
Semi-Automatic Derivation

of Timing Models

for WCET Analysis

Markus Pister , Marc Schlickling

Motivaton

 Growing support of human life by complex embedded systems

 Safety-critical systems often have to fulfill strict timing
constraints

 Timing validation of the systems behavior is crucial for
guaranteeing their correct behavior

The Timing Problem

Pr
o b

a b
ili
ty

Execution Time

Best Case
Execution Time

Exact Worst Case
Execution Time

Safe Worst Case
Execution Time
Estimate

Unsafe:
Execution Time
Measurement

 Execution times of tasks vary over time
 Different input

 Different system state

 Measurement of the worst-case execution time not possible for
complex architectures

 Need static analysis (independent of inputs) for safety guarantees

aiT WCET Framework

Executable

program

Call- & CFG Graph

Builder

Loop Transformation

CRL2 File CRL2 File

Path Analysis

ILP-Generator

LP-Solver

Evaluation

AIS File

AIS File

Loop Bounds

Static Analyses

Loop-Bound Analyzer

Value Analyzer

Cache/Pipeline

Analyzer

Caches / Pipelines

 Modern processors support features like
 Out-of-order execution

 Speculation (dynamic, static)

 Caches (replacement policy, write policy)

 Branch prediction

 Instruction latencies vary and depend on:
 Processor pipeline state (i.e. execution context)

 Environmental state (cache contents, hardware configuration, ...)

 Input program (size, number of memory accesses, ...)

 Cache/Pipeline analysis: Computes basic block execution times

Caches/Pipeline Analysis within aiT

 Based on timing model of the
target system

 Abstract simulation of task
execution
 Non-deterministic due to lack of

information (input and/or
processor state)

 Timing model currently hand-
crafted by human experts
based on processor manuals

 Modern processors
automatically synthesized out
of formal hardware
specifications (including the
instruction timing)

Deriving the Timing Model

 Processor specification too large to be used in aiT framework

Infineon PCP2 (~40.000 loc), Leon2 (~80.000 loc), Infineon TriCore 1.3 (~250.000 loc)

 Specification needs to be compressed

Model Preprocessing

 Goal: Reduce specification size

 Eliminating parts not relevant for the timing behavior of the system

 Methods

 Environmental Assumption Refinement

 Gap between highly configurable processors and very specific usage within
embedded systems

 Some processor features are not used for a particular embedded system

 Specification of unused features can be ignored/removed

 Data-Path Elimination

 Modeling data paths increase the resource consumption

 Latency of instructions often not affected by content of registers/memory cells

 Can be factored out of the cache/pipeline analysis part (cf. value analysis)

Processor State Abstractions

 On complex architectures (TriCore, MPC755) preprocessed model still to
large for an efficient timing analysis

 Further model size reduction necessary

 Approximating parts of the processor state
 Processor state abstractions

 Possible Abstractions
 Process Substitution

 Replace VHDL processes by custom simulation routines (not necessarily in VHDL)
 Example: Cache Abstraction

 Domain Abstraction
 Type changes
 Example: Address → Address range

 Memory Abstraction
 Elimination of large memory arrays
 Control-flow interface
 Adopt VHDL design to use value analysis results for memory/register accesses

Automation of the Derivation Process

 Utilize static program analyses and transformation tools to automate
 Model preprocessing

 Processor state abstractions

 Based on static analysis framework for VHDL

 Generate cache/pipeline analysis out of the derived timing model

Static Analyses

 Environmental Assumption Refinement

 Obtaining initial signal values during system reset

 E.g. contents of hardware configuration registers

 Identification of unused parts of the model

 Forward slice “reset is activated”

 Constant propagation on the result

 Timing-Dead Code Detection

 Only parts of the model affect timing behavior

 Combined static analyzes

 Backward slices from each pipeline exit

 Everything not contained in the union over these slices is dead.

Static Analyses (2)

 Domain Abstraction

 Abstractions approximate parts of the processor state by abstract

values

 Domains of signals/variables have to be changed

 Example: Address ranges instead of exact addresses

 Functors for changed types need to be adjusted

 Identify all locations for needed functor adjustments for a given

domain change

Transformation Tools

 DomainAbstracter

 Automate type transformations on the model

 Based on
 Type transformation specification (e.g. Address → Address range)

 Implementation for operators on the new domain

 DeadCodeEliminator

 ProcessReplacer

 Automate the replacement of VHDL processes

 Based on
 Implementation of an update function that simulates the timing

behavior of the replaced process

 Replaces the given process by the custom implementation

Code Generation

 Automatic generation of the
cache/pipeline analysis out of the
transformed and abstracted VHDL
model

 Generated analysis perfectly fits
into the aiT tool chain

 Generated code
 Update function that computes the

transition of one processor clock
cycle for a given abstract processor
state

 Update function can compute
multiple possible successor states
due to the introduced non-
determinism in the timing model

 Single execution trace vs. execution
tree

Conclusion

 Safety-critical systems with hard real-time constraints need a timing
validation

 aiT is an industrial usable tool for the determination of safe and
precise upper bounds on Worst-Case Execution Time of tasks

 Computation based on timing models that currently are hand-crafted
 Time consuming process

 Error prone due to human involvement and uncertainties in the processor
documentation

 VHDL specifications contain the timing behavior of the system

 The timing model can be semi-automatically derived out of such
VHDL descriptions

 Removed human involvement up to a certain degree

 Speeds up the creation time from a unit of months to weeks

