
Semi-Automatic Derivation

of Timing Models

for WCET Analysis

Markus Pister , Marc Schlickling

Motivaton

 Growing support of human life by complex embedded systems

 Safety-critical systems often have to fulfill strict timing
constraints

 Timing validation of the systems behavior is crucial for
guaranteeing their correct behavior

The Timing Problem

Pr
o b

a b
ili
ty

Execution Time

Best Case
Execution Time

Exact Worst Case
Execution Time

Safe Worst Case
Execution Time
Estimate

Unsafe:
Execution Time
Measurement

 Execution times of tasks vary over time
 Different input

 Different system state

 Measurement of the worst-case execution time not possible for
complex architectures

 Need static analysis (independent of inputs) for safety guarantees

aiT WCET Framework

Executable

program

Call- & CFG Graph

Builder

Loop Transformation

CRL2 File CRL2 File

Path Analysis

ILP-Generator

LP-Solver

Evaluation

AIS File

AIS File

Loop Bounds

Static Analyses

Loop-Bound Analyzer

Value Analyzer

Cache/Pipeline

Analyzer

Caches / Pipelines

 Modern processors support features like
 Out-of-order execution

 Speculation (dynamic, static)

 Caches (replacement policy, write policy)

 Branch prediction

 Instruction latencies vary and depend on:
 Processor pipeline state (i.e. execution context)

 Environmental state (cache contents, hardware configuration, ...)

 Input program (size, number of memory accesses, ...)

 Cache/Pipeline analysis: Computes basic block execution times

Caches/Pipeline Analysis within aiT

 Based on timing model of the
target system

 Abstract simulation of task
execution
 Non-deterministic due to lack of

information (input and/or
processor state)

 Timing model currently hand-
crafted by human experts
based on processor manuals

 Modern processors
automatically synthesized out
of formal hardware
specifications (including the
instruction timing)

Deriving the Timing Model

 Processor specification too large to be used in aiT framework

Infineon PCP2 (~40.000 loc), Leon2 (~80.000 loc), Infineon TriCore 1.3 (~250.000 loc)

 Specification needs to be compressed

Model Preprocessing

 Goal: Reduce specification size

 Eliminating parts not relevant for the timing behavior of the system

 Methods

 Environmental Assumption Refinement

 Gap between highly configurable processors and very specific usage within
embedded systems

 Some processor features are not used for a particular embedded system

 Specification of unused features can be ignored/removed

 Data-Path Elimination

 Modeling data paths increase the resource consumption

 Latency of instructions often not affected by content of registers/memory cells

 Can be factored out of the cache/pipeline analysis part (cf. value analysis)

Processor State Abstractions

 On complex architectures (TriCore, MPC755) preprocessed model still to
large for an efficient timing analysis

 Further model size reduction necessary

 Approximating parts of the processor state
 Processor state abstractions

 Possible Abstractions
 Process Substitution

 Replace VHDL processes by custom simulation routines (not necessarily in VHDL)
 Example: Cache Abstraction

 Domain Abstraction
 Type changes
 Example: Address → Address range

 Memory Abstraction
 Elimination of large memory arrays
 Control-flow interface
 Adopt VHDL design to use value analysis results for memory/register accesses

Automation of the Derivation Process

 Utilize static program analyses and transformation tools to automate
 Model preprocessing

 Processor state abstractions

 Based on static analysis framework for VHDL

 Generate cache/pipeline analysis out of the derived timing model

Static Analyses

 Environmental Assumption Refinement

 Obtaining initial signal values during system reset

 E.g. contents of hardware configuration registers

 Identification of unused parts of the model

 Forward slice “reset is activated”

 Constant propagation on the result

 Timing-Dead Code Detection

 Only parts of the model affect timing behavior

 Combined static analyzes

 Backward slices from each pipeline exit

 Everything not contained in the union over these slices is dead.

Static Analyses (2)

 Domain Abstraction

 Abstractions approximate parts of the processor state by abstract

values

 Domains of signals/variables have to be changed

 Example: Address ranges instead of exact addresses

 Functors for changed types need to be adjusted

 Identify all locations for needed functor adjustments for a given

domain change

Transformation Tools

 DomainAbstracter

 Automate type transformations on the model

 Based on
 Type transformation specification (e.g. Address → Address range)

 Implementation for operators on the new domain

 DeadCodeEliminator

 ProcessReplacer

 Automate the replacement of VHDL processes

 Based on
 Implementation of an update function that simulates the timing

behavior of the replaced process

 Replaces the given process by the custom implementation

Code Generation

 Automatic generation of the
cache/pipeline analysis out of the
transformed and abstracted VHDL
model

 Generated analysis perfectly fits
into the aiT tool chain

 Generated code
 Update function that computes the

transition of one processor clock
cycle for a given abstract processor
state

 Update function can compute
multiple possible successor states
due to the introduced non-
determinism in the timing model

 Single execution trace vs. execution
tree

Conclusion

 Safety-critical systems with hard real-time constraints need a timing
validation

 aiT is an industrial usable tool for the determination of safe and
precise upper bounds on Worst-Case Execution Time of tasks

 Computation based on timing models that currently are hand-crafted
 Time consuming process

 Error prone due to human involvement and uncertainties in the processor
documentation

 VHDL specifications contain the timing behavior of the system

 The timing model can be semi-automatically derived out of such
VHDL descriptions

 Removed human involvement up to a certain degree

 Speeds up the creation time from a unit of months to weeks

