Semi-Automatic Derivation of Timing Models for WCET
Analysis

Marc Schlickling'® Markus Pister'?

Saarland University, Saarbriicken, Germany

2AbsInt Angewandte Informatik GmbH, Saarbriicken, Germany

AVACS R2 Subproject Meeting

SAARLAND ¢ A
UNIVERSITY g

Angewandie Informatk GmbH

COMPUTER SCIENCE

http://rw4.cs.uni-sb.de/people/schlickling.shtml
http://rw4.cs.uni-sb.de/people/pister.shtml
http://www.avacs.org

Outline

Introduction
m Integration into AVACS project structure
m Motivation
m aiT WCET Framework

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Outline

Introduction
m Integration into AVACS project structure
m Motivation
m aiT WCET Framework

Timing Model Derivation
m Overview
m Model Preprocessing
m Processor State Abstractions

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Outline

Introduction
m Integration into AVACS project structure
m Motivation
m aiT WCET Framework

Timing Model Derivation
m Overview
m Model Preprocessing
m Processor State Abstractions

Automation/Integration of the Derivation Process
m Overview
m Static Analyzes
m Transformation Tools
m Pipeline Analyzer Code Generation

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Outline

Introduction
m Integration into AVACS project structure
m Motivation
m aiT WCET Framework

Timing Model Derivation
m Overview
m Model Preprocessing
m Processor State Abstractions

Automation/Integration of the Derivation Process
m Overview
m Static Analyzes
m Transformation Tools
m Pipeline Analyzer Code Generation

Conclusion

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Outline

Introduction
m Integration into AVACS project structure
m Motivation
m aiT WCET Framework

Timing Model Derivation
m Overview
m Model Preprocessing
m Processor State Abstractions

Automation/Integration of the Derivation Process
m Overview
m Static Analyzes
m Transformation Tools
m Pipeline Analyzer Code Generation

Conclusion

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Integration into AVACS project structure

¢ Matlab/ Set of target
Stateflow architectures

!CDP-0Z-DC Specification |
‘ ‘

Node per-
formance
guarantees

WP3: Performance
guarantees for dis-
tributed architectures

Activi l l Flow i Near optimal solutions ‘;
Clopa) - |Actviy| | Resut| ______ Flon LA 1 and network perfor- |

mance guarantees

m Work package 4: Node performance guarantees (Timing Analysis)
» Task 1: Derivation and Analysis of Abstract Processor Models
» Task 2: Architectural Abstraction

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis 4/20

Motivation

m Growing support of human life by complex embedded systems
m Safety-critical systems often have to fulfill strict timing constraints

Timing validation of the systems behavior if crucial for guaranteeing their
correct behavior

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

aiT WCET Framework

Input Ex-
ecutable

Decoding
Phase

Control-flow
Graph (CFG

Value Analysis

Annotated
CFG

Information

AVACS Workshop 09/20 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Legend:

Pipeline ‘ Timing ‘
Analysis

WCET Bound

Caches / Pipelines

Features of modern processors:
m Out-of-order execution
m Speculation (dynamic, static)
m Caches (replacement policy, write policy)
m Branch prediction
...
Instruction latencies vary and depend on:
m Processor pipeline state (execution context)
m Environmental state (cache contents, hardware configuration,...)

m Input program (size, number of memory accesses, ...)

Cache/Pipeline analysis: computes basic block execution times

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Caches/Pipeline Analysis within aiT

m Based on timing model of the
target architecture
m Abstract simulation of task
execution
» Non-deterministic due to
lack of information (input
and/or processor state)
m Timing model currently
hand-crafted by human
experts based on processor
manuals

m Modern processors
automatically synthesized
from formal hardware
specifications (including the
instruction timing)

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Outline

Introduction
m Integration into AVACS project structure
m Motivation
m aiT WCET Framework

Timing Model Derivation
m Overview
m Model Preprocessing
m Processor State Abstractions

Automation/Integration of the Derivation Process
m Overview
m Static Analyzes
m Transformation Tools
m Pipeline Analyzer Code Generation

Conclusion

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Overview

m Processor specification too large to be used in aiT framework:
Infineon PCP2 (40.000 loc), Gaisler Research Leon 2 (80.000 loc),
Infineon TriCore 1.3 (250.000 loc)

m Specification needs to be compressed

VHDL Model

Environmental Timin, 1
) 9 Data Path 1
Assumption Dead Code L |
) L Elimination 1
Refinement Elimination

,, ,

Model Preprocessin
Preprocessed
VHDL

Processor
State Ab-
stractions

Timing Model

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Model Preprocessing

m Goal: Reduce specification size

m Eliminating parts not relevant for the timing behavior of the system
m Methods
» Environmental Assumption Refinement
* Gap between highly configurable processors and very specific usage within
embedded systems
* Some processor features are not used for a particular embedded system
* Specification of unused features can be ignore/removed
» Timing-Dead Code Elimination
* Functional behavior vs. timing behavior
* Internal functionality of execution units not needed
* Only the timing behavior is needed ("We do not need to know how an adder
is adding but how long the addition takes.")
» Data-Path Elimination
* Modeling data paths increase the resource consumption

* Latency of instructions often not affected by content of registers/memory cells
* Can be factored out of the cache/pipeline analysis part (cf. value analysis)

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis 11/20

Processor State Abstractions

m On complex architectures (TriCore, MPC755) preprocessed model still to
large for an efficient timing analysis

m Further model size reduction necessary

m Approximating part of the processor state — processor state abstractions
m Possible abstractions
» Process Substitution

* Replace VHDL processes by custom simulation routines (not necessarily
VHDL)
* Example: Cache Abstraction
» Domain Abstraction
* Type changes
* Example: Address — Range of Addresses
» Memory Abstraction
* Elimination of large memory arrays
* Control-flow interface

* Adopt VHDL design to use value analysis results for memory/register
accesses

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Timing Model Derivation

VHDL Model

Environmental Timing

Assumption Dead Code
Refinement Elimination

Preprocessed
VHDL

Processor
State Ab-
stractions

Model Preprocessing

Timing Model

AVACS Workshop 09/ Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Outline

Introduction
m Integration into AVACS project structure
m Motivation
m aiT WCET Framework

Timing Model Derivation
m Overview
m Model Preprocessing
m Processor State Abstractions

Automation/Integration of the Derivation Process
m Overview
m Static Analyzes
m Transformation Tools
m Pipeline Analyzer Code Generation

Conclusion

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis 14/20

Overview

Static An-

VHDL Model alyzes/ Timing Model

Transformations

[ttt |

Timing Analyzer

CFG-Builder

| —= | .
1 [Static Analyzes Path Analysis I Code tGen
! i | erator

i ‘ Value Analysis ‘ ‘ ILP-Generator ‘ |

| ¥ !

! Pipeline/Cache I

i e ILP-Solver !

| Analysis :

i EE— T 3

i WCET !

m Utilize static program analyzes and transformation tools to partially
automate
» Model preprocessing
» Processor state abstractions
m Based on static analysis framework for VHDL
m Generate cache/pipeline analysis out of the derived timing model

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis 15/20

Static Analyzes

m Reset Analysis

Obtaining initial signal values during system reset

» Detects activation sequences

» Example: contents of hardware configuration registers
>

>

v

Realized by a combining constant propagation with forward slicing
Identification of clock domains
m Assumption Refinement Analysis

» |dentification of unused parts of the model

» Example: Exclusion of interrupt handling

» Realized by a value analysis based on intervals combined with a live
variables analysis

* Switch to polyhedral domain possible
» Identification of timing dead code
m Slicing
» Interactive understanding/exploration of the VHDL model
» lIdentification of timing dead code

* Backward slice from each pipeline exit
* Everything not contained in the union over these slices is dead

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Transformation Tools

m DomainAbstractor
» Automate domain transformations on the model based on domain
transformation mapping
Detection of needed operators on new domain
Built-in support for common domain transformations
Features different transformation scopes
Features transformation proposals

m TimingDeadCodeEliminator

» Removal of code snippets marked as timing dead

» Features Timing Dead Code propagation due to removals
m ProcessReplacer

» Automate the replacement of VHDL processes

» Based on implementation of an update function that simulates the timing
behavior of the replaced process

» Replaces the given process by the custom implementation

vV vyVvVYyy

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis 17/20

Pipeline Analyzer Code Generation

m Automatic generation of
cache/pipeline analysis from
(abstracted) VHDL model

m Code perfectly fits into the aiT
tool chain

m Update function that
computes the transition of one
processor clock cycle for a
given abstract processor state

m Update function can compute
multiple possible successor
states due to the introduced
non-determinism in the timing
model

m Single execution trace vs.
execution tree

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis 18/20

Outline

Introduction
m Integration into AVACS project structure
= Motivation
m aiT WCET Framework

Timing Model Derivation
m Overview
m Model Preprocessing
m Processor State Abstractions

Automation/Integration of the Derivation Process
m Overview
m Static Analyzes
m Transformation Tools
m Pipeline Analyzer Code Generation

Conclusion

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis

Conclusion

m Computation based on timing models that currently are hand-crafted
» Time consuming process
» Error prone due to human involvement and uncertainties in the processor
documentation

m Semi-automatic derivation of timing models from VHDL possible
m Integration of the derived timing models into aiT tool chain

m Derived timing models cover the whole system (extending over the
processor clock domain)

m Removed human involvement up to a certain degree

m Bridging the gap between formal hardware specifications and Worst-Case
Execution Time Analysis

m Precise and correct timing models

m Speeds up the creation time from a unit of months to weeks

AVACS Workshop 09/2010 Marc Schlickling and Markus Pister Semi-Automatic Derivation of Timing Models for WCET Analysis 20/20

	Introduction
	Integration into AVACS project structure
	Motivation
	aiT WCET Framework

	Timing Model Derivation
	Overview
	Model Preprocessing
	Processor State Abstractions

	Automation/Integration of the Derivation Process
	Overview
	Static Analyzes
	Transformation Tools
	Pipeline Analyzer Code Generation

	Conclusion

