
Generic
Software pipelining

at the Assembly Level

Markus Pister
pister@cs.uni-sb.de

Daniel Kästner
kaestner@absint.com



2/23
Embedded Systems (ES)

Embedded Systems (ES) are widely used
Many systems of daily use: handy, handheld, …

Safety critical systems: airbag control, flight control system,…

Rapidly growing complexity of software in ES



3/23
Embedded Systems (2)

Hard real time scenarios:
Short response time

Flight control systems, airbag control systems

Low power consumption and weight
Handy, handheld, …

Urgent need for fast program execution under 
the constraint of very limited code size



4/23
Code Generation for ES

Program execution times mostly spent in loops

Modern processors offer massive
instruction level parallelism (ILP)

VLIW architecture: e.g. Philips TriMedia TM1000

EPIC architecture: e.g. Intel Itanium



5/23
Code Generation for ES (2)

Many existing compilers cannot generate satisfactory 
code (cannot exploit ILP)

High effort enhancing them to cope with advanced 
ILP

Improving the quality of legacy compilers by
Starting at the assembly level

Building flexible postpass optimizers
- Can be quickly retargeted
- Improve generated code quality significantly



6/23
PROPAN-Overview

Postpass-oriented Retargetable Optimizer and Analyzer



7/23
In this talk

Software Pipelining as a post pass optimization
Important technique to exploit ILP while trying to keep code size 
low
Static cyclic and global instruction scheduling method
Idea: overlap the execution of consecutive iterations of a loop

a

b

c

a
b
c

a
b
c

a
b
c

a
b
c

c b a

DDG 4x unrolled loop Kernel



8/23
Software Pipelining

Computes new (shorter) 
loop body

Overlapping loop iterations 

Exploits ILP

Modulo Scheduling
Initiation interval (II)
divides loop into Stages
Schedule operations modulo II

Iterative Modulo Scheduling



9/23
Minimum Initiation Interval

Resource based: MIIres

Determined by the resource requirements

Approximation for optimal bin packing

Data dependence based: MIIdep

Delays imposed by cycles in DDG

MII = Max (MIIres , MIIdep )

Basis for Kernel (modulo) computation



10/23
Scheduling Phase

Flat Schedule
Maintain partial feasible schedule

Algorithm:
Pick next operation
Compute slot window [EStart,LStart]
Search feasible slot within [EStart,LStart]
Conflict: unschedule some operations and force

current operation into partial schedule

Kernel
Schedule operations from the Flat Schedule modulo II



11/23
Prologue / Epilogue

„fills up“ or „drains down“ the pipeline respectively

a

b

c

d

e

II=1

Kernel

Prologue

Epilogue

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e

a

b

c

d

e



12/23

Characteristics of the
Post pass approach

Integration of the pipelined loop into the 
surrounding control flow

Modification of branch targets needed

Reconstruction of the CFG is complex and difficult
Resolving targets of computed branches/calls and switch 
tables

ld32d(20) r4 → r34

ijmpt r1 r34



13/23

Characteristics of the
Post pass approach (2)

Register allocation is already done
Assignment can be changed with Modulo Variable Expansion
Liveliness properties must be checked before register 
renaming

Applicable for inline assembly and library code

Data dependencies at the assembly level are more 
general

More generality leads to a more complex DDG
One single array access multiple assembler operations



14/23

Data dependences at the 
assembly level

i=0;

…

i=i+1;

…

j=array[i];

…

ld32d(8) r6 → r7

…

iadd(1) r7 → r8

…

ld32d(20) r4 → r10

iadd r10 r8 → r9

ld32d r9 → r11



15/23
DDG at the assembly level



16/23
TriMedia TM1000 - Overview

Digital Signal Processor for Multimedia 
Applications designed by Philips

100 MHz VLIW-CPU (32 Bit)

128 General Purpose Registers (32 Bit)

27 parallel functional units



17/23
TM1000 ― VLIW-Core



18/23
TriMedia TM1000 - Properties

Instruction set
Register-based addressing modes
Predicative execution: register-based
load/store architecture
Special multimedia operations

5 Issue Slots, 5 Write-Back Busses

Irregular execution times for operations
Write-Back Bus has to be modeled independently



19/23
Experimental Results

Files from DSPSTONE- and Mibench-Benchmark

Best performance gains for chain like DDG‘s (up to 3,1)

0

10

20

30

40

50

60

Instructions

Performance increase for the execution of 100 iterations

Original 1100 800 1000 800 900 1200 1000 2500 4000 5400 1100
Pipelined 796 792 798 292 295 1200 1000 799 1985 2386 895

basic
math
1

basic
math
2

bitco
unt chain

chain
2 dfir dlms

dmat
1x3

dmat
rix1 FFT

mam
u2



20/23
Experimental Results (2)

Moderate code size increase (average: 1,42)

0

10

20

30

40

50

60

Instructions

Code size increase

Original 11 8 10 8 9 12 10 25 40 54 11

Kernel 8 8 8 3 3 12 10 8 20 24 9

Overall 20 8 22 7 10 12 10 39 45 58 31

basic
math1

basic
math2

bitcou
nt

chain chain2 dfir dlms dmat1
x3

dmatri
x1

FFT mamu
2



21/23
Experimental Results (3)

Computed MII mostly is already feasible (73%)

0

2

4
6

8

10

12
14

16

18

20

Feasibility of the MII

MII 6 8 5 1 1 12 8 5 12 19 5

II 7 8 6 1 1 12 10 5 12 19 5

basic
math1

basic
math2

bitcou
nt

chain chain2 dfir dlms dmat1
x3

dmatri
x1

FFT mamu
2



22/23
Future Work

Nested loops:
Process loops from innermost to outermost one

Treat an inner loop as one instruction (“meta-instruction”)

Parallelize Prologue and Epilogue code with 
surrounding code

Can be done by existing acyclic scheduling techniques like 
list scheduling

Delay Slot filling



23/23
Conclusion

Embedded Systems creates need for fast program execution 
under constraint of very limited code size

Overcome limitation of existing compilers by retargetable
postpass optimizer

Fast program execution by exploiting ILP with Software 
Pipelining

Iterative Modulo Scheduling at the Assembly level
Characteristics of the Postpass approach

Experimental results show
a speedup of up to 3,1 with
an average code size increase of 1,42


