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ABSTRACT
Software used in embedded systems is subject to strict
timing and space constraints. The growing software
complexity creates an urgent need for fast program ex-
ecution under the constraint of very limited code size.
However, even modern compilers produce code whose
quality often is far away from the optimum. The Propan
system is a postpass optimization framework that en-
ables high-quality machine-dependent postpass optimiz-
ers to be generated from a concise hardware specifica-
tion. The postpass approach allows to enhance the code
quality of existing compilers and offers a smooth inte-
gration into existing development tool chains. In this
article we present an adaptation of the modulo schedul-
ing software pipelining algorithm to the postpass level.
The implementation is fully retargetable and has been
incorporated in the Propan system. The differences
of postpass modulo scheduling compared to the stan-
dard version of the algorithm are outlined. Experimen-
tal results conducted on the Philips TriMedia TM1000
processor demonstrate that modulo scheduling can be
applied at the postpass level and allows to achieve a
significant code speedup with moderate code size in-
crease.

Categories and Subject Descriptors
D.2.13 [Software engineering]: Reusable software—
reusable libraries; D.3.4 [Programming languages]:
Processors—code generation, compilers, optimization,
retargetable compilers; C.1.1 [Processor architectures]:
Single data stream architectures—VLIW architectures
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1. INTRODUCTION
During the last years, embedded systems have be-

come nearly omnipresent in everyday life. Embedded
processors are used in a variety of application fields:
healthcare technology, telecommunication, automotive
and avionics, multimedia applications, consumer elec-
tronics, etc. Common characteristics of many applica-
tions are that high computation performance has to be
obtained at low cost and low power consumption. More-
over many applications have safety-critical characteris-
tics and must satisfy real-time constraints. This leads
to an additional requirement to be respected in embed-
ded systems design: the requirement of predictable per-
formance. It is not enough for microprocessors to yield
high peak performance, but it should also be possible to
statically guarantee their worst-case performance. Con-
temporary superscalar architectures are characterized
by deep complex pipelines, often with features like out-
of-order execution, branch prediction, and speculative
execution which make determining the guaranteed per-
formance of an application a difficult task [16].
Instruction-level parallel architectures have the advan-
tage that they are statically scheduled, i. e. under the
control of the compiler, which significantly improves
their predictability. They typically have multiple ex-
ecution units and provide multiple issue slots (EPIC,
VLIW). However, since the amount of parallelism in-
herent in programs tends to be small [33], it is a prob-
lem to keep the available execution units busy. For ar-
chitectures with static instruction-level parallelism this
problem is especially virulent, since if not enough paral-
lelism is available the issue slots of the long instruction
words are filled with nops. For embedded processors
this means a waste of program memory and energy.
A common way to improve the efficiency of embedded
processors is the incorporation of application-specific
functionality. The consequence is often a highly irreg-
ular hardware design which makes code generation a
difficult task. Still today, the code quality of traditional
high-level language compilers is often far from satisfac-
tory [41, 25]. Generating efficient code for irregular ar-
chitectures requires highly optimizing techniques that



have to be aware of specific hardware features of the tar-
get processor. Traditional legacy compiler systems also
are not designed to take full advantage of instruction-
level parallel architectures.
The Propan system [18, 21, 19, 20] has been devel-
oped as a retargetable framework for high-quality code
optimizations and machine-dependent program analy-
ses at assembly level. From a concise hardware specifi-
cation a machine-sensitive postpass optimizer is gener-
ated that especially addresses irregular hardware archi-
tectures. The generated optimizer reads assembly pro-
grams and performs efficiency-increasing program trans-
formations. One advantage of applying an extra opti-
mization pass on assembly or object code is that the
post-pass optimization usually has a larger scope: it can
handle libraries, mixed-language code applications and
hand-written assembly [10]. Another motivation for the
postpass approach is that industry-standard embedded
compiler tool chains often do not generate satisfactory
code quality, both in terms of performance and code
size. However, changing an compiler tool chain requires
modifications to the established development process,
which, especially for embedded systems, is a long and
very costly process. Postpass optimizers can easily be
integrated in existing tool chains. Since they work at the
machine code level, they can be applied in the context
of traditional development environments consisting of
CASE tools, compilers and linkers. Only small changes
to the software development process are required.
This article deals with the incorporation of the modulo
scheduling software pipelining algorithm in the Propan
framework. For statically scheduled architectures with
a high degree of instruction-level parallelism it is ex-
tremely important to enhance the available parallelism
of the program1. Modulo scheduling is a static global
cyclic instruction scheduling technique which improves
the execution times of loops by overlapping the execu-
tion of different iterations of the original loop. Since
typically most of the program execution time is spent
in loops, modulo scheduling can cause significant per-
formance improvements. To enable its integration in
the Propan framework we have adapted the modulo
scheduling algorithm to the postpass level and imple-
mented it in a fully retargetable way. In this article
we demonstrate that applying modulo scheduling at the
postpass level is a reasonable approach which can give
rise to a significant performance increase. The experi-
ments are conducted on the Philips TriMedia TM1000
multimedia processor.
This paper is structured as follows: Sec. 2 gives an
overview of related work and Sec. 3 shortly summarizes
the Propan framework. The basic concepts of the mod-
ulo scheduling algorithm are introduced in Sec. 4; Sec. 5
characterizes our adaptation to the postpass level. The
TriMedia Tm1000 VLIW processor used for our imple-
mentation is described in Sec 6. The experimental re-
sults are presented in Sec. 7 and Sec. 8 concludes.

1The available parallelism inside of basic blocks is usu-
ally no larger than 2 or 3[33].

2. RELATED WORK
In the area of code generation for general-purpose pro-

cessors there are numerous retargetable systems, e. g.
PO [9] and its descendents Vpo [3] and gcc [34], lcc
[12], Marion [5], or Suif [35]. Retargetable code gen-
eration and optimization systems for irregular archi-
tectures, mostly digital signal processors are Mimola
[26], Record [25], Cbc [11], CHESS [24], Flexware [29],
Spam [37], Express [14], or Aviv [15]. While these sys-
tems do not support transformations on assembly- or
executable code, Salto [4] is a retargetable system de-
signed to support implementing tools for analyses and
transformations of assembly code. However, generating
program optimizers from the machine description is not
supported. Retargetable postpass frameworks focusing
on code size reduction are the link time optimizers Dia-
blo [6], Squeeze++[38], and the aiPop system which
is partially based on Propan [10].
Software pipelining aims at improving the execution
times of loops by overlapping the execution of differ-
ent iterations to increase the available parallelism. It
is typically applied at a mid-level or low-level interme-
diate representation of the compiler. The most com-
mon software pipelining techniques can be classified into
two categories, namely kernel recognition and modulo
scheduling techniques. The idea behind kernel recogni-
tion schemes is to simultaneously unroll and schedule
the loop until the rest of the schedule would be a repe-
tition of an existing portion of the schedule. Then the
process is terminated by generating a branch back to
the repetitive portion. Common kernel recognition tech-
niques are, e. g. perfect pipelining [1], the petri net model
[2] and Vegdahl’s technique [40, 39]. Kernel recognition
techniques usually have to maintain complex informa-
tion to be able to recognize the repetitive code pattern.
In contrast to that modulo scheduling techniques di-
rectly construct the pipelined loop without unrolling,
based on an initiation interval (cf. Sec. 4). Well-known
software pipelining approaches are [22], iterative mod-
ulo scheduling (IMS) [31], slack modulo scheduling [17],
swing modulo scheduling [7] and integrated register-sen-
sitive software pipelining [8]. Especially the computa-
tion of operation priorities and the scheduling direc-
tion (top-down vs. bidirectional) are important differ-
ences among these approaches [7]. Another more com-
plex software pipelining technique is enhanced pipeline
scheduling [2] which can schedule loops with conditional
jumps and arbitrary iteration counts.
An implementation of modulo scheduling for the TI
TMS320C6x is described in [36]. The implementation
is not retargetable but specifically tailored to the C6x,
the description focusing mostly on the characteristics of
the C6x. The authors use slack modulo scheduling [17]
and present adaptations, mostly concerning modifica-
tions of the scheduling direction and priority function
of slack modulo scheduling.

3. PROPAN
Propan (Postpass-oriented retargetable Optimizer and

Analyser) is a retargetable framework for machine de-
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Figure 1: Structure of the Propan-System

pendent high quality code optimizations and analyses
at the assembly level. The structure of the Propan-
Framework is shown in Fig. 1. Inputs are a specifica-
tion of the target processor and the assembler file to
be optimized. The target specification is written in
the Target Description Language Tdl [19]. It contains
definitions of all functional units, the instruction set
including timing behavior and semantics, descriptions
of irregular hardware constraints and a specification of
the assembler syntax. From the Tdl file an assembly
parser is automatically generated which translates the
input program into the intermediate representation of
Propan, called Crl (Control Flow Representation Lan-
guage) [23]. Moreover a hardware architecture database
is generated along with generic access functions such
that all specified information about the target processor
can be retrieved in a generic way from the core system.
The core of Propan is fully generic, i. e. processor inde-
pendent. It is linked with the generated target specific
files to yield a dedicated hardware sensitive postpass
optimizer [21].

4. MODULO SCHEDULING
Modulo Scheduling is a common framework in which

software pipelining algorithms can be defined [2]. To
achieve an overlapping of consecutive loop iterations the
algorithm computes the so-called initiation interval (II),
which defines the number of cycles between the start of
two consecutive iterations. Based on the initiation in-
terval a modulo schedule is constructed by dividing the
original loop body into stages of II cycles each. Stages
from different loop iterations can be executed in paral-
lel. This yields a new (shorter) loop body called the ker-
nel. Since one iteration of the kernel executes multiple
original iterations it is necessary to insert acyclic code
sequences to fill/drain the software pipeline, i. e. to
execute the required number of iterations before/after
the execution of the kernel (see Fig. 2). The compu-
tation of the kernel from the original loop schedule is
divided into three phases. First a lower bound for the
initiation interval is computed, called minimum initia-
tion interval (MII). This is the phase with the highest
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Figure 2: Structure of a pipelined loop

computational complexity, namely O(n3), where n is
the number of operations contained in the loop. Note
that a SCC2-based computation as mentioned in [31]
could reduce the computational costs to O(n3), where
n is the number of operations in the largest SCC in
the data dependence graph of the loop. We do not rely
on a SCC-based computation in aid for the reuse of
intermediate data of this phase (cf. [31]). In the sec-
ond phase, the actual scheduling phase, the algorithm
tries to find a feasible kernel starting with the computed
MII. In Iterative Modulo Scheduling (IMS) this phase is
iterative because each operation can be scheduled and
unscheduled at several time slots [7], which is the main
characteristic property of IMS. If the search for a kernel
fails, the initiation interval is increased and the schedul-
ing phase is restarted. This process is iterated until a
feasible kernel has been found. In spite of the exponen-
tial complexity of scheduling in general, the run time of
this scheduling phase is bounded to O(n2) (according
to [31]) by heuristics.
Our implementation is based on IMS [31] since it has

2Strongly connected component



been extensively studied and is a common phase in ad-
vanced optimizing compilers. In the following we will
describe how the three phases are computed by the IMS
approach and briefly sketch the generation of prologue
and epilogue code. Afterwards, in Sec. 5 we show the
characteristic properties evolving for the application of
IMS on assembly code.

4.1 Computing the MII
The problem of computing the MII is split into two

subproblems: the computation of a resource based ini-
tiation interval (MIIres) and a data dependence based
initiation interval (MIIdep). MIIres and MIIdep rep-
resent two upper bounds for the number of iterations
that can be overlapped; the computed MII is the max-
imum of both values.
MIIres computes a lower bound for the delay between
the start of two consecutive iterations by only taking
the resource constraints of the target processor into ac-
count. Data dependences are ignored. The result is the
minimal number of instructions3 needed to execute all
operations of the loop without violating any resource
constraints.
In contrast to that, MIIdep only considers the data de-
pendencies in the loop. Let e = (i1, i2) be an edge
in the data dependence graph (DDG), i. e. i2 is data
dependent on i1. Then Delay(e) denotes the minimal
number of cycles between the start time of i1 and i2 that
is necessary to preserve the data dependence. In cyclic
control flow there are elementary cycles4 in the DDG
which impose delays between the start of two consec-
utive iterations. Moreover we have to distinguish be-
tween dependencies within the same iteration of a loop
(loop-independent) and dependencies that span itera-
tion boundaries (loop-carried). Therefore we denote the
number of iteration boundaries that are spanned by the
particular data dependence e with Dist(e). Each ele-
mentary cycle c then imposes the following constraint
for the MIIdep:

MIIdep ∗Dist(c) ≥ Delay(c).

Delay(c) resp. Dist(c) are defined as the sum of the de-
lays resp. distances of all edges in c. If c spans k itera-
tions, the delay of c can be at most k times the MII.
The following formula defines how MIIdep can be com-
puted:

MIIdep = max
c∈C

„‰
Delay(c)

Dist(c)

ı«
4.2 The Scheduling Phase

In the scheduling phase the initiation interval is used
to compute a so-called flat schedule. The flat schedule
is an acyclic schedule of the operations of the loop that
takes also cyclic precedence and resource constraints
into account. The final kernel can be derived from the

3We use the terminology that a (VLIW) instruction is
composed of several micro-operations that are issued
simultaneously
4An elementary cycle is a cycle with pairwise disjoint
nodes.

flat schedule by simple modulo arithmetic (cf. Sec. 4.3).
The central idea of the algorithm is to start with an
empty schedule and add operations to it maintaining the
property that any partial schedule represents a feasible
partial schedule of the loop. That means that neither
acyclic nor cyclic resource or precedence constraints are
violated.

4.2.1 Computing Scheduling Priorities
Before scheduling, the order must be defined in which

the operations are added to the partial schedule. Iter-
ative Modulo Scheduling uses a priority function sim-
ilar to the highest level first (hlf) priority known from
list scheduling. This priority function prefers operations
that are on the critical path5 in the program [31]. In
order to cope with cyclic control flow and to take the
computed initiation interval into account the hlf prior-
ity scheme has to be modified [31]. The resulting prior-
ity for an operation p is denoted as:

HeightR(p) = max
q∈Succ(p)

(HeightR(q) + EffDelay(p, q))

where Succ(p) is the set of all successors of p in the DDG
and EffDelay(p, q) = Delay((p, q))− II ∗Dist((p, q)).

4.2.2 Computing the Slot Window
Adding an operation to the partial schedule with-

out violating data dependences requires all data depen-
dences among the operations that are contained in the
partial schedule to be taken into account. The data
dependences determine how early resp. how late an op-
eration can be scheduled within the partial schedule.
This results in a slot window relative to the operations
contained in the partial schedule. A slot window is de-
fined by two values: the earliest possible issue time,
early start (EStart), and the latest possible issue time,
late start (LStart). Estart is computed as

EStart(p) = max
(q,p)∈Edd

( max(0,SchedTime(q)

+EffDelay(q, p))),

where Edd is the set of all edges in the data dependence
graph and SchedTime(p) is the time at which p is sched-
uled. Note that this formula is only valid if the prede-
cessors q are contained in the current partial schedule.
In the case that p has no predecessor or no predecessor
of p has already been scheduled at all, i. e. is not con-
tained in the partial schedule, Estart(p) = 0. LStart(p)
is computed analogously by considering the successors
of p.

4.2.3 Scheduling Conflicts
It is possible that no feasible instruction can be found

in the computed slot window – this is called a con-
flict. There are two difference conflict scenarios: first
the computed slot windows might be infeasible, i. e.
Lstart < EStart. This follows from the property of
modulo scheduling that some successors in the DDG of
an operation p can already be scheduled while trying to

5The critical path is the longest acyclic path in the
DDG.



find an issue slot for p. Second, the computed slot win-
dow may be feasible, but the algorithm does not find
an instruction not causing a resource conflict. To solve
such a conflict for an operation i, a forced control step
cf is computed where cf = max {cold + 1,EStart(i)}, if
i had been scheduled before to control step cold, and
cf = EStart(i) otherwise. Then i is scheduled to cf ,
and all previously scheduled operations that cause con-
flicts with i are removed from the partial schedule. The
removed operations possess higher priorities than any
operations not scheduled before. The computation of cf

ensures termination since an operation is never sched-
uled twice at the same control step.

4.3 Computing the Kernel
The kernel can be computed directly from the flat

schedule. The scheduling position of an operation in
the kernel is given by its control step in the flat schedule
modulo the initiation interval. This directly induces an
overlapping of different loop iterations.
After generating the kernel we have to check whether
the maximal life span of a register in the flat schedule is
longer than the length of the kernel itself. In that case
we need to perform Modulo Variable Expansion [22]. In
the postpass scenario modulo variable expansion has to
be applied on physical registers; Sec. 5.3 elaborates.

4.4 Prologue and Epilogue
Since the kernel is computed by taking the control

steps of the flat schedule F modulo the minimum ini-
tiation interval MII, the flat schedule is divided into
stages of MII cycles each. In the computed kernel all
stages are executed in parallel. The number of itera-
tions of the original loop represented in the kernel is

given by the stage count SC =
l
|F|
II

m
with |F| denoting

the number of instructions in F . Since the kernel rep-
resents SC iterations of the original loop and since one
iteration of the original loop is started by each execu-
tion of the kernel, prologue and epilogue must start/end
SC − 1 iterations of the original loop. Extensions are
required if there are early exits in the original loop [32].

5. POSTPASS MODULO SCHEDULING
A main characteristics of our approach is that we

apply modulo scheduling on assembly code. This has
several consequences: one difference to using modulo
scheduling inside a compiler on some (low-level) IR is
that the amount of information available to the modulo
scheduler is smaller. Also the degree of freedom avail-
able to the modulo scheduler is limited since there are
decisions made in code generation stage that cannot be
undone. However, all transformations required for mod-
ulo scheduling can still be applied at the postpass level,
although some modifications are required. The main
limitations result from control flow and data dependence
characteristics of assembly programs. In the remainder
of this section we describe the necessary control flow re-
construction stage and investigate the consequences of
the data dependence structure of typical assembly code.
Sec. 5 concludes with a description of postpass modulo

variable expansion.

5.1 Handling Control Flow
In assembly programs the control flow is implicitly

defined by the semantics of unstructured control flow
instructions like jump, branch, call and return instruc-
tions. Especially information about the loops in the
program is not directly available. Thus, the control flow
graph has to be explicitly reconstructed. Propan uses a
generic control flow reconstruction algorithm [20] which
is based on an extended program slicing mechanism that
is able to cope with unstructured control flow instruc-
tions.
The major problem in the reconstruction of the CFG
are indirections of the control flow. These are com-
puted jumps and computed calls, i. e. , jumps and calls
whose argument is not an assembly label but a reg-
ister value. In order to determine targets of control
flow indirections static information about register con-
tents are computed. Program slicing allows to restrict
the required evaluation of machine instructions to those
instructions that immediately determine the targets of
control flow indirections [20]. In cases where the control
flow cannot be precisely reconstructed, user-annotations
are provided. They can be used to classify branch in-
structions used as returns or name the actual targets of
computed branches.
The postpass approach does not only require special
care when reconstructing the control flow; also after
applying modulo scheduling some transformations are
required. The control flow of the input program is repre-
sented by a set of unstructured control flow instructions.
After modulo scheduling the targets of these branches
are not valid anymore. Thus, the branches have to be
updated so that the new loop structure is represented,
i. e. with the prologue as the new loop entry, the kernel
as the loop body and the epilogue to finish and leave the
loop. Moreover it has to be ensured that all branches to
the loop body target the new loop body. These branch
target modifications apply to all back edges, all loop-exit
branches and all loop-entry branches.

5.2 Data Dependences
In a postpass scenario the register allocation of the in-

put program has already been done. Thus the program
operates on physical registers, and not on the original
program values. Since during register allocation the val-
ues of the program have been mapped to a finite number
of physical registers, register reuse has been introduced.
This register reuse causes spurious data dependences
which are not induced by the semantics of the program
but are caused by the actual register assignment. It is
possible to retransform the input program in a low-level
intermediate representation where physical register are
replaced by virtual registers [21] so that the spurious
data dependences can be eliminated.
In assembly programs accesses to structured data types
are represented by sequences of memory referencing ma-
chine instructions. As an example consider Fig. 3. At
the source level, it is easy to establish that the array
elements being accessed represent different memory lo-
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Figure 3: Data Dependencies at the Assembly
Level.

cations. Thus, there are no loop-carried data depen-
dences. Inside a compiler this information is available.
However, at the postpass level the array accesses are
represented by a sequence of different memory refer-
encing instructions. Statically proving that such a set
of memory references can be divided in groups access-
ing disjoint structured memory locations in general is
not possible. In our implementation we conservatively
assume a potential aliasing relation between any two
memory accesses, i. e. there is a data dependence be-
tween each memory access.
In consequence the available parallelism of the program
is reduced and the scheduling freedom is restricted. Ad-
vanced alias analyses allow to increase the available par-
allelism by disambiguating memory accesses, e. g. by
computing values analyses [27] for address registers. How-
ever, this is not part of our current implementation.

5.3 Register Allocation and Modulo Vari-
able Expansion

Processing a register allocated input program means
that the decision which values are held in registers and
which values are stored in memory has been made by the
compiler. Undoing such allocation decisions at the post-
pass level would require extensive memory disambigua-
tion and alias analyses without being generally applica-
ble. However, the register assignment is still amenable
to a postpass optimizer [18].
An important component of the modulo scheduling al-
gorithm is modulo variable expansion (MVE). Without
MVE the kernel computed by modulo scheduling will
contain overlapping life spans of physical registers if
there are register life spans in the flat schedule whose
length exceeds the kernel length. Repeatedly executing
the kernel then causes live register values to be overwrit-
ten. Modulo variable expansion avoids this by unrolling
the kernel while appropriately renaming the used regis-
ters.

Since MVE only affects the register assignment, it is
possible to provide modulo variable expansion by reg-
ister renaming at the postpass level. To prevent live
registers from being overwritten, the kernel K has to be
unrolled so that the unrolled kernel is as least as long as
the maximal life span of a register in the flat schedule.
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Figure 4: Modulo Variable Expansion

The unroll factor is computed by

umin(K) = max
r∈R

„‰
LifeSpanF (r)

II

ı«
,

whereR denotes the set of all registers and LifeSpanF (r)
the life span of register r in the flat schedule F . Then
all loop-variant registers used in the unrolled copies of
the kernel are renamed using the following renaming
scheme: all definitions of such a register r are changed
to r?, where r? is a new free register. All uses of r before
its first redefinition6 are changed to r′, where r′ is the
register used for r in the preceding copy. All uses of r
after the first redefinition are changed into r?. Because
of the cyclic use of registers this renaming scheme sim-
ulates the behavior of rotating register files [17]. The
decision which registers are free and can be used for
the renaming are based on liveness analysis [28] for the
values contained in physical registers.

6. TRIMEDIA TM1000
The TriMedia Tm1000 [30] is a Digital Signal Pro-

cessor (DSP) for high performance multimedia applica-
tions processing high quality video and audio streams.
It consists of a 100MHz VLIW-Core (32 Bit) with 128
32-bit general purpose registers and 26 parallel func-
tional units. Tab. 1 gives an overview of the available
types of functional units and lists the number of cycles
used to execute an operation on each particular func-
tional unit type. The instruction set does not contain
special return operations; instead all returns are imple-
mented by branch operations. Since nearly all control
flow transfers are realized by indirect branches many
user annotations are required for control flow recon-
struction, e. g. all returns have to be explicitly anno-
tated (see Sec. 5.1).
The TriMedia Tm1000 issues one VLIW instruction per
cycle, each one consisting of five issue slots. An issue
slot contains one machine operation so that up to five
operations can be executed in parallel. The functional
unit binding is heterogeneous (cf. Sec. 5), which is typ-
ical for DSP processors. A branch operation, e. g. , can

6All read accesses to r in a VLIW instruction also con-
taining definitions of r are considered to be executed
before the definitions.



Unit Operation Class Cycles

CONST immediate 1
ALU integer arithmetic , 1

logical operations and
(De-)compression

DSPALU DSP arithmetic 2
DSPMUL DSP multiplications 3
DMEM load/store 3
DMEMSPEC cache operations 3
SHIFTER shift operations 1
BRANCH control flow operations 3
FALU floating point 3

arithmetic
IFMUL integer and floating 3

multiplications
FCOMP floating point 1

comparisons
FTOUGH floating point 17

divisions

Table 1: Functional units and timing

only be executed in issue slots 2, 3, or 4, arithmetic oper-
ations like an addition can be assigned to any of the five
issue slots. There are five write-back busses so that at
most five results can be written per cycle. Since differ-
ent machine operations have different execution times,
the write back bus has to be modeled explicitly in the
scheduling phase.
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Figure 5: Functional unit binding of the TriMe-
dia TM1000

7. EXPERIMENTAL RESULTS
The generic modulo scheduler has been integrated

into the Propan-System and has been retargeted to the
TriMedia Tm1000 processor. In this section we present
our experimental evaluation of the postpass modulo schedul-
ing algorithm on the TriMedia Tm1000. Our input pro-
gram comprise files from the DSPSTONE [41] and the
MiBench [13] benchmark suites. In addition two hand-

written assembly files (chain,chain2) are investigated
that are dominated by linear dependence chains pre-
venting acyclic parallelization. The files are compiled
using the Philips tmcc compiler in the version V5.5.4
(compile switches: -O2 -Xunroll=0) which doesn’t per-
form software pipelining.
The results are measured by several metrics: the gained
performance achievements, the code size increase, the
feasibility of the computed MII and the runtimes of
the software pipelining process.

7.1 Performance
In order to measure the gained performance increase

we determine the number of instructions needed for 100
loop iterations. In case of the original loop, this is 100
times the number of the instructions of the loop body.
Since in the pipelined loop the prologue and epilogue
code sequences are executed exactly once and each it-
eration of the kernel finishes one original iteration, the
number of iterations is

|P|+ |E|+
„

100− SC − 1

umin
∗ |K|

«
,

where |.| denotes the length (i. e. the number of instruc-
tions) of each code sequence, respectively. The variable
umin is the factor of kernel unrolling used in modulo
variable expansion (see Sec.4.3).
Tab. 2 shows that our implementation achieves a speedup
by a factor of up to 3.13 (column ∆v), compared to the
schedule produced by the tmcc compiler. The average
speedup is 1.81. IMS works best in the presence of
dependency chains where acyclic scheduling techniques
cannot exploit instruction level parallelism at all (cf
chain1,chain2). If the input programs already exhibit
a high degree of instruction level parallelism, there may
be no further parallelization opportunities. For that
reason we could not optimize the performance of three
programs dfir, dlms and sha). In Tab. 2 the average

Program Iin Iopt ∆v Pin Popt

adpcm 2800 1596 1.75 2.1 3.8
bitstrng 1000 798 1.25 2.2 2.8
blowfish 4000 2092 1.91 1.5 2.9
chain 800 292 2.74 1.0 5.0
chain2 900 295 3.05 0.8 5.0
crc32 1000 403 2.48 1.5 3.0
dfir 1200 1200 1.00 3.3 3.3
dijkstra 2100 1194 1.76 1.8 3.2
dlms 1000 1000 1.00 3.6 3.6
dmat1x3 2500 799 3.13 1.0 3.1
dmatrix1 4000 1985 2.02 1.0 3.1
FFT 5400 2386 2.26 1.2 2.8
gsm 2000 1692 1.18 2.9 3.4
isqrt 1100 796 1.38 2.6 3.6
patricia 1600 701 2.28 1.5 3.4
pgp 1400 698 2.01 1.7 2.7
sha 800 800 1.00 2.4 2.4

Ø 1.81 2.0 3.3

Table 2: Performance Increase.



number of operations per VLIW instruction before and
after modulo scheduling are compared as a measure of
the instruction level parallelism exploited. We can see
that the maximum parallelism achieved (column Popt) is
5.0 operations per instruction (for chain, chain2). The
issue width of the TriMedia Tm1000 is 5 instructions,
but due to the heterogeneous issue slot assignment, a
parallelism of 5 operations per instructions mostly can-
not be achieved. To that effect, the achieved average
operations per instruction of over 3.0 (for adpcm, dfir,
dijkstra, . . . ) are quite well. The average parallelism
of all tests is 3.3 operations per instruction, compared
to an average parallelism of 2.0 in the input programs
(column Pin).

7.2 Code Size
In embedded systems code size plays an important

role. Software pipelining usually causes code size to
grow since it is necessary to add prologue and epilogue
code. In order to be useful for embedded systems it is
essential to only get a moderate code size increase.
Tab. 3 illustrates the code size of the investigated pro-
grams before applying modulo scheduling (Sin) and af-
terwards (Sopt); as a measure for code size the number of
instructions is given. Our results show that the average
increase of code size is about 50% (column Sincr). The
maximal code size increase is 120% (bitstrng). How-
ever, the number of instructions in the loop body, the
kernel, is significantly reduced since more instruction
level parallelism could be exploited. The size of almost
half of the loop bodies could be reduced by more than
50%. Thus, compared to loop unrolling techniques , the
code size increase is moderate (50% on average) and due
to the higher instruction level parallelism the size of the
loop bodies can even be shortened (to up to 22% of the
original size).

Program Sin Sopt Sincr MII II

adpcm 28 60 114% 12 12
bitstrng 10 22 120% 5 6
blowfish 40 76 111% 13 13
chain 8 10 25% 1 1
chain2 9 7 - 22% 1 1
crc32 10 23 30% 3 3
dfir 12 12 0% 8 12
dijkstra 21 32 52% 9 9
dlms 10 10 0% 8 10
dmat1x3 25 39 56% 5 5
dmatrix1 40 45 13% 12 12
FFT 54 58 7% 19 19
gsm 20 43 115% 12 12
isqrt 11 20 82% 6 7
patricia 16 29 81% 5 5
pgp 14 26 86% 5 5
sha 8 8 0% 8 8

Ø 50% 6%

Table 3: Code Size Increase.

7.3 Feasibility of the MII

Calculating the MII as a lower bound of the kernel
length has a high computational complexity. Thus it
is interesting to see how far this lower bound is away
from the actual II for which a feasible kernel could be
found. Our experiments show that in 58% of the test
files the computed MII is already feasible. The average
deviation in the other tests is only about 6%. This
justifies the rather high computational complexity of
computing the MII.

7.4 Runtime
The experiments are conducted on a Linux system

with a Intel r© PentiumTM 4 (3.06 GHz and 512MB
DDR Memory). Tab. 4 shows the computation time
of the modulo scheduling for all test programs. The
computation times for computing the MII, the pro-
logue, the kernel, the epilogue, and the reintegration of
the pipelined loop into the surrounding control flow are
listed separately. Column Total shows the overall run-
time for the whole optimization. The computation time
for the input programs ranges from 0.5s to 8.2s, which is
acceptable for industrial tool chains. On average about
97% of the time is spent in computing the MII.

8. CONCLUSION
The growing complexity of embedded software creates

an urgent need for fast program execution under the
constraint of very limited code size. However, industry-
standard embedded compiler tool chains often do not
generate satisfactory code quality, both in terms of per-
formance and code size. However, changing a compiler
tool chain requires modifications to the established de-
velopment process, which, especially for embedded sys-
tems, is a long and very costly process. The Propan
system is a postpass optimization framework that en-
ables high-quality machine-dependent postpass optimiz-
ers to be generated from a concise hardware specifica-
tion. The postpass approach allows to enhance the code
quality of existing compilers and offers a smooth inte-
gration into existing development tool chains.
Subject of this article is the incorporation of modulo
scheduling into the Propan framework, which specifi-
cally aims at improving code quality for statically sched-
uled instruction level parallel architectures. Compared
to superscalar pipelined architectures such processors
have the advantage of a better predictability of perfor-
mance. This is essential for real-time and safety-critical
systems. Modulo scheduling improves the execution
times of loops by overlapping the execution of different
iterations of the original loop. To enable its integration
in the Propan framework the modulo scheduling algo-
rithm is adapted to the postpass level.
The main difference to using modulo scheduling inside
a compiler is that the amount of information available
and, in consequence, the scheduling freedom is smaller.
However, in our work we could demonstrate that all
transformations required for modulo scheduling can still
be applied at the postpass level. To assess the quality
of our postpass modulo scheduling framework we con-



Program MII Prologue Kernel Epilogue Integration Total
[ms] [ms] [ms] [ms] [ms] [ms]

adpcm 6740.77 1.60 231.95 0.90 0.25 6977.10
bitstrng 266.99 0.25 6.53 0.25 0.14 275.14
blowfish 6561.12 1.96 302.89 1.21 0.31 6957.81
chain 3.02 0.12 0.33 0.07 0.11 4.27
chain2 3.15 0.06 0.31 0.03 0.11 4.22
crc32 81.02 0.33 2.70 0.24 0.14 85.22
dfir 1574.55 0.05 33.03 0.11 0.04 1608.51
dijkstra 1559.27 0.38 48.05 0.38 0.17 1609.20
dlms 1244.43 0.41 25.76 0.14 0.14 1271.78
dmat1x3 442.20 0.60 10.70 0.29 0.18 455.39
dmatrix1 6371.95 0.62 169.06 0.50 0.22 6544.03
FFT 8231.24 0.86 263.55 0.54 0.26 8498.72
gsm 5546.25 0.58 153.37 0.58 0.19 5702.27
isqrt 671.14 0.29 22.73 0.25 0.13 695.41
patricia 367.13 0.29 10.86 0.52 0.16 379.91
pgp 380.34 0.43 14.22 0.33 0.15 396.31
sha 160.95 0.24 4.14 0.18 0.13 166.35

Ø 2194.83 0.51 70.33 0.36 0.16 2271.94

Table 4: Computation Time for Modulo Scheduling.

ducted experiments for the Philips TriMedia multimedia
processor. The TriMedia is a five-issue VLIW processor
with restrictions on the assignment of operations to is-
sue slots of the instruction word. Our experiments show
that in spite of the limitations of the postpass approach
a significant speedup over version V5.5.4 of the Philips
tmcc compiler can be achieved with only a moderate
increase of code size.
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