analyzer generation
© The approach
© Hardware specifications
° Processing the VHDL model
© Analysis framework
© Abstractions on VHDL models
© Code generation

® Improvements to current methods

® Conclusion

® Hard real time scenarios makes computer aided validation of
safety critical embedded systems crucial

® Computation of WCET is a key issue in validation of safety
critical applications

® aiT Timing Analyzer
© Based on abstract interpretation
© WCET estimation mainly based on pipeline analysis modelling
the processor pipeline and system controllers
© Today: Pipeline models are hand-crafted
= time consuming and error-prone process

® Modern processors are derived from formal hardware
descriptions

* Why not derive the pipeline analysis from the hardware
description of a processor?

T —
Problems

* [Availability /Accessibility of hardware specification]

® Processor specification too large to be used in aiT
® Specification needs to be abstracted
Idea

suitable for use in aiT

® Use of static methods to derive an abstracted model that is

Legend
——> Completed action
——> Ongoing work

= Objective

Timing Analyser

Static Analyses/
Abstractions

‘ Value Analysis ‘

[path Analysis |

ILP-Generator

Abstracted VHDL

Code Generation

® Hardware description language
entity counter is
Y Hierarchica”y Organized port(clk:in std_logic}; rst:in std_logic;
val:out std_logic_vector(2 downto 0))
. . end;
° Deﬁned n the IEEE Standard architecture rtl of counter is
signal cnt:std_logic_vector(2 downto 0);
1076 begin
° P1: process(clk,rst) is
Focus on if (rst="1’) then
H cnt<="000";
© register-transfer-level (RTL) elsif (rising edge(clk)) then
© synthesizable IEEE _ cavcseanr
substandard 1076.6 end;
P2: process(cnt) is
val<=cnt;
end;
end;
=} F = = z

T
Two-level semantics
® Process execution
* Synchronization + Restart 4+ Time
Process execution

® Sequential, imperative semantics

® Assignments to signals are delayed
Second level

* Executes, until suspended (by wait statement)
® After all processes have suspended

® Check if restart of processes is necessary

© Yes: restart these processes (delta cycle)
® Repeat

© No: wait for timeout (theta cycle)
=] F = = £ DA
 VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling ~ Derivation of aiT Timing Models ~ 8/22

s
Ordering of process execution is not important
® Variables are local
e Signal assignments take effect only at synchronization point
Transform two-level semantics to one level

* Always execute all processes in fixed ordered loop

® Signal assignments can be viewed as assignments to new
variables (copied at synchronization point)

© assignment: s<=’1’

O at sync: S:=Spew;

= Snew:="1";
next loop iteration is necessary

* Add a guard to process header to check, if re-execution in the

© Guard true, iff process is restarted at synchronization of
previous iteration
=} = = E = DA

® Parses the fully synthesizable VHDL substandard
® Elaborates the parsed entity forest according to IEEE
standard.

® Emits a semantically equivalent CRL2 description of the
VHDL model.

© by expressing VHDL as sequential program
® Generates some help constructs to support static analyses

© e.g. specific routines for the analysis start, clock modelling and
environmental signals.

® Provides a textual description of
a combined call and control flow
graph
® Hierarchically organized in
© Routines,
© Basic blocks,
© Instructions and
° Edges
® Extensible using an
attribute-value concept

nalysis_sta

[ETock

[cTock_rising_edge]
I [clock_fal1ing_edge

Legend
——> Completed action
——> Ongoing work

= Objective

Timing Analyser

Static Analyses/
Abstractions

‘ Value Analysis ‘

[path Analysis |

ILP-Generator

Abstracted VHDL

Code Generation

¢ VHDL model is transformed
into CRL2 description

. . Analysis
© semantically equivalent [specification ; / veoL ;
© some syntactical modifications
(e.g. switch statements are
.
transformed into

if-then-else statements)

* Analyzer based on PAG [A"a'ySis;
specification
Analysis

* PAG generates code working on
CRL2 description

it
N)
yel
o)

® Sequential execution of processes
modelled by simul routine

© "Process execution” is guarded by the
simul_if modelling the sensitivity list of
the process

© Analyzer decides, whether the edge to
the call has to be taken or not

® Synchronization point is represented by
simul_wait

® environment routine allows analysis of
open designs

nalysis_sta

Clock events have to be
modelled separately

Introduced special clock routine
signalizing rising or falling
events via special attributes

Suppress uninteresting events,

e.g. Leon 2 SPARC V8

implementation completely
triggered on rising clock edges

Support for multiple clock
domains

T
1. Dead-Code Elimination
© Slice all parts being unreachable under a specified assumption
© Decreases the size of the model
2. Process Substitution

© Replace a process with an abstract process

© Semantic of the abstract process specified in an arbitrary
language (e.g. C)

© Changing of domains necessary

3. Memory Abstraction

© Remove the memory from the VHDL model
© Introduce new interface

© Necessary to insert instructions into the model
© Can be done by inserting abstract processes
CIARY- = = z 9ac

© Transforming data types (e.g. addresses to address intervals)

s
® Memory abstraction
® Find constraint: "When does an instruction leave the
pipeline?”

© lIdentify point in the model, where instructions complete
© After passing this point, the completed instruction does not
have any effect on signals, etc.

* Compute a backward slice for this constraint
timing

© All parts being not part of this slice have no effect on the

Legend
——> Completed action
——> Ongoing work

= Objective

Timing Analyser

Static Analyses/
Abstractions

‘ Value Analysis ‘

[path Analysis |

ILP-Generator

Abstracted VHDL

Code Generation

Abstracted VHDL
® Reconstructed from transformed CRL2.
® Hierarchy preserving.
* May be used for further analyses (model checking, etc.)
C-Code
* Abstract simulation of (abstracted) VHDL for exactly one
processor step (single-cycle update)

e Suitable for usage in the aiT tool chain, i.e. the
cache/pipeline analysis.

T —
Iterate until model is handable
® Generate C-code for the model

* Simulate the resulting model (using aiT)
© Check for state explosions and
© Check state differences

© e.g. cache abstraction

® Substitute a process with an abstract one
® Eliminate dead code

Less error prone by reducing the human involvement

Precise information about processor behavior from VHDL
specification

Much faster than manual implementation (months vs.
days/weeks)

Better adaption to faster development cycles in industry

Industrial/academical partners

- % aém ES_PASS
AIRBUS

University of Dortmund Airbus France Verisoft XT ES_PASS AVACS

(infineon

Never stop thinking
Infineon

® WCET is one of the key issues for validating safety-critical
embedded systems
* Computation of safe upper bounds on the WCET using aiT.
® Manual development of a pipeline analysis as component
within aiT
© hand crafted,
© error prone and
© time consuming.
Idea of semi-automatically generation of pipeline analysers

® Practical benefit of this method over existing one

	Outline
	Motivation
	Semi-automatic pipeline analyzer generation
	The approach
	Hardware specifications
	Processing the VHDL model
	Analysis framework
	Abstractions on VHDL models
	Code generation

	Improvements to current methods
	Conclusion

