
Resilience Analysis:
Tightening the CRPD bound for set-associative caches ∗

Sebastian Altmeyer Claire Maiza (Burguière) Jan Reineke1

Saarland University, Saarbrücken
{altmeyer, maiza, reineke}@cs.uni-saarland.de

Abstract
In preemptive real-time systems, scheduling analyses need—in ad-
dition to the worst-case execution time—the context-switch cost.
In case of preemption, the preempted and the preempting task may
interfere on the cache memory. This interference leads to additional
cache misses in the preempted task. The delay due to these cache
misses is referred to as the cache-related preemption delay (CRPD),
which constitutes the major part of the context-switch cost.

In this paper, we present a new approach to compute tight
bounds on the CRPD for LRU set-associative caches, based on
analyses of both the preempted and the preempting task. Previous
approaches analyzing both the preempted and the preempting task
were either imprecise or unsound. As the basis of our approach we
introduce the notion of resilience: The resilience of a memory block
of the preempted task is the maximal number of memory accesses
a preempting task could perform without causing an additional
miss to this block. By computing lower bounds on the resilience
of blocks and an upper bound on the number of accesses by a
preempting task, one can guarantee that some blocks may not
contribute to the CRPD. The CRPD analysis based on resilience
considerably outperforms previous approaches.

1. Introduction
In hard real-time systems, one needs to prove that all time-critical
tasks meet their deadlines. Many task sets are only schedulable in
a preemptive scheduling regime. For instance, high priority tasks
with short deadlines are often unschedulable in non-preemptive
regimes.

However, in modern hardware architectures, preemption does
not come for free. The preempting task may “disturb” the state
of performance-enhancing features like caches, pipelines, etc. This
disturbance may significantly increase the execution time of the
preempted task once it is resumed. The additional execution time

∗ This work was supported by ICT project PREDATOR in the European
Community’s Seventh Framework Programme under grant agreement no.
216008, by Transregional Collaborative Research Center AVACS of the
German Research Council (DFG) and by ARTIST DESIGN NoE.
1 Current address: Department of EECS, University of California, Berkeley,
CA 94720, eMail: reineke@eecs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’10, April 13–15, 2010, Stockholm, Sweden.
Copyright c© 2010 ACM 978-1-60558-953-4/10/04. . . $10.00

compared with non-preempted execution, including the additional
execution time of the preempted task and the execution time of
the scheduler in the operating system, is referred to as the context-
switch cost. Schedulability analyses for preemptive systems require
bounds on the worst-case execution times (WCET)2 of tasks as well
as on these context-switch costs.

In cached systems, the major part of the context-switch cost
is due to additional cache misses in the preempted task: Memory
accesses of the preempting task change the cache contents. As a
consequence, accesses in the preempted task that would have been
cache hits without preemption turn out to be misses. This part
of the context-switch cost is commonly referred to as the cache-
related preemption delay (CRPD). There are two main approaches
to statically bound the CRPD:

• By analyzing the preempted task [8, 10, 17, 18]:
Additional misses can only occur for memory blocks that are
useful without preemption. A useful cache block (UCB) is a
block that may be cached and that may be reused later, result-
ing in a cache hit. The number of such useful cache blocks is
a bound on the number of additional cache misses due to pre-
emption and can therefore be used to bound the CRPD indepen-
dently of the preempting task.
• By analyzing the preempting task [10, 17–19]:

The preempting task may only cause additional misses in the
cache sets modified during its execution. The number of cache
sets that memory blocks of the preempting task map to can
therefore be used to bound the CRPD independently of the
preempted task. However, for set-associative caches, the latter
approaches have either been imprecise [6] or unsound [18] as
shown in [6].

In this paper, we present a new approach to precisely and soundly
bound the CRPD for set-associative caches, taking into account
both the preempted and the preempting task. To this end, we intro-
duce the notion of resilience, and a corresponding resilience analy-
sis that determines how much “disturbance” by the preempting task
a useful cache block may endure before becoming unuseful for the
preempted task. The results of this analysis can then be combined
with those of a simple analysis of the preempting task to determine
a set of useful cache blocks that are guaranteed to remain useful
after the preemption. Only cache blocks that are useful before pre-
emption but that are not guaranteed to remain useful may contribute
to the CRPD.

In our evaluation, resilience analysis improves on previous ap-
proaches by at least 28% and by 64% on average. Our new analysis
is particularly useful in case of frequent preemptions by small tasks.
Interrupt routines are typical representatives of this class.

2 Considering non-preempted execution.

2. Background & Related Work
In this section we introduce caches and the notions of useful cache
blocks and evicting cache blocks. Then, we show that previous
work on the computation of a bound on the CRPD by combining
UCB and ECB for set-associative caches is either unsound or im-
precise.

2.1 Caches
We will investigate CRPD computation for set-associative caches
in the context of the Least-Recently-Used (LRU) policy, which
is used, for instance, in the INTEL PENTIUM I and the MIPS
24K/34K. In the following description of LRU and later, we will
use k for the associativity of the cache and c for the number
of cache sets. The LRU policy replaces the least-recently-used
element on a cache miss. It conceptually maintains a queue of
length k for each cache set. Elements of the set are ordered from
the most-recently-used to the least-recently used. In LRU each
memory block can be associated with an age: the age of a memory
block m is the number of other memory blocks that have been
accessed since the last access to block m. In the case of LRU and
associativity 4, [b, c, e, d] denotes a cache set, where elements are
ordered from most- to least-recently-used: the most-recently used
element has age 0 (here: b) and the least-recently-used has age k−1
(here: d). If an element is accessed that is not yet in the cache (a
miss), it is placed at the front of the queue. The last element of the
queue, i.e., the least-recently-used, is then removed if the set is full.
In our example, an access to f would thus result in [f, b, c, e]. The
least-recently-used element d is replaced. Each element is aged by
one and the age of element f is 0. Upon a cache hit, the accessed
element is moved from its position in the queue to the front, in this
respect treating hits and misses equally. Accessing c in [f, b, c, e]
results in [c, f, b, e]: the age of the elements that were younger than
the accessed element (f and b) is incremented by one, the age of
the elements that were older (element e) is not changed and the age
of the accessed element c becomes 0.

2.2 Bounding the CRPD
The cache-related preemption delay denotes the additional execu-
tion time due to cache misses caused by preemption. Such cache
misses occur, if the cache accesses of the preempting task cause
eviction3 of cache blocks of the preempted task that otherwise
would be reused later. Therefore upper bounds on the CRPD can be
derived from two directions: bounding the effect on the preempted
task or bounding the impact of the preempting task.

Effect on the preempted task: For the analysis of the effect on
the preempted task, Lee et al. introduced the notion of a useful
cache block [8]:

Definition 1 (Useful Cache Block (UCB)). A memory block m is
called a useful cache block at program point P , if

a) m may be cached at P and
b) m may be reused at program point Q that may be reached from
P without eviction of m on this path.

In the case of preemption at program point P , only the memory
blocks that a) are cached and b) will be reused, may cause addi-
tional reloads. Hence, the number of UCBs at program point P
gives an upper bound on the number of additional reloads due to a
preemption at P . A global bound on the CRPD of the whole task is
determined by the program point with the highest number of UCBs.

3 Such eviction does not necessarily happen during the execution of the
preempting task. They can also occur during the execution of the preempted
task but as a consequence of the preemption (see Figure 1(a)).

However, due to imprecision in the UCB analysis, the number of
UCBs per set may exceed the associativity of the cache. Still, the
number of additional misses per set is limited to k:

CRPDUCB =

cX
s=1

CRPDs
UCB (1)

where

CRPDs
UCB = CRT ·min{|UCBs|, k} (2)

where UCBs denotes the set of UCBs mapping to cache set s and
c is the number of sets. For a preemption at a specific program
point, the whole CRPD is bounded by the sum of the CRPDs of all
cache sets. For each set, the CRPD is bounded by the cache reload
time (CRT), i.e., the time needed to load a cache block, times the
minimum of the number of UCBs and the associativity (see [6]).

Note that the CRPD bounds denote the additional delay for one
preemption. In case of several preemptions, the CRPD bound must
be accounted for as often as preemption might occur.

Recently, Altmeyer and Burguiere introduced a new analysis
of the effect on the preempted task: As some cache accesses are
taken into account as misses as part of the WCET analysis, these
accesses do not have to be accounted for a second time as part of
the CRPD [4]. At a program point P a UCB is a definitely-cached
UCB if it must be cached at P and along the path to its reuse. Using
the notion of definitely-cached UCBs (DC-UCB), one computes the
number of additional cache misses due to preemption that are not
already taken into account as a miss by the WCET analysis. This
number does not bound the CRPD but the part of the CRPD that
is not already accounted for by the WCET analysis in the WCET
bound. Thereby, the global bound on the WCET+CRPD can be
significantly refined. The analysis presented in this paper can be
used in both contexts—CRPD computed separately (based on the
UCB notion introduced by Lee et al. [8]) or in combination with
the WCET (DC-UCB).

Effect of the preempting task: The worst-case impact of a pre-
empting task is given by the number of cache blocks this task may
evict. Such evictions may occur during and after the preemption:
accessing a cache set may have a deferred impact in case of set-
associative caches, as we will illustrate shortly.

To analyse the effect of the preempting task, Tomiyama and
Dutt introduced the concept of an evicting cache block [19]:

Definition 2 (Evicting Cache Blocks (ECB)). A memory block of
the preempting task is called an evicting cache block, if it may be
accessed during the execution of the preempting task.

As part of their CRPD computation, Tan et al. [18] use the
number of ECBs as an upper-bound on the number of reloads:

CRPDMIN ECB =

cX
s=1

CRPDs
MIN ECB (3)

where

CRPDs
MIN ECB = CRT ·min{|ECBs|, k} (4)

where ECBs denotes the set of ECBs mapping to cache set s.
However, this function may underestimate the number of misses

in several cases. Consider the CFG of Figure 1(a). Assume, all
memory blocks map to the same cache set. Then, at the end of the
execution of this basic block, the content of the 4-way set is given
by [b, a, 9, 8]. Assume, furthermore, a preemption between two it-
erations of the loop and one block of the preempting task maps to
this set: Using the formula presented above, only one additional
miss is taken into account for this memory set (min(1, 4) = 1).
However, the number of additional misses, four, is greater than the
number of ECBs, one: All useful cache blocks are evicted and need

8
9
a
b

Without preemption:

[b, a, 9, 8] 8 [8, b, a, 9] 9 [9, 8, b, a]
a

[a, 9, 8, b] b [b, a, 9, 8] 0 misses

With preemption:

[e, b, a, 9] 8∗ [8, e, b, a] 9∗ [9, 8, e, b] a∗ [a, 9, 8, e] b∗ [b, a, 9, 8] 4 misses

ECBs
= {e}

(a) Sequence of accesses where CRPDMIN ECB (= 1 · CRT) underestimates the CRPD (= 4 · CRT)

8
9
a

Without preemption:

[a, 9, 8, 7] 8 [8, a, 9, 7] 9 [9, 8, a, 7]
a

[a, 9, 8, 7] 0 misses

With preemption:

[e, a, 9, 8] 8 [8, e, a, 9] 9 [9, 8, e, a]
a

[a, 9, 8, e] 0 misses

ECBs
= {e}

(b) Sequence of accesses where CRPDUCB&ECB (= 3 ·CRT) roughly overestimates the CRPD (= 0). Note that CRPDTAN (= 1 ·CRT) overestimates, too.

Figure 1. Evolution of the cache contents for LRU replacement. The first row shows the evolution of the cache contents for one iteration
of the loop without preemption. The second row shows the evolution of the cache contents on the same sequence with preemption. The
preempting task accesses block e. A * as in a∗ indicates a miss.

to be reloaded. The cache blocks are not evicted during the execu-
tion of the preempting task but after the preemption during the exe-
cution of the preempted task. In this example, a valid upper bound
is given, for instance, by the associativity whereas, the minimum
between the number of ECBs and the associativity gives an under-
estimation of the CRPD.

Hence, instead of using the formula by Tan et al., a sound upper
bound on the CRPD using ECB is given by:

CRPDECB =

cX
s=1

CRPDs
ECB (5)

where

CRPDs
ECB =

0 if ECBs = ∅
CRT · k otherwise (6)

where ECBs denotes the set of ECBs mapping to cache set s. The
CRPD is bounded by the cache reload time times the associativ-
ity (k) of the cache in case at least one ECB maps to set s [6]. Note
that in case of nested preemption the set of ECBs in the formula is
the union of all ECB sets of the preempting tasks [17, 19].

In this paper, we focus on the CRPD computation for set-
associative caches with LRU replacement using UCBs and ECBs.
As shown in [6], for FIFO and PLRU replacement strategies, the
CRPD cannot be bounded directly using UCB and ECB analyses.
In the rest of the paper, we will investigate the CRPD computation
for LRU only. In [6], Burguiere et al. sketched how to use the UCB
analysis for LRU to bound the number of misses in case of pre-
emption for FIFO and PLRU, by relative competitiveness [14]. The
next subsection presents related work focusing on set-associative
caches and the computation of a bound on the CRPD by combining
UCB and ECB analyses.

Effect of the preempting task on the preempted task The results
from the CRPD computation via UCB and via ECB can be com-
bined by taking into account the minimum between the effect on
the preempted task and the effect of the preempting task [6, 18]:

CRPDUCB&ECB =

cX
s=1

min(CRPDs
UCB,CRPDs

ECB) (7)

The CRPD computed in [18] takes into account Equation 4:

CRPDTAN =

cX
s=1

min(CRPDs
UCB,CRPDs

MIN ECB) (8)

Due to its use of CRPDs
MIN ECB this formula is unsound. However,

we list it in order to later compare our results to the ones obtained
with it.

Equation 7 gives a bound on the CRPD that is sound but impre-
cise. Consider the example of Figure 1(b). As there is one ECB, the
number of additional misses is bounded by the number of UCBs
(three), which is lower than the number of ways (four). However,
there are no additional misses due to this preemption: using Equa-
tion 7, the CRPD is overestimated; the formula is imprecise. Not
every UCB may be evicted by a single ECB. Some UCBs remain
useful under preemption. In the case of Figure 1(b), blocks 8, 9, and
a remain useful under preemption. On the other hand, we strongly
believe that Equation 7 is the best bound we can obtain by using
only the numbers of UCBs and ECBs. A new analysis is necessary
to combine the results of the UCB and ECB analyses considering
the blocks that remain useful under preemption. For this purpose
we introduce the notion of resilience in the following section.

Remark & notation Note that the computation of a bound on
the CRPD for a whole set-associative cache is done by adding
the bound on the CRPD for each set. For the sake of simplicity,
in Section 3 and 4, we assume the cache to be fully-associative
(c = 1). The extension to set-associative caches is then discussed
in Section 5.

Table 2.2 presents the notation used in this paper. Note that,
as we consider all types of caches (data and instruction), the set
of UCBs can be different before and after a program point (see
e.g. [4]).

M set of memory blocks
P set of all program points
k associativity
c number of sets

UCBb
P set of UCBs before program point P

UCBa
P set of UCBs after program point P

ECB set of ECBs for a given preempting task

Table 1. Notation used within this paper.

3. The Notion of Resilience
The aim of our analysis is to derive a subset of the set of UCBs
that cannot contribute to the cache-related preemption delay. To
this end, we need to argue about the amount of “disturbance”
caused by a preempting task and the “resilience” of the useful cache

m ∈ UCB

res(m) = 4

m

m

age(m) = 0

age(m) = 3

age(m) = 0

Figure 2. Illustration of a UCB m, with res(m) = 4. The cache
associativity is 8. The dashes denote memory accesses.

blocks. The amount of “disturbance” is given by the set of evicting
cache blocks as presented in Section 2. The resilience res(m) of a
useful cache block m is the maximal disturbance, i.e., the maximal
number of additional cache accesses (to different memory blocks)
by the preempting task, such thatm is still cached after preemption
and remains cached until its next access. Hence, if the disturbance
of the preempting task is less than or equal to the resilience, UCB
m will remain useful after preemption and will not lead to an
additional cache miss. Resilience is formally defined as follows:

Definition 3 (Resilience). The resilience resP (m) of memory
block m at program point P is the greatest l, such that all pos-
sible next accesses to m,

a) that would be hits without preemption,
b) would still be hits in case of a preemption with l accesses at P .

The resilience of UCB m, resP (m) is l, if a preemption with
up to l ECBs does not cause an additional miss to m: an access
that would be a hit without preemption, would still be a hit under
such a preemption. The resilience depends on the age of block m
right before its next access. Consider the example in Figure 2 in
which we assume the associativity to be 8. There are three memory
accesses between the two accesses to m: before its reuse the age
of m is 3. In an LRU-controlled cache with associativity 8, exactly
those memory blocks with ages between 0 and 7 are cached. Thus,
in the example, m could age by up to 4 (3 + 4 = 7) due to a
preemption and still be cached at its reuse (see Figure 3). Between
the two accesses to m, res(m) = 4.

So, at a program point P , the resilience of a block m is deter-
mined by the maximal age max-ageP (m) of m at program points
accessing m that can be reached from P without eviction of m:

resP (m) = (k − 1)− max-ageP (m). (9)

Consider Figure 4(a). The associativity is 8. The control flow first
joins and then splits. The maximal age of 7 is obtained along the
longest path, i.e., from the upper-right access to m to the lower-
left access to m. Along this path, there are 7 different accesses
between the two accesses to m. Thus, at all points along this path,
res(m) = 0. The longest path starting from the upper-left access to
m only contains 6 different accesses. Therefore from the upper-left
access to the control flow join, the maximal age is 6. Similarly, the
longest path to the lower-right access contains 5 different accesses.

If a memory block is not accessed along a path, then this path
does not influence its resilience (Figure 4(b)) because of condi-
tion (a) of Definition 3. Similarly, if a memory access definitely
leads to a cache miss, then this access does not influence the mem-
ory block’s resilience either (Figure 4(c)).

Using bounds on the resilience, we compute a set of useful
cache blocks that must remain useful under preemption with a
given number of ECBs. Those blocks will not lead to additional
misses due to preemption. The upper-bound on the CRPD can be

preempted task

m ∈ UCB

res(m) = 4

m

m

age(m) = 0

age(m) = 7 = 3 + |ECB|

age(m) = 0

preempting task

|ECB|
= 4

Figure 3. Illustration of a UCB m with res(m) = 4 remaining
useful after a preemption with 4 ECBs (associativity k = 8).

refined by considering as additional misses under preemption only
the UCBs that cannot be guaranteed to remain useful:

CRPD-RES = CRT× |

blocks that may have to be reloadedz }| {
UCB|{z}

may be useful

\ {m | res(m) ≥ l}| {z }
must remain useful

| (10)

In order to ensure the soundness of our results, we have to over-
approximate the set of UCBs and to bound the number of ECBs
from above, but underapproximate the resilience of the useful cache
blocks. Only cache blocks, for which we can guarantee the “sur-
vival”, can be safely excluded from the CRPD bound.

We can similarly refine the CRPD analysis results based on
Definitely-Cached UCBs (see Section 2 and [4]). We just need to
replace UCB by DC-UCB in Equation 10.

4. Resilience Analysis
How is the resilience computed? The resilience of a UCB m is
determined by the maximal age max-age(m) at all next hits to m
without prior eviction. At each program point P , this maximal age
can be split into two parts:

i) ca←P , the maximal number of accesses from the last use ofm to
program point P , and

ii) ca→P , the maximal number of accesses from program point P
to the next hit to m,

both under the constraint thatm is not evicted before its next reuse.
We denote the two parts as the constrained ages ca←P and ca→P
of m at P and employ two symmetric data-flow analyses on the
control flow graph of the analyzed program to bound both parts
from above: a forward analysis for the first (i) and a backward for
the second part (ii). The maximal age is then bounded by the sum
of both.

For the analysis4 of the constrained age, ca, of a memory block,
we only take those paths into account on which the constraint is
satisfied5. Thus, ca of m does not necessarily overapproximate the
actual age of m. To be able to correctly update the constrained age
ca, upon an access to a memory block, we also need to maintain an
unconstrained bound on the age of the block. We denote this upper
bound on the actual age by ua. To derive ua, we employ a must
cache analysis [7].

4 The analysis of ca← and ca→ only differ by the direction. Hence, we
omit the direction in the following explanation.
5 m is not evicted before its next reuse.

(a)

max
-ag

e(
m
)
=

6

res
(m

) =
1

max
-ag

e(
m
)
=

7

res
(m

) =
0

m

m

max
-ag

e(
m
)
=

7

res
(m

) =
0

max
-ag

e(
m
)
=

7

res
(m

) =
0

max
-ag

e(
m
)
=

5

res
(m

) =
2

m

m

(b)

max
-ag

e(
m
)
=

4

res
(m

) =
3

max
-ag

e(
m
)
=

5

res
(m

) =
2

m

m

max
-ag

e(
m
)
=

5

res
(m

) =
2

no
ac

ce
ss

to
m

max
-ag

e(
m
)
=

5

res
(m

) =
2

m

(c)

max
-ag

e(
m
)
=

4

res
(m

) =
3

max
-ag

e(
m
)
=

5

res
(m

) =
2

m

m

max
-ag

e(
m
)
=

5

res
(m

) =
2

m
is

no
t u

sef
ul

max
-ag

e(
m
)
=

5

res
(m

) =
2

m

m

Figure 4. Resilience under several possible next accesses.

Remember that we assume a fully-associative cache for this
section. In case of a set-associative cache, the analysis is performed
for each cache set.

The domain of the analysis is a tuple of two functions. The first
function assigns each memory block a bound on its constrained
age ca, and the second assigns a bound on its unconstrained age ua.

D : Dca × Dua (11)

with

Dca : M→ {0, . . . , k − 1} (12)

and

Dua : M→ {0, . . . , k − 1,∞} (13)

The age of a memory block m whose next access can still result in
a hit is bounded by k − 1. Older memory blocks are not cached.
The next access to such blocks must be a miss. Hence, due to the
constraint, the constrained age ca(m) of a memory block m is at
most k−1. Without the constraint, blocks may reach arbitrary ages
≥ k, which we do not need to distinguish. In Dua, ages ≥ k are
represented by∞.

The join operator of the domain, invoked to combine flow in-
formation from different paths, is defined using a separate join-
function for each element of the tuple:G

: P(D)→ D

G
D := (

G
ca

CA,
G

ua
UA) (14)

where CA:={ca | (ca, ua) ∈ D} and UA:={ua | (ca, ua) ∈ D}.
The join operator for the ca and ua are defined as follows:G

ca
: P(Dca)→ Dca

G
ca

CA := λm. max
ca∈CA

ca(m) (15)

G
ua

: P(Dua)→ Dua

G
ua

UA := λm. max
ua∈UA

ua(m) (16)

In both cases, we bound the ages from above. Hence, we need to
take the maximum of the bounds of all incoming data-flow values.

The transfer function, computing the update on the bounds, is
defined using the following auxiliary functions tca and tua.

tua : Dua ×M→ Dua

tua(ua,m) :=

λm′.

8><>:
0 m′ = m
ua(m′) ua(m′) ≥ ua(m)
ua(m′) + 1 ua(m′) < ua(m) ∧ ua(m′) < k − 1
∞ otherwise

(17)

The inputs to tua are the upper bound on the age ua and the
accessed memory block m. The age of the currently accessed
memory block is zero. Older elements or elements of the same age
as the accessed one remain unchanged. Only younger elements are
aged by one. Note that k−1 is the maximal age of cached memory
blocks. If ua(m) =∞, m is not guaranteed to be cached.

The auxiliary function tca is similar to tua, yet it also takes
unconstrained ages as inputs:

tca : Dca × Dua × 2M ×M→ Dca

tca(ca, ua,UCB,m) :=

λm′.

8<: 0 m′ = m ∨m′ /∈ UCB
ca(m′) ca(m′) ≥ ua(m) ∨ ca(m′) = k − 1
ca(m′) + 1 ca(m′) < ua(m)

(18)

The inputs to tca are the bound on the constrained age ca, the
bound on the unconstrained age ua, the set of UCBs at the specific
program point and the accessed memory block m. Function tca

defines the change of ca upon access to m given a specific set of
UCBs. The update of ca is similar to the update of ua. In the first
case, ca(m′) = 0, if m′ = m or m′ /∈ UCB. If m′ /∈ UCB
the constraint is not satisfied, i.e., the next access to m′ may not
be a hit. Then any bound would be correct and ca(m′) = 0 is
the best possible. Note that the bound on the constrained age ca
may underapproximate the actual age. Hence, we need to consider
ua(m) as the upper bound on the age of the accessed element m.
Under the constraint, that the next access to m′ is a hit, it can
never obtain an age greater than k − 1, this explains the additional
condition ca(m′) = k − 1 compared with the other transfer
function.

The transfer function invokes tca and tua depending on the
program point and the direction of the analysis. Remember that
the forward analysis (→) bounds the number of accesses from the
last access to a memory block m to the current program point and
the backward analysis (←) from the current program point to the
next access to m. The forward analysis invokes tca with incoming
data-flow value ca, the memory block mP accessed at P and the
set of UCBs before P , UCBb

P . The backward analysis considers
the set of UCBs after the program point, UCBa

P . In both cases, tua

is invoked with ua and mP .

T : D× P→ D

T→((ca, ua), P) := (tca(ca, ua,UCBb
P ,mP), tua(ua,mP))

(19)
T←((ca, ua), P) := (tca(ca, ua,UCBa

P ,mP), tua(ua,mP))
(20)

In case of data caches, the address of a memory access may be
unknown statically. For instance, consider an array access within a
loop. In such a case, only a non-singleton set of possible addresses
for each memory access can be derived. The transfer function bT
(for both, forward and backward analysis) is then defined by the
join of the transfer function t applied to each element in the set
of possible memory accesses (MP is the set of memory blocks
possibly accessed at P). bT : D× P→ D

bT→((ca, ua), P) :=
G

m∈MP

{(tca(ca, ua,UCBb
P ,m), tua(ua,m))}

(21)bT←((ca, ua), P) :=
G

m∈MP

{(tca(ca, ua,UCBa
P ,m), tua(ua,m))}

(22)
Let ca→P be the result of the forward analysis and ca←P the result
of the backward analysis before program point P . The maximal
age max-age is then bounded by the sum of both bounds limited to
(k − 1):

max-ageP (m) ≤ min{ca→P (m) + ca←P (m), k − 1} (23)

Note that k−1 is the maximal age such thatm is still cached at the
next access. The resilience resP (m) of a memory block m before
P is then given by Equation 9:

resP (m) := (k − 1)− max-ageP (m).

5. From Resilience to CRPD
The CRPD computation, based on the notion of resilience, has
shortly been sketched in Section 3 for fully-associative caches and
for a single program point only. In this section, we present the com-
putation of the CRPD bound of a whole task, the extension to set-
associative caches (with more than one set), an efficient approach
to compute the CRPDs for given task sets, and the extension to
multiple preemptions by multiple tasks.

In case of set-associative caches, the CRPD at program point P
is given by the sum of the CRPDs of each set s:

CRPD-RESP (ECB) =
X

s

CRPD-RESs
P (ECBs) (24)

CRPD-RESs
P (ECBs) =

CRT× |UCBs
P \ {m | resP (m) ≥ |ECBs|}| (25)

where ECBs and UCBs
P denote the sets of elements from ECB/UCB

mapping to cache set s.
The bound on the CRPD of the whole task is then determined

by the maximum CRPD of all program points.

CRPD-RES(ECB) = max{CRPD-RESP (ECB) | P ∈ P} (26)

5.1 Computation of a sufficient set of preemption points
The drawback of this computation is that the set (UCBs

P \ {m |
resP (m) ≥ |ECBs|}) has to be evaluated for each program point
each time the CRPD is computed for another preempting task.
Depending on the task size and the set of preempting tasks, this
computation can be very time-consuming. Therefore, we present

a precomputation to speed up the instantiation by reducing the
number of program points that need to be considered. To this end,
we use a partial order on the program points, such that the CRPD
only needs to be derived for a subset of all program points.

The partial order on CRPD-RESs
P is defined by the point-wise

comparison on the set of (UCBs
P \ {m | resP (m) ≥ |ECBs|}) for

each possible input.

CRPD-RESs
P1 ≤ CRPD-RESs

P2 iff ∀l ∈ [0; k − 1] :

|UCBs
P1 \ {m | resP1(m) ≥ l}| ≤

|UCBs
P2 \ {m | resP2(m) ≥ l}| (27)

The partial order on CRPD-RESP is then defined by the point-wise
comparison on CRPD-RESs

P for each cache-set s.

CRPD-RESP1 ≤ CRPD-RESP2

iff ∀s : CRPD-RESs
P1 ≤ CRPD-RESs

P2 (28)

The global CRPD bound must be assumed at one of the minimal
program points in the partial order:

PMax = {P | ¬∃P ′ : CRPD-RESP < CRPD-RESP ′} (29)

CRPD-RES(ECB) = max{CRPD-RESP (ECB) | P ∈ PMax}
(30)

5.2 Multiple preemptions
So far, we have presented the computation of bounds on the CRPD
for a single preemption by a single task. However, schedulability
analyses usually have to take into account multiple and nested
preemptions. This can be preemptions by a single task or even by
multiple different tasks. Nested preemptions can be easily handled
by taking the union of the ECBs of all preempting tasks. In this
section, we discuss the challenges that arise when bounding the
CRPD for multiple preemptions and present an approach for our
resilience analysis.

Why are multiple preemptions a challenge? Multiple preemp-
tions, in particular by multiple preempting tasks, may “interact” to
cause more additional misses than they would in “isolation”. We
say that two preemptions interact if there is a memory block m,
s.t. there are two consecutive accesses to m that enclose the two
preemptions. See Figures 5(a) and 5(b) for examples of interacting
tasks T1 and T2 due to accesses to memory block m. We call pre-
emptions that do not interact with any other preemption isolated.
For direct-mapped (dm) caches, multiple—possibly interacting—
preemptions do not pose additional problems. In direct-mapped
caches, for all useful cache blocks m, res(m) = 0, i.e., each useful
cache block is evicted by a single ECB. If two preempting tasks in-
teract, they may only cause less misses than the sum of the misses
of isolated preemptions by the two tasks. If the two preempting
tasks access the same cache set (of associativity one) that contains
a useful cache block they may cause at most one additional miss,
while two isolated preemptions could cause up to two misses.

So, the CRPD caused by such preemptions is always bounded
by the sum of the CRPDs the preemptions would cause in isolation.
Let Tasks be the set of preempting tasks, CRPDdm(T) the cost of
a single preemption by task T ∈ Tasks, and #p(T) the number
of preemptions by task T . Then the total CRPDdm(Tasks,#p) in a
direct-mapped (dm) cache is bounded by:

CRPDdm(Tasks,#p) ≤
X

T∈Tasks

#p(T) · CRPDdm(T). (31)

This property is used in the analysis of multiple preemptions for
direct-mapped caches [8, 16, 18].

However, this property does not hold for set-associative caches.
The total CRPD caused by such preemptions may be higher than

m

T1 T2

m*
(a) Interacting preemptions by T1 and T2 between two
subsequent accesses to m.

m n

T1

n*

T2

n* m*
(b) Interacting preemptions by T1 and T2 between two subse-
quent accesses to m and between different accesses to n.

m n

T1

n* n m m n n

T1T2

n* m*
(c) Isolated preemptions by T1 and T1T2. The sum of the number of
additional misses, 1 + 2 = 3, bounds the number of additional misses
in case of interacting preemptions, 3, by T1 and T2 as depicted in (b).

Figure 5. Different preemption scenarios with interacting and iso-
lated preemptions. m and n denote memory accesses. A ∗ as in
m∗ indicates an additional miss due to one or more preemptions.
In all scenarios, |ECB(T1)| = |ECB(T2)| = 2, |ECB(T1) ∪
ECB(T2)| = |ECB(T1T2)| = 4, and resP (m) = 3, resP (n) = 1
for all program points P .

the sum of the costs of preemptions by single tasks. Consider a
useful cache block m that can be evicted by four evicting cache
blocks but not by three. In our terms, res(m) = 3. If tasks T1

and T2 both access at most 2 memory blocks in the same set
(|ECB(T1)| = |ECB(T2)| = 2), a preemption by T1 alone
or T2 alone will not cause eviction of block m. However, if the
task accessing m is preempted by both T1 and T2 between two
accesses tom, i.e., the two preemptions interact,mmay be evicted.
Figure 5(a) illustrates this. Only upon the next use of m does the
memory block “regain” its resilience. Even multiple preemptions
by a single task may interact in such a way. While T1 accesses
at most 2 memory blocks in the same set, it may access different
blocks in different executions. So several preemptions by T1 may
access more than 3 different blocks in the cache set of m and evict
it.

In general, it is therefore not sufficient to simply sum up the
CRPD bounds obtained for individual isolated preempting tasks.
Whether and to what extent this is possible depends on the CRPD
analysis for the individual preemptions. Taking into account the
CRPDUCB&ECB as described in Section 2, one can compute a CRPD
bound for set-associative caches as in Equation 31. This is because,
CRPDUCB&ECB does not tightly couple the analysis of the preempted
and the preempting task. It does not take into account that certain
blocks are too resilient to be evicted due to a particular preempting
task. It assumes that blocks are evicted even if a single ECB maps to
the same set, resembling the direct-mapped cache case. For CRPD
bounds based on resilience summing up the CRPD bounds as in
Equation 31 is not correct in general.

Bounds on the CRPD for multiple preemptions by a single task
Let the set of ECB(T) overapproximate the set of memory blocks
accessed by task T in any execution. Even if certain blocks may

not be accessed in the same execution of a task do they appear in
ECB(T). Using ECB(T) in CRPD-RES(ECB(T)) we already ac-
count for misses that may only occur due to several executions of T .
Therefore, we can bound the total CRPD in set-associative (sa)
caches caused by multiple preemptions by a single task in the fol-
lowing way:

CRPDsa({T},#p) ≤ #p(T) · CRPD-RES(ECB(T)). (32)

However, for multiple preemptions by multiple different tasks,
this does not work as discussed in the previous section and as
illustrated in Figure 5(a).

Bounds on the CRPD for multiple preemptions by multiple tasks
Our approach is to incrementally compute bounds on the CRPD
for growing sets of preempting tasks. We start out with a single
preempting task. Then, we keep adding preempting tasks, one at a
time, maintaining an upper bound on the CRPD due to preemptions
of the tasks that have been added so far.

In principle, any order of inserting the preempting tasks can be
processed. However, the order has an influence on the precision of
the resulting CRPD bound. Adding tasks in nonincreasing order of
the number of preemptions simplifies the algorithm and promises
to yield low bounds. In the following, we will assume w.l.o.g. that
the preempting tasks Tasks = {T1, T2, . . .} are ordered in this way,
i.e., #p(Ti) ≥ #p(Ti+1) for all i.

Our algorithm is based on a slight generalization of the follow-
ing insight:

CRPDsa({T1, T2},#p) ≤ CRPDsa({T1},#p)
+ CRPDsa({T1T2},#p′) (33)

where T1T2 denotes a task that is the sequential composition of T1

and T2 and #p′(T1T2) = #p(T2).
Equation 33 says that we can compute a bound on the CRPD

due to preemptions by T1 and T2 by adding up

1. a bound on the cost of the preemptions of T1 in isolation, and

2. the cost of #p′(T1T2) = #p(T2) preemptions by T1T2.

Intuitively, the preemptions of T2 may only interact #p(T2) (=
min{#p(T1),#p(T2)}6) times with the preemptions of T1. If a
memory block may be evicted by an interaction of T1 and T2, it
may also be evicted by the sequential composition T1T2 of the two
tasks. Figure 5(c) illustrates this.

Generalizing Equation 33 from pairs of preempting tasks to sets
of preempting tasks yields the following:

CRPDsa({T1, . . . , Ti},#p)≤CRPDsa({T1, . . . , Ti−1},#p)
+ CRPDsa({T1T2 . . . Ti},#p′)

(34)
where T1T2 . . . Ti denotes a task that is the sequential composition
of T1, T2, . . . , Ti and #p′(T1T2 . . . Ti) = #p(Ti).

Intuitively, the preemptions of Ti may only interact #p(Ti)
(= min{#p(T1), . . . ,#p(Ti)}) times with the preemptions of
T1, . . . , Ti−1. If a memory block may be evicted by an interaction
of T1, T2, . . . , Ti, it may also be evicted by the sequential compo-
sition T1T2 . . . Ti of the set of tasks.

As the set of evicting cache blocks by T1T2 . . . Ti is simplyS
j=1...i ECB(Tj) we can use Equation 32 to bound the second

summand of Equation 34 by #p(Ti)·CRPD-RES(
S

j=1..i ECB(Tj)):

CRPDsa({T1, . . . , Ti},#p) ≤ CRPDsa({T1, . . . , Ti−1},#p)

+ #p(Ti) · CRPD-RES(
[

j=1..i

ECB(Tj)) (35)

6 Due to our assumption of a nonincreasing #p-function.

Plugging Equation 35 recursively into the first summand of
itself yields Equation 36:

CRPDsa({T1, . . . , Tk},#p) ≤X
i=1...k

#p(Ti) · CRPD-RES(
[

j=1..i

ECB(Tj)) (36)

Based on this, we can compute bounds on the CRPD for arbi-
trary sets of preempting tasks. In fact, given any method to com-
pute bounds on the CRPD for multiple preemptions by a single
task, Equation 34 enables to incrementally compute bounds on the
CRPD for multiple preemptions by multiple tasks.

6. Evaluation
In this section, we evaluate the resilience analysis. The implementa-
tion is based on the aiT Timing Analyzer 7. We compare the bound
on the CRPD we obtain with the results of the former approaches
(CRPDUCB&ECB, CRPDTAN and CRPDUCB, see Section 2). We have
selected two different benchmark suites to show the improvements
for a single preemption (Mälardalen WCET Benchmark Suite [1])
and the improvements on a realistic example with multiple preemp-
tions (Papabench [2]). In both cases, the ARM7 processor8 is our
target architecture. The runtime for both benchmarks was less than
30 minutes on an AMD Quadcore with 2500 Mhz.

6.1 Single Preemption

Task Code Size Cache Util. |UCB|
minmax 608B 7.4% 4
insertsort 384B 4.7% 5

fibcall 256B 3.1% 5
fac 256B 3.1% 6
bs 320B 3.9% 8

bsort100 544B 6.6% 10
ns 576B 7% 11

matmult 864B 10.5% 12
fir 928B 11.3% 22
crc 1216B 14.8% 35

select 1280B 15.6% 37
qsort-exam 1440B 17.6% 42

sqrt 3680B 44.9% 101
qurt 4160B 50.8% 118

Table 2. Mälardalen benchmark suite: Code sizes, cache utiliza-
tion and number of UCBs.

The Mälardalen Benchmark Suite offers a wide range of differ-
ent test programs. These programs, however, do not form an ap-
plication. They are merely a set of small, independent tasks. How-
ever, they are the standard benchmarks for timing analysis. Instead
of assuming an artificial schedule, we used this suite to show the
improvement of our analysis for single preemptions. We selected
a cache of size 8KB with 8 ways, 32 sets and a line-size of 32
bytes. The cache utilization and the maximal number of useful
cache blocks of the different tasks are given in Table 2. Note that
although PLRU replacement policy is often used for caches with
an associativities higher than 4, an efficient LRU implementation is
also feasible as Ackland et al. [3] have shown.

As the preempting tasks, we select fibcall (smallest number of
ECBs) and qurt (highest number of ECBs) and bound the number
of additional misses using the different approaches discussed in
this paper (Resilience, Tan, UCB & ECB, UCB) see Figure 6.
Preempted tasks are ordered according to the number of UCBs.
Note that the scale is logarithmic. Results show that the resilience

7 http://www.absint.de/ait/
8 http://www.arm.com/products/CPUs/families/ARM7Family.
html

 1

 10

 100

minmax
insertsort

fac bs bsort100
ns matmult

fir crc select
qsort-exam

sqrt

preempted by fibcall (#ECBs= 8)

 1

 10

 100

minmax
insertsort

fac bs bsort100
ns matmult

fir crc select
qsort-exam

sqrt

preempted by qurt (#ECBs= 121)

resilience tan UCB & ECB #UCBs

Figure 6. Number of additional misses due to preemption by fib-
call and qurt when the CRPD is computed with Equations 10 (re-
silience), 7 (UCB & ECB), 8 (Tan) and 1 (#UCBs).

analysis classifies all UCBs to remain useful (no CRPD cost) if the
preempted task is small (|UCB| < 20). In such cases, the useful
cache blocks are very resilient and are thus proven to remain useful
under preemption. In these cases, the improvement over previous
approaches is therefore 100%. Even for larger tasks, resilience
usually outperforms former approaches. Only for select, qsort-
exam and sqrt preempted by fibcall, Equation 8 computes a smaller,
but potentially unsafe bound.

6.2 Multiple Preemptions/Complete Scenario
Papabench is a free benchmark suite based on a realistic real-time
application, the control software of an unmanned aircraft vehicle.
It offers two different sets of tasks executed on two processors with
two different modes, manual and automatic flight control. For our
evaluation, we chose the larger task set, which is executed on pro-
cessor MCU0 with periodic tasks and preemptive rate-monotonic
scheduling (see configuration 3 in [11]). Tasks with the same pe-
riod cannot preempt each other in this configuration. In contrast
to other benchmarks, we can derive the periods and priorities of
all tasks from the specification of the system. See Table 3 for an
overview of the task set. Hence, we can evaluate the approaches
discussed in this paper on a realistic and complete example. To this
end, we bounded the preemption costs for one instance of a task.
In contrast to the evaluation for single preemptions, we omit the
unsound CRPD-bound of Equation 8. There is simply no way to
combine unsound intermediate results to a safe bound in case of
multiple preemptions. For the other two approaches, we computed
the CRPD bound for multiple preemptions in the following way:

UCB & ECB the CRPD bound for multiple preemptions is the
sum of all CRPD bounds for each preempting task Ti weighted
by an upper bound on the number of preemption due to Ti.

Resilience the CRPD bound for multiple preemptions is computed
using Equation 36.

The intermediate results for these computations for T10 in au-
tomatic and manual mode are shown in Figure 7 and 8. Figure 7
shows the individual costs for the preempting tasks. The resilience
analysis has to take potential interaction with already considered
tasks into account. Hence, the cost for the current preempting task
Ti is determined by the union of the ECBs sets of Ti and all pre-
empting tasks that have been previously accounted for. In case of
UCB & ECB, the cost for preemption by Ti is only determined by

Task Description Period Modes # preempt
A M

T5 altitude contro 250ms A,M 13 18
T6 climb control 250ms A,M 13 18
T7 link fbw send 250ms A 13 -
T8 navigation 250ms M - 18
T9 radio control 25ms M - 0
T10 receive gps data 250ms A,M 13 18
T11 repeating task 100ms A 4 -
T12 stabilisation 50ms A 0 -
I4 interrupt modem 100ms A,M 4 6
I5 interrupt spi 1 50ms A,M 13 18
I6 interrupt spi 2 50ms A,M 0 2

Table 3. Papabench benchmark suite: Task set for processor
MCU0, (A)utomatic and (M)anual modes. Description, period,
modes in which tasks are active and upper bounds on the number
of preemptions by higher priority tasks in the different modes.

 10
 20
 30
 40
 50
 60
 70

T7 {T7}+{T12}

{T7,T12}+{I6}

{T7,T12,I6}+{I5}

{T7,T12,I6,I5}+{I4}

{T7,T12,I6,I5,I4}+{T11}

T10, automatic mode

 10

 20

 30

 40

 50

 60

 70

{T9} {T9}+{I6}
{T9,I6}+{I5}

{T9,I6,I5}+{I4}

T10, manual mode

resilience UCB & ECB

Figure 7. Bounds on the number of additional misses of task T10
due to a single preemption 1) by a set of tasks (resilience), e.g. {T9,
I6, I5} and 2) by a single task (UCB&ECB), e.g I5.

the ECB set of Ti. Figure 8 shows the next step for the computa-
tion of the CRPD bounds for multiple preemptions. The costs for
the individual tasks are weighted by the number of preemptions and
summed up.

Due to space limitations, we only present the final results for
the tasks with the lowest priority that are used in both automatic
and manual mode (T5, T6, T10). These tasks are preempted most
often. The CRPD bounds for multiple preemptions are shown in
Figure 9.

The possible pessismism introduced by Equation 36 does not
consume the precision gain of the resilience analysis. In our bench-
marks, the new resilience analysis always outperforms the previous
approach by at least 28% and by 64% on average. In manual mode,
the bound on the overall number of additional misses in T6 could
even be reduced from 256 to 0. The analysis of the second bench-
mark suite, Papabench, to evaluate the precision in case of multi-
ple preemptions, leads to very similar results as the analysis of the
Mälardalen benchmarks for single preemptions.

7. Further Applications of Resilience
So far, we have shown how resilience analysis can be used to
improve estimation of the CRPD. Yet, there are other problems in
timing analysis that may benefit from resilience analysis. In this
section, we will point out two such opportunities and sketch how
CRPD analyses and in particular resilience analysis can be applied.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

T7 {T7}+{T12}

{T7,T12}+{I6}

{T7,T12,I6}+{I5}

{T7,T12,I6,I5}+{I4}

{T7,T12,I6,I5,I4}+{T11}

T10, automatic mode

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

{T9} {T9}+{I6}
{T9,I6}+{I5}

{T9,I6,I5}+{I4}

T10, manual mode

resilience UCB & ECB

Figure 8. Bounds on the number of additional misses of task T10
due to preemptions by sets of tasks, derived by Resilience and
UCB&ECB. These are weighted sums of the results for single
preemptions which are shown in Figure 7.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

T5 T6 T10

automatic mode

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

T5 T6 T10

manual mode

resilience UCB & ECB

Figure 9. Overall number of additional misses for lowest priority
tasks due to preemptions by higher priority tasks in case of auto-
matic and manual mode.

7.1 Inter-Task Cache Analysis
At program start, current WCET analyses either assume nothing
about the cache contents, or an empty cache, which may be un-
sound in case of timing anomalies [9, 15]. These WCET analyses
predict cache hits due to intra-task reuse of instructions or data. Yet,
such analyses do not predict any cache hits due to inter-task reuse,
due to their assumptions about the cache contents at program start.
In small applications inter-task reuse may be substantial.

Except for the first instance of a task, there might be cache hits
that result from inter-task reuse, i.e., reuse across different instances
of the task. It would be beneficial to account for such hits in a
timing analysis. The only paper we are aware of that deals with
precisely this problem is [12]. In [12], the result of a pessimistic
analysis9 is enhanced by computing a set of memory accesses that
must result in cache hits due to previous instances of a task. We
propose to start out optimistically, assuming that no other tasks
are executed between two instances of a task. Executions of other

9 Pessimistic in the sense that it assumes no knowledge of the cache contents
at program start.

T1 T1

T2 T3 T4

Figure 10. The execution of T2, T3, T4 between the periodic exe-
cution of T1 seen as a “preemption” of a cyclic T1 task.

tasks between two instances of the same task can then be seen
as preemptions at fixed program points. Additional misses due to
such “preemptions” can then be accounted for as described in the
previous sections. This idea is illustrated in Figure 10. It remains to
evaluate the precision of this approach compared with that of [12].

7.2 Component-Wise Cache Analysis
Component-wise cache analysis [5, 13] tries to increase the scala-
bility of cache analysis by analyzing components of a system in-
dependently. Instead of analyzing a function at every call site, it is
only analyzed once, generating a summary of the “damage” on the
cache state caused by the function. This summary is then applied
to the cache states at every call site. Following such an approach
one has to analyze library functions only once. Ballabriga et al. [5]
recently increased the precision of component-wise cache analy-
sis by deriving more precise summaries than Rakib et al. [13] who
introduced the idea. Both [13] and [5] still have some limitations:

• They require the knowledge of relative positions of functions in
the cache. This knowledge is only available after linking. If the
relative positions are unknown, the two approaches would have
to account for the sum of the “damages” caused by all different
relative positions in the cache.
• If function pointers are employed it is not always statically

known which function is called. In such cases, the above anal-
yses again have to conservatively account for the sum of the
“damages” done by all of the possible functions. If for instance,
one function accesses cache sets 1 to 4 and the other function
accesses the cache sets 5 to 8, the above analyses would have to
account for “damage” in cache sets 1 to 8.

How can resilience analysis improve component-wise cache analy-
sis? Instead of directly accounting for the damage done by the func-
tion that is called, one could first optimistically analyze a program
ignoring the function calls. In a second step, one could then use the
results of a resilience analysis to determine the maximal number of
additional misses due to the function calls. If the relative positions
of the called function and the caller are unknown, one could con-
servatively account for the maximal number of additional misses.
This should be considerably more precise than accounting for the
sum of the damages resulting from all possible relative positions.
Similarly, for unresolved function calls due to function pointers.

8. Conclusions
Preemptive scheduling often offers increased schedulability at the
cost of higher analysis complexity. Apart from schedulability anal-
ysis, timing analysis has to be extended to derive the context switch
costs, and especially the cache-related preemption delay. The cor-
responding analyses for direct-mapped caches can be considered
rather mature and precise. For set-associative caches, however, for-
mer analyses are either imprecise or unsound.

In this paper, we introduced a new CRPD analysis for LRU
caches based on the notion of resilience. The resilience denotes
how much disturbance by the preempting task, a cache block of
the preempted one may endure, without eviction before its reuse.
We presented a data-flow analysis to derive the resilience of a

cache block as well as the computation of CRPD bounds for single
and multiple preemption based on this notion. The evaluation has
shown that our analysis improves on former approaches by at least
28% and by 64% on average. Especially, for preemption due to
small, but frequent tasks, such as interrupts, a strong improvement
can be achieved.

As future work, we plan to evaluate our method for other cache
configurations and in the presence of an RTOS.

References
[1] Mälardalen WCET benchmark suite. http://www.mrtc.mdh.se/

projects/wcet/benchmarks.html.
[2] Papabench: a free real-time benchmark. http://www.irit.fr/

recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97.
[3] B. Ackland, D. Anesko, D. Brinthaupt, S. J. Daubert, A. Kalavade,

J. Knoblock, E. Micca, M. Moturi, C. J. Nicol, J. H. O’Neill, J. Oth-
mer, E. Sackinger, K. J. Singh, J. Sweet, C. J. Terman, and J. Williams.
A single-chip, 1.6 billion, 16-b mac/s multiprocessor dsp,. IEEE Jour-
nal of Solid-state circuits, 35(3):412–423, 2000.

[4] S. Altmeyer and C. Burguière. A new notion of useful cache block to
improve the bounds of cache-related preemption delay. In ECRTS ’09,
pages 109–118. IEEE Computer Society, 2009.

[5] C. Ballabriga, H. Cassé, and P. Sainrat. An improved approach for
set-associative instruction cache partial analysis. In SAC ’08, pages
360–367, 2008.

[6] C. Burguière, J. Reineke, and S. Altmeyer. Cache-related preemption
delay computation for set-associative caches: Pitfalls and solutions. In
WCET ’09, 2009.

[7] C. Ferdinand and R. Wilhelm. Fast and efficient cache behavior
prediction for real-time systems. Real-Time Systems, 17(2/3):131–
181, 1999.

[8] C.-G. Lee, J. Hahn, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee,
and C. S. Kim. Analysis of cache-related preemption delay in fixed-
priority preemptive scheduling. In RTSS’96, page 264. IEEE Com-
puter Society, 1996.

[9] T. Lundqvist and P. Stenström. Timing anomalies in dynamically
scheduled microprocessors. In RTSS ’99, page 12, Washington, DC,
USA, 1999. IEEE Computer Society.

[10] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of
cache-related preemption delay. In CODES+ISSS’03. ACM, 2003.

[11] F. Nemer, H. Cassé, P. Sainrat, J. P. Bahsoun, and M. D. Michiel.
Papabench: a free real-time benchmark. In WCET ’06, Dagstuhl,
Germany, 2006.

[12] F. Nemer, H. Cassé, P. Sainrat, and J. P. Bahsoun. Inter-task WCET
computation for a-way instruction caches. In SIES ’08, pages 169–
176, 2008.

[13] A. Rakib, O. Parshin, S. Thesing, and R. Wilhelm. Component-wise
i-cache behavior prediction. In ATVA ’04, pages 211–229, 2004.

[14] J. Reineke and D. Grund. Relative competitive analysis of cache
replacement policies. In LCTES’08, pages 51–60. ACM, June 2008.

[15] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker. A definition and classification of timing anomalies. In
WCET ’06, Dagstuhl, Germany, 2006.

[16] J. Staschulat and R. Ernst. Multiple process execution in cache related
preemption delay analysis. In EMSOFT ’04, pages 278–286. ACM,
2004.

[17] J. Staschulat and R. Ernst. Scalable precision cache analysis for real-
time software. ACM TECS, 6(4):25, 2007. ISSN 1539-9087.

[18] Y. Tan and V. Mooney. Integrated intra- and inter-task cache analysis
for preemptive multi-tasking real-time systems. In SCOPES’04, pages
182–199, 2004.

[19] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-
related preemption delay in preemptive real-time systems. In CODES
’00. ACM, 2000.

