
Semi-Automatic Derivation of aiT
Timing Models from HW Specifications

Markus Pister Marc Schlickling

Compiler Design Lab AbsInt GmbH
Computer Science Dept. Science Park 1

Saarland University Saarbrücken

Verisoft XT project meeting – 11.12.2007

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 1/22



Outline

• Motivation

• Semi-automatic pipeline analyzer generation
◦ The approach
◦ Hardware specifications
◦ Processing the VHDL model
◦ Analysis framework
◦ Abstractions on VHDL models
◦ Code generation

• Improvements to current methods

• Conclusion

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 2/22



Motivation

� Hard real time scenarios makes computer aided validation of
safety critical embedded systems crucial

� Computation of WCET is a key issue in validation of safety
critical applications

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 3/22



Motivation

� aiT Timing Analyzer
◦ Based on abstract interpretation
◦ WCET estimation mainly based on pipeline analysis modelling

the processor pipeline and system controllers
◦ Today: Pipeline models are hand-crafted

=⇒ time consuming and error-prone process

� Modern processors are derived from formal hardware
descriptions

� Why not derive the pipeline analysis from the hardware
description of a processor?

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 4/22



Motivation

Problems

� [Availability/Accessibility of hardware specification]
� Processor specification too large to be used in aiT

� Specification needs to be abstracted

Idea

� Use of static methods to derive an abstracted model that is
suitable for use in aiT

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 5/22



Overview of the derivation process

variable z is

Std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

variable irq is

std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

variable x is

std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

Static Analyses/
AbstractionsVHDL2Crl2

Code Generation
VHDL Specification

variable work_package_x is

std_logic_vector(0 to 1);

if work_package_x = „00“

then A

elsif x = „01“

then B

else C

endif;

std_logic work_package_x[2];

if(work_package_x[0]==0

&& work_package_x[1]==0){
A

}else{

if(work_package_x[0]==0
&& work_package_x[1]==1){

B
}else{

C
}

}

C-Code

Abstracted VHDL

O
b
je

c
tiv

e

Timing Analyser

CFG Builder

Value Analysis

Cache/Pipeline
Analysis

Static Analyses

ILP-Generator

LP-Solver

Path Analysis

WCET
Estimation

Legend

Completed action

Ongoing work

Objective

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 6/22



VHDL

� Hardware description language

� Hierarchically organized

� Defined in the IEEE standard
1076

� Focus on
◦ register-transfer-level (RTL)
◦ synthesizable IEEE

substandard 1076.6

entity counter is

port(clk:in std_logic; rst:in std_logic;

val:out std_logic_vector(2 downto 0));

end;

architecture rtl of counter is

signal cnt:std_logic_vector(2 downto 0);

begin

P1: process(clk,rst) is

if (rst=’1’) then

cnt<="000";

elsif (rising_edge(clk)) then

cnt<=cnt+’1’;

end if;

end;

P2: process(cnt) is

val<=cnt;

end;

end;

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 7/22



VHDL semantics

Two-level semantics

� Process execution

� Synchronization + Restart + Time

Process execution

� Sequential, imperative semantics

� Assignments to signals are delayed

� Executes, until suspended (by wait statement)

Second level

� After all processes have suspended
� Check if restart of processes is necessary

◦ Yes: restart these processes (delta cycle)
◦ No: wait for timeout (theta cycle)

� Repeat

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 8/22



Transformed semantics

Ordering of process execution is not important

� Variables are local

� Signal assignments take effect only at synchronization point

Transform two-level semantics to one level

� Always execute all processes in fixed ordered loop
� Signal assignments can be viewed as assignments to new

variables (copied at synchronization point)
◦ assignment: s<=’1’; =⇒ snew:=’1’;
◦ at sync: s:=snew;

� Add a guard to process header to check, if re-execution in the
next loop iteration is necessary

◦ Guard true, iff process is restarted at synchronization of
previous iteration

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 9/22



VHDL2Crl2

� Parses the fully synthesizable VHDL substandard

� Elaborates the parsed entity forest according to IEEE
standard.

� Emits a semantically equivalent Crl2 description of the
VHDL model.

◦ by expressing VHDL as sequential program

� Generates some help constructs to support static analyses
◦ e.g. specific routines for the analysis start, clock modelling and

environmental signals.

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 10/22



Control-Flow Representation Language (Crl2)

� Provides a textual description of
a combined call and control flow
graph

� Hierarchically organized in
◦ Routines,
◦ Basic blocks,
◦ Instructions and
◦ Edges

� Extensible using an
attribute-value concept

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 11/22



Overview of the derivation process

variable z is

Std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

variable irq is

std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

variable x is

std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

Static Analyses/
AbstractionsVHDL2Crl2

Code Generation
VHDL Specification

variable work_package_x is

std_logic_vector(0 to 1);

if work_package_x = „00“

then A

elsif x = „01“

then B

else C

endif;

std_logic work_package_x[2];

if(work_package_x[0]==0

&& work_package_x[1]==0){
A

}else{

if(work_package_x[0]==0
&& work_package_x[1]==1){

B
}else{

C
}

}

C-Code

Abstracted VHDL

O
b
je

c
tiv

e

Timing Analyser

CFG Builder

Value Analysis

Cache/Pipeline
Analysis

Static Analyses

ILP-Generator

LP-Solver

Path Analysis

WCET
Estimation

Legend

Completed action

Ongoing work

Objective

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 12/22



Analysis framework

� VHDL model is transformed
into Crl2 description

◦ semantically equivalent
◦ some syntactical modifications

(e.g. switch statements are
transformed into
if-then-else statements)

� Analyzer based on PAG
specification

� PAG generates code working on
Crl2 description

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 13/22



Analysis framework - simulation routine

� Sequential execution of processes
modelled by simul routine

◦ ”Process execution” is guarded by the
simul if modelling the sensitivity list of
the process

◦ Analyzer decides, whether the edge to
the call has to be taken or not

� Synchronization point is represented by
simul wait

� environment routine allows analysis of
open designs

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 14/22



Analysis framework - synchronous designs

� Clock events have to be
modelled separately

� Introduced special clock routine
signalizing rising or falling
events via special attributes

� Suppress uninteresting events,
e.g. Leon 2 SPARC V8
implementation completely
triggered on rising clock edges

� Support for multiple clock
domains

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 15/22



Abstractions on VHDL models

1. Dead-Code Elimination
◦ Slice all parts being unreachable under a specified assumption
◦ Decreases the size of the model

2. Process Substitution
◦ Replace a process with an abstract process

◦ Semantic of the abstract process specified in an arbitrary
language (e.g. C)

◦ Changing of domains necessary
◦ Transforming data types (e.g. addresses to address intervals)

3. Memory Abstraction
◦ Remove the memory from the VHDL model
◦ Introduce new interface

◦ Necessary to insert instructions into the model
◦ Can be done by inserting abstract processes

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 16/22



Abstractions for generation of timing analysis

� Memory abstraction
� Find constraint: ”When does an instruction leave the

pipeline?”
◦ Identify point in the model, where instructions complete
◦ After passing this point, the completed instruction does not

have any effect on signals, etc.

� Compute a backward slice for this constraint
◦ All parts being not part of this slice have no effect on the

timing

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 17/22



Overview of the derivation process

variable z is

Std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

variable irq is

std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

variable x is

std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

Static Analyses/
AbstractionsVHDL2Crl2

Code Generation
VHDL Specification

variable work_package_x is

std_logic_vector(0 to 1);

if work_package_x = „00“

then A

elsif x = „01“

then B

else C

endif;

std_logic work_package_x[2];

if(work_package_x[0]==0

&& work_package_x[1]==0){
A

}else{

if(work_package_x[0]==0
&& work_package_x[1]==1){

B
}else{

C
}

}

C-Code

Abstracted VHDL

O
b
je

c
tiv

e

Timing Analyser

CFG Builder

Value Analysis

Cache/Pipeline
Analysis

Static Analyses

ILP-Generator

LP-Solver

Path Analysis

WCET
Estimation

Legend

Completed action

Ongoing work

Objective

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 18/22



Code generation

Abstracted VHDL

� Reconstructed from transformed Crl2.

� Hierarchy preserving.

� May be used for further analyses (model checking, etc.)

C-Code

� Abstract simulation of (abstracted) VHDL for exactly one
processor step (single-cycle update)

� Suitable for usage in the aiT tool chain, i.e. the
cache/pipeline analysis.

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 19/22



Generating an aiT timing analysis

Iterate until model is handable

� Generate C-code for the model
� Simulate the resulting model (using aiT)

◦ Check for state explosions and
◦ Check state differences

� Substitute a process with an abstract one
◦ e.g. cache abstraction

� Eliminate dead code

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 20/22



Improvements to current methods

� Less error prone by reducing the human involvement

� Precise information about processor behavior from VHDL
specification

� Much faster than manual implementation (months vs.
days/weeks)

� Better adaption to faster development cycles in industry

Industrial/academical partners

University of Dortmund Airbus France Verisoft XT ES PASS AVACS Infineon

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 21/22



Conclusion

� WCET is one of the key issues for validating safety-critical
embedded systems

� Computation of safe upper bounds on the WCET using aiT.
� Manual development of a pipeline analysis as component

within aiT
◦ hand crafted,
◦ error prone and
◦ time consuming.

� Idea of semi-automatically generation of pipeline analysers

� Practical benefit of this method over existing one

VerisoftXT - 11.12.2007 Markus Pister, Marc Schlickling Derivation of aiT Timing Models 22/22


	Outline
	Motivation
	Semi-automatic pipeline analyzer generation
	The approach
	Hardware specifications
	Processing the VHDL model
	Analysis framework
	Abstractions on VHDL models
	Code generation

	Improvements to current methods
	Conclusion

