OORS: An Object-Oriented Rewrite System

Gernot Gebhard and Philipp Lucas

Dept. 6.2 Computer Science, Compiler Design Lab,
Campus E1 3, Saarland University,
D-66041 Saarbriicken, Germany

[gebhard |phlucas]@cs.uni-sb.de
http://rw4.cs.uni-sb.de/ gebhard/projects/oors/

October 2007

Abstract

Retargeting a compiler’s back end to a new architecture is a time-consuming pro-
cess. This becomes an evident problem in the area of programmable graphics hardware
(graphics processing units, GPUs) or embedded processors, where architectural changes
are faster than elsewhere. We propose the object-oriented rewrite system OORS to over-
come this problem. Using the OORS language, a compiler developer can express the
code generation and optimization phase in terms of cost-annotated rewrite rules sup-
porting complex non-linear matching and replacing patterns. Retargetability is achieved
by organizing rules into profiles, one for each supported target architecture. Featuring a
rule and profile inheritance mechanism; OORS makes the reuse of existing specifications
possible. This is an improvement regarding traditional approaches. Altogether OORS
increases the maintainability of the compiler’s back end and thus both decreases the
complexity and reduces the effort of the retargeting process. To show the potential of
this approach, we have implemented a code generation and a code optimization pat-
tern matcher supporting different target architectures using the OORS language and
introduced them in a compiler of a programming language for CPUs and GPUs.

1 Introduction

As the number of different hardware architectures is steadily growing, easily retargetable com-
pilers are most valuable. Amongst others, this applies to graphics processing units (GPUs).
For the last few years the performance of GPUs has been increasing at a much faster rate than
that of general-purpose processors and now exceeds the peak performance of high-end CPUs.
The amount of transistors on graphics chips has been growing by a factor of 32 every two
years [3]; 16 times faster than the CPU transistor count growth that Moore’s Law predicts.
Thus, GPUs have become more and more interesting for general-purpose programming [19].
Several high-level languages, such as Brook for GPUs [4] or CGIS [17, 14], have emerged to
exploit the vast computational power that GPUs have to offer. Easily retargetable compilers
for these languages are necessary, because new GPU architectures are released at a fast rate
(e.g., NVIDIA’s NV40 in 2004, G70 in 2005, and G80 in 2006). Naturally, the same applies
to compilers supporting embedded systems, where a wide variety of different architectures
with common heritage exists (e. g., Freescale’s MPC555, MPC565, MPC755 and derivatives).

To decrease the complexity of the retargeting process and to keep the compiler maintainable
in the long run, we propose the object-oriented rewrite system OORS. The idea of OORS
originated from the fact that new architectures share many features with their predecessors,
but offer an extended instruction set (apart from other new features). If a new instruction
set architecture is released with minor differences to an already supported one, only small
changes to an existing back end are required. So, the key feature of our approach is to be found
in the reusability of existing specifications. We realized this by introducing object-oriented
language features in the yacc-like OORS language. Easily making the reuse of existing
specifications possible, the proposed language enables a compiler developer to implement
an OORS code generator or code optimizer which is less complex than a hand-written one.
Consequently, the OORS implementation is much easier to read and to maintain in the
long run. Our experiences in introducing new GPU architectures (NV40/G80) in the CGIS
compiler supports this claim.

Basically, an OORS specification describes a pattern matcher that translates attributed input
strings into attributed output strings. Given a set of rewrite rules, the pattern matcher
processes the input string as follows. First the pattern matcher tries to match the possibly
non-contiguous pattern of each rewrite rule against the input string. If multiple rules are
applicable, the pattern matcher computes the non-constant costs of each rule to determine
the rule to apply. Finally, the selected rule emits an attributed string that is appended to
the output string. After consuming the whole input string, the pattern matcher terminates.

The aim of this paper is to introduce the OORS language, its syntax and semantics and
to demonstrate its applicability in real word applications. Additionally, this paper briefly
introduces the pattern matcher generator OORG that compiles an OORS specification into
a CT1 dynamically retargetable pattern matcher. We show its applicability by means of a
real-life compiler for GPUs and SIMD CPUs.

The remainder of this paper (an extended version of [15]) is structured as follows: Section 2
discusses related work. The object-oriented rewrite system QOORS is introduced in Section 3.
This section covers both the OORS language and the matching process. Section 4 introduces
the pattern matcher generator OORG and demonstrates the integration of an OORS pattern
matcher in a compiler. Section 5 concludes this paper and discusses future work. Finally,
the appendix found at the end of this paper presents some compiler-unrelated applications
of OORS.

2 Related Work

Numerous other approaches have been suggested for code generator generators. Below we
discuss related work.

Emmelmann et al. [9] propose BEG, a generator for efficient back ends. Using the description
language BEGL, the developer implements tree-pattern matchers for code generation in terms
of cost-annotated rewrite rules. In contrast to the OORS language, BEGL offers no rule-
inheritance mechanism. The reuse of existing specifications is thus not possible. Additionally,
a BEG pattern matcher is dedicated to a single target architecture only. The major difference
is to be found in the processed input data. BEG code generators process trees, whereas OORS
pattern matchers operate on instruction sequences.

In [13], Fraser et al. introduce the code generator BURG for the bottom-up rewrite system
BURS which is similar to BEG. BURG is able to generate tree-pattern matchers for fast
optimal instruction selection. A BURG-generated tree-parser is able to find an optimal parse
of an input tree in linear time. As in BEGL, the BURG grammar does not feature any
mechanisms that makes the reuse of existing specification possible. Additionally, BURS code
generators are only able to generate code for a single architecture only. BURG-generated
code selectors are used in the ANSI C compiler lcc [12].

Ferdinand et al. [11] solve the code selection problem with deterministic finite tree automata
that are generated automatically from regular tree grammars. In contrast to BURG, the
left-hand and the right-hand side of rules are not limited to leafs or nodes with one or two
child nodes. In contrast to OORS, the costs of a rule must be constant and thus cannot
depend on the matched instructions. Similar to BURG, the developer cannot inherit rewrite
rules from each other to easily copy reusable properties. As in the other approaches discussed
above, it is not possible to target multiple architectures.

In [1], Alt et al. propose the CoSy model, which provides a framework for flexible combina-
tion and embedding of compiler phases to ease the construction of parallel and optimizing
compilers. Using three different languages, the compiler developer can implement, the differ-
ent phases of a compiler on a high level of abstraction. Additionally, the developer is able to
specify the control flow and the interactions of the compiler phases. Existing implementations
of compiler phases can be simply reused. However, if any modifications to the implemen-
tation are required, the framework requires copy-and-pasting of that implementation before
the developer can change the code. Just as in the approaches discussed above, the code
generator is based on tree-pattern matching. A comparison with OORS is hardly possible,
because OORS is designed to only implement the code generation and code optimization
phase.

Dias and Ramsey [8] propose a recognizer for machine-independent code selection and code
optimization. A recognizer is generated automatically from a declarative machine descrip-
tion that describes properties of the target platform. The generated recognizer requires the
compiler to represent intermediate code in the form of machine-independent register-transfer
lists (RTLs) [7]. By means of a declarative machine description, the recognizer tries to gen-
erate better RTLs. The recognizer will continue until no more optimizations can be applied.
The recognizer omits a previously generated RTL, if the new RTL cannot be implemented
on the target platform according to the machine description. The authors have successfully
generated and tested a recognizer for the x86 back end in the Quick C-- compiler [5]. This
approach differs greatly from OORS pattern matchers, as the developer does not have to
explicitly implement the code optimizer. The effort is shifted to implementing a complete
machine description.

Farfeleder et. al [10] describe a similar approach. By means of a new architecture descrip-
tion language (ADL), the authors are able to derive an optimized tree-pattern matching
instruction generator, a register allocator and an instruction scheduler. To demonstrate the
applicability of the new ADL, the authors have implemented an ADL-generated compiler for
the xDSPcore digital signal processor. Again, the effort is shifted to implementing a complete
machine description.

In [16], Lerner et al. introduce Rhodium, which is a new language for compiler optimizations,
whose soundness can be proven automatically. The developer specifies optimizations in terms
of transformation rules that are automatically proven to be semantics-preserving. Rhodium
optimizations are not bound to a specific target architecture, because they process input
programs transformed into a C-like intermediate language. In this way, the optimizations
are automatically retargetable. However, the main goal of their approach is the automated
soundness proofs of the compiler optimizations. Rhodium optimizations do not direclty
compete with OORS optimizations, because OORS operates on the instruction level. Apart
from that, the approach is out of scope for this paper, because OORS was not designed for
providing automated soundness proofs.

The following approaches provide methods to implement transformations on the source code
level and are thus not directly comparable but nonetheless related to OORS.

Cordy [6] proposes the Turing eXtender Language TXL, which is a special-purpose program-
ming language that is designed for creating, manipulating and rapidly prototyping language
descriptions, tools and applications. In contrast to OORS, TXL rewrite rules describe source
to source transformations.

In [22], van den Brand et al. introduce the ASF+SDF meta-environment. ASF+SDF is an
interactive development environment for the automatic generation of interactive systems for
constructing language definitions and corresponding tools. For instance, using ASF+SDF
the developer can automatically generate a syntax-directed text editor, an interpreter or a
compiler out of a single specification.

Bravenboer et al. [2] discuss Stratego/XT, which is a language and toolset for program
transformation. Stratego/XT is a combination of Stratego, a language to describe program
transformations based on the paradigm of programmable rewrite strategies, and XT, a col-
lection of reusable components and tools for the development of transformation systems. The
main field of application is the analysis, manipulation and generation of programs. Similar
to OORS, Stratego/XT allows reuse of existing specifications at all levels of granularity to
keep implementations easy to read and to maintain. A closer look reveals that program
transformations are implemented in terms of (dynamic) rewrite rules. However, in contrast
to OORS, the patterns of such rewrite rules are tree patterns.

In [23], Warth and Piumarta propose OMeta, a new object-oriented language for pattern
matching. The main purpose of OMeta is to provide developers with a convenient way of
implementing tokenizers, parsers, and tree transformers, all of which can be extended using
object-oriented mechanisms. Apart from the object-oriented language aspects, OMeta also
allows processing of arbitrary data and not just streams of characters. The main difference to
OORS is that OMeta rules describe transformations of tree patterns instead of list patterns.

OORS differs in many ways from the approaches presented above. One difference concerns the
way in which the subjects of pattern matching are represented: OORS operates on sequences
of instructions, not on trees. This is because OORS is also employed in the code optimization
phase. By representing the subject of matching as an instruction sequence, scheduling proper-
ties can be expressed alongside with other low-level optimizations (see Section 3.3). Another
important point is that OORS features object-oriented language constructs that make the

reuse of existing specifications easily possible. Apart from CoSy [1] and Stratego/XT [2],
none of the presented approaches was designed with reusability in mind.

3 Object-Oriented Rewrite System

In this section, we introduce the key concepts of the OORS language and discuss the pattern
matching process. For the sake of simplicity, we mainly concentrate on code generation. Sec-
tion 3.3 discusses the changes to the matching process required to realize code optimization.

3.1 Rules

As hinted in Section 1, an OORS pattern matcher processes attributed strings, which are
sequences of instructions. We assume that each instruction is an instance of a class of
the compiler’s internal representation (e.g., a binary instruction could be an instance of
the Binarylnstruction class) with a common base class (e.g., Instruction). The available
attributes of each instruction object (operands, modifiers, etc.) are then defined by the
member functions of the corresponding class. So to speak, OORS rewrite rules determine
transformations on sequences of instruction objects. The behavior of each rule is determined
by the following four aspects:

search pattern: The search pattern determines constraints on the structure of the input
that must be fulfilled before the pattern matcher may apply the rule. A search pattern
is a non-empty, ordered or unordered, possibly discontinuous sequence over instruction
classes (item patterns). By using wildcard patterns, the developer can specify search
pattern with an arbitrary lookahead.

Each symbol of the search pattern may be guarded by a local side condition, which is
simply a boolean expression over the instructions and their attributes. Using local side
conditions, the developer is able to specify non-linear search patterns. For instance,
a local side condition could check whether an operand of the currently matched in-
struction and the target of a previously matched instruction are of the same type (see
Example 3).

condition: The condition corresponds to the local side conditions introduced above, but it
can also check global properties. Syntactically, the main difference to the local condi-
tions is that the developer implements a boolean function instead of a single boolean
expression. An undefined condition function is assumed to return true. Condition
functions come in handy when deriving rules from each other (see Section 3.2).

costs: The cost function associates a weight to each matched instance of the search pattern.
The computed costs need not be constant and may depend on the matched instruction
objects. If multiple rules match the input sequence, the pattern matcher determines
the rule to apply according to the associated costs.

replace pattern: The replace pattern determines the generated instruction sequence that
the pattern matcher appends to the output sequence when applying the rule. Each
element of the replace pattern corresponds to a constructor call of the instruction class
with appropriate arguments. It is possible to access previously generated instructions
when initializing a new instruction object.

3.1.1 Simple Rules

Example 1 demonstrates how to specify a simple code generation rule that compiles a binary
instruction for which the target architecture has a direct counterpart. The rule matches any
binary instruction object. Thus, there is no need to implement a rule for every single binary
instruction. This keeps the specification both readable and maintainable in the long run.

Example 1 (Rule that compiles any abstract binary instruction into its coun-
terpart): Matched instructions objects can be accessed via the $$ and $i-operators like in
yvacc and related tools. The $i-operators enumerate both the matched and the generated
operations uniformly.

rule binary {
search: [BinOp]
cost : { return 1; }
replace: [GPUBinOp ($1->opcode, $1->target,
$1->operandl, $1->operand2)]

Generic rules like the one shown in Example 1 are not always sufficient: Some instructions
may require special rules. Example 2 shows how to compile the exponentiation operator for
recent GPU architectures.

Example 2 (Code generation rule for a special unary operator): Instruction sets of
recent GPU architectures do not feature an exponentiation operator. Instead, their instruc-
tion set contains the EX2 instruction, which computes powers of two. By using the identity
27 = (27 we are able to express e on the GPU with the rule exp. Note that OORS
allows the developer to access generated instructions. This is required to initialize the second
generated instruction. In this context, the developer can access the target of the generated
multiplication instruction, the new temporary value, via the $2-operator.

rule exp {
search: [UnOp($$->opcode == 0OP_EXP) 1]
cost: { return 2; }
replace: [GPUBinOp (OP_MUL, SymReg(TYPE_FLOAT), $1->operand,
Const (TYPE_FLOAT, 1/1n(2))),
GPUUnOp (OP_EX2, $1->target, $2->target) 1]

3.1.2 Complex Rules

In some cases, the developer might want to match instructions objects that are not necessarily
adjacent to each other in the input instruction sequence. Example 3 demonstrates a typical
case.

Example 3 (Complex code generation rule): GPU architectures feature a combined
sine-cosine instruction SCS [18]. From a single operand ¢, the instruction writes sin ¢ and cos ¢
into two register components. The following rule combines sine and cosine instructions in
the intermediate representation into a single SCS operation. The wildcard pattern (*-pattern)
denotes that the two instructions need not be adjacent to each other. The curly braces in
the search pattern indicate an unordered sequence: The instructions may be matched in any
order.

Input Sequence Output Sequence

l Applying rule scs l

[Osecific instruction
[Jinstructions matched by wildcard

scs [unmatched instructions
[l Previously generated instructions
Figure 1: Input and output instruction sequence before and after applying the rule scs.

rule scs {

search: { UnOp ($8->opcode == 0P_COS),
* 3
UnOp ($$->0pcode == OP_SIN) }
condition: { return $1->operand == $3->operand; }
cost : { return 1; }
replace: [GPUUnOp (OP_SCS, SymReg($1->target, $3->target),

$1->operand) 1

Figure 1 illustrates the effect on the input and output instruction sequence after applying
the rule scs. The figure demonstrates that the pattern matcher must not apply the rule
in every case. For instance, if an instruction in-between the matched instructions modifies
the operand or the target of the second matched instruction, the transformation will most
likely modify the semantics of the input program and is thus invalid in general. Note that
every rule with at least one wildcard pattern in its search pattern is subject to this negative
side-effect. Thus, a special, semantics-preserving check is required.

The OORS language enables the developer to implement such a semantics-preserving check.
The developer implements a global implicit condition, which decides whether the rule in
question may be applied. It does so by checking for data dependencies between the matched
instructions, which would prevent a reordering. This implicit condition is only checked for
rules whose search pattern contains a wildcard pattern.

Under certain circumstances, it might not be sufficient to generate the same sequence of
instructions all the time. Some instructions might have to be translated into different in-
struction sequences depending on the type of their operators or similar side conditions. For
this reason, the OORS language allows the developer to guard any sequence of instructions
to generate via if-then-else statements. This enables the developer to integrate all possi-
ble alternatives into a single replace pattern, which keeps the pattern matcher specification
readable. Example 4 shows the usage of guards within replace patterns.

Example 4 (Rule that generates different instruction sequences for the same
instruction type): On GPU architectures, each register is a float vector comprising four
components (called r gba). In the source language, and thus in the intermediate instructions,
operations work on scalars or on vectors with a length of at most 4; in general, the native
arithmetic instructions also support such vectorial operations. However, some instructions
operate only on scalar operands. Thus, special treatment, is required if an operand of the cor-
relative abstract instruction is of vector type. To resolve this problem, a sequence of the same
scalar instructions has to be generated for each vector component. The rule sin generates
code for the SIN-instruction, which computes the sine of its operand. When generating the

corresponding GPU code, the rule has to make sure to select the correct vector components
(e.g., emp(’r’) directs the instruction object to read from and write to the r-component).

rule sin {
search: [UnOp($$->opcode == 0OP_SIN) 1]
cost : { return $1->target->components; }
replace: [if ($1->useComponent (’r’)) [
GPUUnOp ($1->o0pcode, $1->target, $1->operand, comp(’r’))
]’
if ($1->useComponent (’g’)) [
GPUUnOp ($1->o0pcode, $1->target, $1->operand, comp(’g’))
]’
if ($1->useComponent (’b?)) [
GPUUnOp ($1->o0pcode, $1->target, $1->operand, comp(’b’))
]’
if ($1->useComponent (’a’)) [
GPUUnOp ($1->o0pcode, $1->target, $1->operand, comp(’a’))
11
}

To further improve the maintainability and compositionality of the pattern matcher speci-
fications, the OORS language introduces the notion of intermediate replace patterns. The
developer specifies a replace pattern not on the instruction set of the target architecture, but
on the intermediate instructions. This kind of rule is specified by the keyword intermediate
instead of replace. These intermediate instructions are then subject to the matching process
as usual. The benefit of the intermediate instructions is to allow compositional specifications.
For example, a vectorial tan instruction has to be implemented by sequences of native sin
and cos instructions just like in Example 4, followed by a division; a much more complicated
way than just specifying an intermediate level sin-cos-div sequence and letting the matcher
then generate the component-wise native instructions from these intermediate instructions,
as shown in Example 5.

Example 5 (Rule that compiles instructions by creating an intermediate basic
block): Using the immediate keyword the developer expresses that a matched sequence of
instructions is to be treated as the sequence specified in the immediate pattern. In this
fashion, the developer is able to implement complex code generation or optimization steps
on a higher level of abstraction.

rule tan {
search: [UnOp ($$->0pcode == OP_TAN) 1]
cost: { return $1->target->components; }
intermediate: [UnOp (OP_SIN, TmpVar($1->operand->type), $1->operand),
Un0Op (OP_COS, TmpVar ($1->operand->type), $1->operand),
BinOp (OP_DIV, $1->target, $2->target, $3->target) 1]

3.2 Rule Sets

An OORS pattern matcher specification comprises rules, which are organized into profiles.
A profile represents a set of rules dedicated to a specific target architecture. During runtime,
the host compiler (the compiler using the generated code-generator) selects the corresponding
profile to be used for processing the input program(s). In this section, we first describe the
matching process with respect to a single profile. Afterwards, we discuss the specifications
mechanism concerning multiple profiles and their relationships.

IThe components need not be consecutive.

3.2.1 Matching

For a given profile, the pattern matcher tries to match the input instruction sequence against
the search patterns until every input symbol has been covered. In a greedy matching mode,
the input is processed left-to-right, where always the rule with the lowest costs is selected.
In case of a tie, the first specified rule is chosen. The pattern matcher employs backtracking
in case the current match cannot be enlarged further while some input instructions remain
unmatched.

In contrast to the greedy matching, an optimal matching mode investigates all possible
matches to select the one with the globally optimal costs. If costs are not negative, we do
not need to exhaustively explore the search space, but can prune the search space as soon as
it can be determined that the current, incomplete match cannot outpace a previously found
match.

Independent of the used matching mode, the pattern matcher only generates the target
instruction sequence after a complete match of the input stream has been found. In such
a case, the pattern matcher sequentially applies the matched rules by first generating the
instruction objects specified in the replace patterns and then deleting the matched instruction
objects.

3.2.2 Imheritance

To keep an OORS pattern matcher specification readable and thus maintainable in the long
run, the OORS language comprises rule and profile inheritance mechanisms. The developer
can derive a new profile from existing ones. The new profile inherits all rules, may add new
rules and may omit and modify inherited rules. Example 6 demonstrates the profile and rule
inheritance mechanism.

Example 6 (Profile and rule inheritance): The source language features a dot-product
operating on vector operands. The target architectures support the dot-product for vectors
of three and four components. The newer G80 architecture supports also the dot-product
for vectors of two components, whereas before it had to be realized using multiplication and
addition. Thus, the NV40 profile comprises two distinct rules to cover all kinds of operands.

profile NV40 {

rule dp2 {
search: [BinOp($$->0opcode == 0OP_DP)]
condition: { return $1->target->components == 2; }
cost : { return 2; }
replace: [/* HUL, 4DD #*/ 1]

}
rule dp : extends dp2 {
condition: { return $1->target->components > 2; }
cost : { return 1; }
replace: [GPUBinOp (OP_DP, $1->target,
$1->operandl, $1->operand2) 1]

}

profile G80 : extends NV40 {
omit NV40::dp, NV40::dp2;
rule dp : extends NV40::dp {
condition: { return $1->target->components > 1; }

}

The GR&0 profile is specified as an extension of the NV40 profile. So, it inherits per default
all NV40 rules. The G80 profile omits the two NV40 rules dp and dp2 and specifies a new,
general rule as a modification of the inherited dp-rule.

However, when deriving rules from each other, the developer has to keep certain constraints
in mind. Example 7 demonstrates two common pitfalls that might occur.

Example 7 (Two common rule inheritance pitfalls): In this example it is assumed
that instances of the classes A and B may occur in any input instruction stream, whereas
instances of the classes C and D may appear in the generated instruction stream. Each class,
except A, is assumed to implement the function check, which takes no arguments and returns
a boolean value. Finally, it is assumed that the developer has implement the rule base as
follows:

rule base {
search: [A, B]
replace: [C, D 1

}

The rule base matches the sequence AB and translates that sequence into the target sequence
CD. Apart from that, the rule is virtual, because the cost function is not defined. Thus, the
rule base is not used during runtime. Instead of redefining that rule, the developer specifies
the following other rules:

e First, the user derives the rule first, which features a condition and cost function. In
contrast to the rule base, the rule first only accepts those input sequences AB, where
the function check of the matched object B returns true:

rule first : extends base {
condition: { return $2->check(); }
cost : { return 2; }

}

As every instance of the class B implements the function check, it is valid to derive the
rule first from the rule base in this fashion.

e Furthermore, the user derives the rule second from the rule first and replaces the
inherited search pattern as follows:

rule second : extends first {
search: [A]
}

However, the rule specification is not valid, because the inherited condition function
accesses a second matched object of the search pattern, which only matches one object
of the input stream. The developer must override the rule’s condition function to make
the rule specification valid. This kind of error can be detected statically.

e Instead, the user modifies the rule second, such that the search pattern now matches
two instances of the class A:

rule second : extends first {
search: [A, A]

10

On the first look, this rule definition appears to be valid, as the rule’s condition is now
able to access the second matched object. However, this rule specification is also invalid,
because the class A does not implement the function check. This kind of error can also
be checked statically by the type checking during the compilation of the generated code.
Again, the developer must reimplement the rule’s condition to make the specification
valid.

e Finally, the user defines the rules third and fourth. The rule third is derived from
the rule first, and modifies the inherited replace pattern, such that the generated
instance of the class C is passed to the constructor of the class D. The rule fourth
inherits the properties from the rule third and overrides the search pattern, such that
it accepts the object sequence ABB:

rule third : extends first {
replace: [C, D($3) 1
}

rule fourth : extends third {
search: [A, B, B]
}

Because the rule third derives from a valid rule and its replace pattern is also valid,
there is nothing wrong with that rule. The interesting question is now, which object
instance is passed to the constructor of the class D, when the pattern matcher applies the
rule fourth. According to the semantics of the $-operator, one would expect that the
second instance of the class B, is passed to the constructor. If so, the new search pattern
would implicitly modify the inherited replace pattern, which contradicts the common
notion of inheritance?. However, as it is known that $3 has been specified in a different
context, it is statically possible to associate the pattern access with the correct object
instance. So, if the developer overrides the search pattern, the inherited replace pattern
needs not be reimplemented, if the replace pattern contains inter-pattern accesses.

The rule inheritance mechanism is very powerful, enabling the developer to specify the be-
havior of an OORS pattern matcher on a very high level of abstraction. The developer no
longer has to cope with the actual matching. Instead, the user simply has to identify the
instruction sequence patterns the pattern matcher should replace.

3.3 Optimization

The pattern matching approach can also be used for code optimization. In contrast to the
generational mode discussed in Section 3.2, both matching and replacement are performed
on a single sequence. The pattern matcher searches for instances of the search patterns and
literally replaces the matched instructions with the generated instructions. This process is
repeated until no more rules can be applied, that is, until a fixpoint has been reached. Thus,
there is no need for backtracking.

In this way, it is possible to represent low-level code optimizations in OORS, such as instruc-
tion rescheduling (see Example 8, Figure 2) or instruction merging, such as MUL and ADD into
MAD (see Example 9).

2This means that an inherited property remains unmodified unless it has been explicitly overridden.

11

Input Sequence Output Sequence

,d2,d3 | add d1,d2,d3
d2,a3 | Id a4,[a2]4
X Applying rule reschedule
: | > mov.d d2,a3
1 1
! ! Dlnstruction
Id a4,[a2]4 | d a3,[a2]0 [valid match
.Invalid match

Figure 2: Valid and invalid match of the reschedule rule. The first match (dark-gray) is
invalid, because there is a definition-use dependency between mov.d d2,a3 and ld a3, [a2]0
(the first instruction reads from and the second instruction writes to register a3). The rule’s
condition prevents this match from being accepted.

Example 8 (TriCore instruction rescheduling optimization): On many recent archi-
tectures, the instruction order has a major influence on the execution time. For instance, the
TriCore architecture [21] is only able to dispatch two instructions at once, if the first instruc-
tion will be executed in the arithmetic-logical unit (ALU) and the second instruction will be
issued to the load-store unit (LSU). So, the following rule tries to pull a distant memory in-
struction behind an arithmetic-logical instruction. Although the implicit condition will verify
whether possible side effects occur, the developer has to check manually whether it is safe to
push the memory instruction in front of the second matched instruction (see the condition
line; the absence of conflicts with the wildcard is guaranteed by the implicit condition). The
cost function favors the match with the greatest distance between the ALU- and the LSU-
instruction (for a wildcard pattern, the $-operator denotes the number of instructions the
pattern has matched). Figure 2 shows this graphically.

rule reschedule {
search: [Op($8->isIssuedTo (ALU)),
Op(!'$$->isIssuedTo (LSU)),
*’
Op ($$->isIssuedTo (LSU))]
condition: { return '$2->conflictsWith ($4); }
cost : { return -$3; }

replace: [$1, $4, $2 1]

Example 9 (Instruction merging): Example 8 showed how to reorder instructions, but
the optimization step of OORS can also create and delete instructions. If a target processor
supports a multiply-accumulate operation computing a-b+cin a single step®, a multiplication
and an addition with appropriate targets be combined into a new, ternary operation.

31f the operation is fused (rounds only after the final addition, not after the intermediate multiplication),
a transformation of a multiplication-addition sequence into this operation may change the precision of the
result.

12

rule merge_mad {

search: [BinOp($$->0opcode == 0OP_MUL),
* E]
BinOp ($$->opcode == OP_ADD &&
($1->target == $$->operandl ||
$1->target == $$->operand2) &&
$1->operandl != $1->operand2)]
condition: { /* §1->target used only in $3 */ }
cost: { return -1; }
replace: [TerOp(OP_MAD, $3->target, $1->operandl, $1->operand?2,

get_third_op ($1, $3->operandl, $3->operand2) 1]

Because the replace pattern does not copy the matched instructions (by including them via
the $-references), the matched instructions are deleted from the instruction stream. The cost
function returns —1, because the static instruction count will decrease by 1 after applying
the rule merge_mad.

4 Practice

In Section 4.1, we introduce the pattern matcher generator OORG and demonstrate how
to integrate OORG-generated pattern matchers into existing applications. Furthermore,
we discuss requirements on the integration process in Section 4.2. Afterwards, we present
experimental results with OORS code generation and code optimization pattern matchers
being employed in the CGIS compiler in Section 4.3. Section 4.4 briefly introduces the
debugging capabilities of OORG-generated pattern matchers.

4.1 Compiler Integration

The integration of OORS pattern matchers works in much the same way as for tools such
as yacc or lex (see Figure 3). From the pattern matching specification, OORG generates a
CT*-file implementing the matcher. This file has to be compiled and linked with the main
compiler. The compiler selects at runtime the profile to be used in a particular compilation
and calls the generated matcher for each basic block, passing the sequence of intermediate
instructions and receiving the sequence of target instructions. To easily cater for minor
variations of the desired rule set, the application program can switch on and off certain rules.
For example, different sets of optimizations can be selected in this way.

The CG1S compiler [17, 14] can compile a common input program for GPUs and for SIMD
CPUs, using a common intermediate representation. OORG-generated matchers are em-
ployed in three phases; the actual matchers used in a compilation are selected at runtime
depending on the actual target. An early optimizer performs various transformations on
intermediate code, which are needed for implementation on SIMD CPUs. A generator trans-
forms the sequence of of intermediate instructions, which are common for GPUs and SIMD
CPUs, into a target-specific instruction sequence. To this end, there are three hierarchies of
profiles: For various generations of GPUs, SSE, and AltiVec. In a later phase, the GPU code
is transformed by an OORG-generated peephole optimizer.

13

OORS Code Application
\

Pattern Matcher
Application Code

Usage

OORS Library

C++ Compiler

= Input/Output
O Compiler/Library
D Code/Application

Figure 3: Integration of OORS into an existing application.

4.2 Requirements on the Integration

To integrate an OORG-generated pattern matcher into a compiler, a certain infrastructure
needs to be present. The representation of the intermediate code as a sequence of virtual
instructions per basic block, where each instruction is an instance of some class, is the basic
requirement for the tool’s applicability. Other work has to be done, however, to achieve a
complete integration.

Currently, our pattern matcher generator OORG only supports CT1. This inescapably means
that at least those parts of the compiler must be implemented in CT+, where OORS pattern
matchers should come into play. Furthermore, the current implementation uses the standard
template library STL [20] for internal representation. Thus, the compiler likewise has to
use the STL to represent sequences of instructions. However, adopting OORG to a different
object-oriented language, such as Java or C#, or to using different types of data structures
for internal representation does not pose an insuperable problem.

When planning to integrate OORS into an existing compiler, the developer inevitably has
to face these restrictions. When it comes to implementing rules for code generation or code
optimization, the developer has to take other problems into account, as discussed in the
following.

One requirement is that of accurate liveness information at the instructions. The liveness is
explicitly needed by certain transformations, e.g., the elimination of the intermediate mul-
tiplicative result by the rule merge_mad in Example 9 is valid only if it is not live after the
addition instruction. In the same rule, it is guaranteed that the liveness of the intermediate
result spans until the addition instruction*, because this is verified by the reordering con-
straint across a *-pattern checked by the implicit condition (see Section 3.1). That implicit
condition itself has to be written by the designer of the rule set. However, this dependency
analysis is quite simple given the instruction’s representation.

In our examples, the cost function was rather straightforward, because there were no conflict-
ing optimization cases: Although a particular subsequence of instructions could be matched
in a multitude of ways, there always was one match which could be statically and locally
determined to be preferable. Thus, the cost functions in the rules needed only to make sure
that the preferable match is chosen to achieve the optimal result.

In general, however, the situation is more complex: Different optimizations might preclude
one another. For example, consider the combined Examples 8 and 9. In an architecture which
can issue the simple arithmetical operations of multiplication and addition simultaneously to
the memory instructions, but cannot do so for the more complicated accumulation instruction,

4We assume that it is live at all.

14

the two optimization goals conflict, and it is not immediately obvious how the conflict can
be resolved locally.

In these kinds of situation, the compiler writer has to use heuristics to statically approach a
predicted, dynamic result, just like he would have to do in other code optimization methods.
However, OORS can still aid the programmer by its backtracking or global search, which can
achieve a guaranteed static optimum.

4.3 Experimental Results

This section demonstrates the OORG-generated code generation and code optimization pat-
tern matcher that are employed in the CGIS compiler. We have compiled eight examples for
the NV40 and the G80 architecture. The NV40 code generator pattern matcher comprises
42 rules, whereas the G80 code generator pattern matcher contains 48 rules. The G80 code
generation profile inherits most NV40 rules, but replaces some NV40 rules with more special-
ized ones. The NV40 and the G80 profile of the code optimization pattern matcher comprise
12 rules, which realize simple optimizations, such as dead code elimination, constant folding,
and constant propagation. Both optimization profiles use the same rule set.

The example applications comprise image filters (demosaic, laplace and skeleton), simulations
(game of life and wave propagation), a mathematical algorithm (mandelbrot), a raycaster and
an encryption algorithm (RC5). We have compiled these examples on a Pentium 4 2.6GHz
with 512MB RAM running under Linux (Ubuntu 6.06). To determine the values shown in
Table 1 and Table 2, we have compiled the test examples seven times and omitted the worst
and the best run.

Table 1 shows the time required to compile and optimize the examples using the NV40 profile.
On average, the NV40 code generation pattern matcher compiles an abstract instruction
within 0.23ms. The code optimization pattern matcher is slightly slower and optimizes an
instruction within 0.35ms.

Test Abstract Instr. | Gen. Instr. | Gen. Time | Opt. Instr. | Opt. Time
demosaic 113 88 17.8 83 4.0
laplace 93 70 10.4 66 5.4
life 85 76 7.2 74 13.2
mandelbrot 145 105 18.8 92 14.8
raycaster 673 471 100.6 447 319.6
RC5H - - - - -
skeleton 760 456 313.6 456 67.0
wave 346 255 56.4 243 77.2
Average 316.43 217.29 74.97 208.71 75.19

Table 1: Time in milliseconds to compile and optimize examples for the NV/0 architecture.
RCY5 could not be compiled, because the NV40 architecture does not support integer arithmetic.

Table 2 shows the time to compile and optimize the examples for the G80 architecture. The
G80 code generation pattern matcher is slightly slower than the NV40 code generation pattern
matcher, which is expected, because the G80 profile comprises more rules than the NV40
profile. On average, it takes about 0.25ms to compile an abstract instruction. Unsurprisingly,
the G80 code optimization pattern matcher is just as fast as the NV40 code optimization
pattern matcher.

15

For both profiles, the CGIS compiler spends approximately 10% of the total compile time
within the code generation and the code optimization pattern matcher. So, the influence
of OORG-generated code generation and code optimization pattern matchers of the overall
runtime is negligible.

However, there is room available for performance improvements. Currently, OORG-generated
pattern matchers match the rules one after another, which is somewhat inefficient. A great
deal of time could be saved, if the generated pattern matchers would match the used rules in
parallel. Additionally, other minor improvements to the OORS library could further decrease
the runtime of OORG-generated pattern matchers.

Test Abstract Instr. | Gen. Instr. | Gen. Time | Opt. Instr. | Opt. Time
demosaic 113 88 17.8 83 6.0
laplace 93 70 13.6 66 4.0
life 85 76 9.0 74 13.2
mandelbrot 145 105 18.5 92 15.8
raycaster 673 471 114.6 447 172.8
RC5H 136 113 18.2 111 59.0
skeleton 760 456 339.2 456 232.0
wave 346 255 64.2 243 71.6
Average 293.88 204.25 74.39 196.5 71.8

Table 2: Time in milliseconds to compile and optimize examples for the G80 architecture.

Retargeting the CGIS compiler to the NV40 and G80 compiler was not much of an effort in
terms of lines of OORS code (locs). The basis of the OORS code generation pattern matcher
forms an NV30 profile, which comprises about 770 locs. The NV40 profile inherits from the
NV30 profile adding about 200 locs to the pattern matcher specification. Adding support for
the G80 GPU architecture required another 350 locs.

Retargeting the code optimization pattern matcher required even less effort. An initial NV30
optimization profile comprising about 300 locs provides the basic functionality. The NV40
optimization profile adds just a single rule in 20 locs. The G80 optimization profile is just
one line of code (the G80 optimization profile is an alias of the NV40 optimization profile).

4.4 Debugging

To understand how a pattern matcher processes its input, the OORS library provides the use
with a debugger interface. During runtime, this interface receives different kind of events that
describe a state transition within the generated pattern matcher. Currently, the debugger
interface emits five different classes of events, which are introduced in the following.

rule events: The currentRule event informs the debugger that a new rule starts to match
the current input. If a rule has finished matching the current input instruction stream,
the pattern matcher emits the finishRule event. When the pattern matcher is going to
apply the rule, the debugger interface receives the applyRule event.

match events: Whenever a rule creates a new alternative®, the generated pattern matcher
emits the newAlternative event. To indicate which alternative is currently being pro-
cessed, the pattern matcher produces the currentAlternative event. To report that
an alternative could not be processed any further, the debugger interface receives the
delete Alternative event.

5An alternative represents the current, unfinished match of a rule.

16

condition events: Before an item pattern may match an object of the input stream, the
pattern matcher must first check the local side condition of that item pattern. The
checkItemPattern event reports, whether the local side condition is satisfied (in case
not, a deleteAlternative event follows).

pattern events: The events matchltemPattern and match WildcardPattern indicate that an
item pattern or a wildcard pattern respectively has been matched against a symbol of
the input stream. Whenever a rule decides not to match the input stream against a
wildcard pattern, the pattern matcher emits the finish WildcardPattern event.

basic block events: After processing a basic block has finished, the pattern matcher gen-
erates the finishBasicBlock event, which reports the sum of the costs of the applied
rules.

5 Conclusion and Future Work

In this paper, we have presented the new object-oriented rewrite system OORS with appli-
cations in code generation and code optimization. Using the presented OORS language, a
developer is able to implement the code generation and code optimization phase of a com-
piler’s back end in terms of pattern matchers. Retargetability is achieved by organizing rules
into profiles, one for each supported hardware architecture. In contrast to other approaches,
the OORS language features constructs, such as a rule and profile inheritance mechanism,
that make the reuse of existing specification possible. Thus, an OORS pattern matcher
specification is maintainable as well as easily retargetable in the long run.

We have additionally introduced the pattern matcher generator OORG that compiles an
OORS specification into a CT* dynamically retargetable pattern matcher. By means of the
CGI1S compiler, we have demonstrated the usage of OORG-generated pattern matchers in a
real world application. OORG is open source and available for download on our homepage:
http://rwéd.cs.uni-sb.de/ gebhard/projects/oors/.

The OORS language offers room for further improvements. Currently, OORS pattern match-
ers process only basic blocks. This restriction decreases the efficiency of certain optimizations,
such as dead-code elimination. A dead-code elimination rule is currently not in itself able to
determine whether the target register is still live, if e. g., a register is written at the end of a
basic block. Thus, we want to extend OORS such that matches over the whole control flow
graph are possible. Apart from that, all instructions are assumed to be pushed upwards past
wildcard patterns (remember Example 8, where a load-store instruction is pushed upwards).
In some cases however, a developer might want to push instructions the other way around.
To further improve the expressiveness of OORS, we thus want to introduce a mechanism that
indicates the direction of a rule. Finally, we plan to improve the performance of the OORG-
generated pattern matchers. The current implementation generates pattern matchers that
match each rule one after another. This matching method becomes inefficient if the search
patterns of two (or more) rules share the same prefix. In such a case, the OORG-generated
pattern matcher would match that prefix multiple times. So, to overcome this drawback, we
want to improve OORG, such that the generator produces pattern matchers that match all
rules in parallel.

17

References

1]

2]

13]

4]

[5]
16]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

M. Alt, U. Afmann, and H. van Someren. Cosy Compiler Phase Embedding with
the CoSy Compiler Model. In P. Fritzson, editor, Proceedings of the 5th International
Conference on Compiler Construction (CC’94), volume 786 of LNCS, pages 278 293.
Springer-Verlag, 1994.

M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.16: Com-
ponents for Transformation Systems. In J. Hatcliff and F. Tip, editors, Proceedings of
the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’06), pages 95 99. ACM, 2006.

M. Breternitz Jr., H. Hum, and S. Kumar. Compilation, Architectural Support, and
Evaluation of SIMD Graphics Pipeline Programs on a General-Purpose CPU. In PACT
03: Proceedings of the 12th International Conference on Parallel Architectures and
Compilation Techniques, page 135, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.
Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on
Graphics, 23(3):777 786, 2004.

Quick C-- compiler. http://cminusminus.org/qc--.html.

J. Cordy. Txl — A Language for Programming Language Tools and Applications. In
G. Hedin and E. V. Wyk, editors, Proceedings of the jth Workshop on Language Descrip-
tions, Tools and Applications (LDTA’04), volume 110 of Electronic Notes in Theoretical
Computer Science, pages 3 31, December 2004.

J. W. Davidson and C. W. Fraser. Register Allocation and Exhaustive Peephole Opti-
mization. Software — Practise and Experience, 14(9):857-865, September 1984.

J. Dias and N. Ramsey. Converting Intermediate Code to Assembly Code Using Declar-
ative Machine Descriptions. In A. Mycroft and A. Zeller, editors, Proceedings of the 15th
International Conference on Compiler Construction (CC’06), pages 217 231, 2006.

H. Emmelmann, F.-W. Schréer, and R. Landwehr. BEG — A Generator for Efficient Back
Ends. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’89), pages 227 237, 1989.

S. Farfeleder, A. Krall, E. Steiner, and F. Brandner. Effective Compiler Generation
by Architecture Description. In M. J. Irwin and K. D. Bosschere, editors, LCTES ’06:
Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Language, Compilers,
and Tool Support for Embedded Systems, pages 145 152. ACM Press, 2006.

C. Ferdinand, H. Seidl, and R. Wilhelm. Tree Automata for Code Selection. Acta
Informatica, 31(9):741-760, 1994.

C. W. Fraser and D. R. Hanson. A Retargetable C' Compiler: Design and Implementa-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG — Fast Optimal Instruction
Selection and Tree Parsing. SIGPLAN Notices, 27(4):68-76, 1992.

N. Fritz, P. Lucas, and R. Wilhelm. Exploiting SIMD Parallelism with the CGiS Com-
piler Framework. In V. Adve, M. J. Garzaran, and P. Petersen, editors, Proceedings of

the 20th International Workshop on Languages and Compilers for Parallel Computing
(LCPC’07), LNCS. Springer-Verlag, October 2007.

18

[15]

[16]

[17]

[18]
[19]

[20]
[21]
[22]

[23]

G. Gebhard and P. Lucas. OORS: An Object-Oriented Rewrite System with Applications
in Retargetable Code Generation and Optimization. In M. Mernik, editor, Proceedings
of the 1st Workshop on Advances in Programming Languages (WAPL’07), pages 1057
1069, October 2007.

S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated Soundness Proofs for
Dataflow Analyses and Transformations via Local Rules. SIGPLAN Notices, 40(1):364
377, 2005.

P. Lucas, N. Fritz, and R. Wilhelm. The CGiS Compiler A Tool Demonstration. In
A. Mycroft and A. Zeller, editors, Proceedings of the 15th International Conference on
Compiler Construction (CC), volume 3923 of LNCS, pages 105-108. Springer-Verlag,
2006.

NVIDIA. Nv_gpu_program4. OpenGL Extension 322, 2007.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Lefohn, and T. J.
Purcell. A Survey of General-Purpose Computation on Graphics Hardware. Computer
Graphics Forum, 26(1):80 113, March 2007.

The Standard Template Library. http://www.sgi.com/tech/stl/.
TriCore microcontroller. http://www. infineon.com/tricore/.

M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser.
The ASF+SDF Meta-environment: A Component-Based Language Development Envi-
ronment. In R. Wilhelm, editor, Proceedings of the 10th International Conference on
Compiler Construction (CC’01), pages 365 370, 2001.

A. Warth and I. Piumarta. OMeta: an Object-Oriented Language for Pattern Matching.
In P. Costanza and R. Hirschfeld, editors, DLS ’07: Proceedings of the 2007 ACM
SIGPLAN symposium on Dynamic Languages. ACM, October 2007.

19

Appendix

Although the primary focus of OORS and the reason for its conception is the use in code
generation and optimization, it is, in fact, a very general list pattern matcher. The following
two examples show the use of OORS in this more general sense. First, a list of elements is
sorted by OORS’ optimization capabilities: A sequence is not-optimal (and hence subject
to an OORG-generated optimization) if it contains an unsorted subsequence. Second, we
present an even more general example, where the pattern matcher is used for static expression
evaluation.

A List Sorting

This example shows how to realize a very simple list sorting algorithm, also known as bubble
sort. The pattern matcher sorts (optimizes) an arbitrary list in either ascending or descending
order with respect to the value of each item. The pattern matcher comprises two profiles,
one to sort a list in ascending order and the other to sort a list in descending order. Both
profiles contain a rule named sort that flips two adjacent items in the list depending on their
value. The rule in the profile Ascending checks if the value of the first item is smaller than
the value of the second item and flips both items to push the cheap item to left and the
expensive item to the right. Note that it is not necessary to respecify the search pattern, the
cost function or the replace pattern, if another sorting behavior is desired.

profile Ascending {
rule sort {

search: [Ttem, Item]
condition: { return $1->value() > $2->value(); }
cost: { return 1; }
replace: [$2, $1 1
}
}
profile Descending {
rule sort : extends Ascending::sort {
condition: { return $1->value() < $2->value(); }
}

Independent from the used sort profile, the pattern matcher sorts the list in the desired order
after a finite number of steps. As expected, the sorting method is quite inefficient and has a
worst runtime of O(n?), where n is the length of the list. In any case, this example shows that
OORS can be used to implement various kinds of scheduling algorithms. Note in particular
that the search pattern need not be specified consecutively, that is, that it can (re-)schedule
distant elements.

20

B Polish-Notation Calculator

This example demonstrates how to implement a Polish and a Reverse Polish notation cal-
culator in OORS. The Polish notation is a special kind of notation for logic, arithmetic and
algebra. Under the assumption that the arity of each operator is given, this notation is able
to function without any kind of parenthesis. The Polish notation is also known as prefiz no-
tation, because it places the operators in front of their arguments. In contrast to the Polish
notation, the Reverse Polish notation, also known as postfiz notation, places the operators
after their arguments.

Given the expression e = (2 + ((24.5)/0.5))/(3 — 1.5). The expressions epy and egpy are
equivalent expressions in Polish and Reverse Polish notation respectively:

€pN'=:/ + 2 /372115(15 — 315
eRpN:224.5x0.5/ + 315 —/

Due to the simple structure of Polish notation expressions, a pattern matcher that evaluates
these expressions can be easily realized. The pattern matcher “optimizes” a list of instances
of the Object class, from which the classes Operator and Number derive. Each number has a
unique value that can be accessed with the value function. An operator implements the eval
function that computes the result of the operation. To simplify this example, it is assumed
that all operators are binary. So, the pattern matcher is implemented as follows:

profile Polish {
rule Step {
search: [Operator , Number , Number]
cost : { return 1; }
replace: [Number ($1->eval ($2->value(), $3->value()))]
}
}

profile ReversePolish {
rule Step {
search: [Number , Number, Operator]
cost: { return 1; }
replace: [Number ($3->eval ($1->value(), $2->value()))]
}

Depending on the given profile, the generated pattern matcher evaluates the given expression
by iteratively applying the rule step as long as possible. To detect an invalid expression, the
user simply has to check whether the final expression only contains one inAgystance of the
class Number. The number of necessary steps increases linearly with the number of operators.
So, the overall runtime is O(n), where n is the number of operators.

21

