
OORS: An Objet-Oriented Rewrite SystemGernot Gebhard and Philipp LuasDept. 6.2 Computer Siene, Compiler Design Lab,Campus E1 3, Saarland University,D-66041 Saarbrüken, Germany[gebhard|phluas℄�s.uni-sb.dehttp://rw4.s.uni-sb.de/~gebhard/projets/oors/Otober 2007AbstratRetargeting a ompiler's bak end to a new arhiteture is a time-onsuming pro-ess. This beomes an evident problem in the area of programmable graphis hardware(graphis proessing units, GPUs) or embedded proessors, where arhitetural hangesare faster than elsewhere. We propose the objet-oriented rewrite system OORS to over-ome this problem. Using the OORS language, a ompiler developer an express theode generation and optimization phase in terms of ost-annotated rewrite rules sup-porting omplex non-linear mathing and replaing patterns. Retargetability is ahievedby organizing rules into pro�les, one for eah supported target arhiteture. Featuring arule and pro�le inheritane mehanism, OORS makes the reuse of existing spei�ationspossible. This is an improvement regarding traditional approahes. Altogether OORSinreases the maintainability of the ompiler's bak end and thus both dereases theomplexity and redues the e�ort of the retargeting proess. To show the potential ofthis approah, we have implemented a ode generation and a ode optimization pat-tern mather supporting di�erent target arhitetures using the OORS language andintrodued them in a ompiler of a programming language for CPUs and GPUs.
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1 IntrodutionAs the number of di�erent hardware arhitetures is steadily growing, easily retargetable om-pilers are most valuable. Amongst others, this applies to graphis proessing units (GPUs).For the last few years the performane of GPUs has been inreasing at a muh faster rate thanthat of general-purpose proessors and now exeeds the peak performane of high-end CPUs.The amount of transistors on graphis hips has been growing by a fator of 32 every twoyears [3℄; 16 times faster than the CPU transistor ount growth that Moore's Law predits.Thus, GPUs have beome more and more interesting for general-purpose programming [19℄.Several high-level languages, suh as Brook for GPUs [4℄ or CGiS [17, 14℄, have emerged toexploit the vast omputational power that GPUs have to o�er. Easily retargetable ompilersfor these languages are neessary, beause new GPU arhitetures are released at a fast rate(e. g., NVIDIA's NV40 in 2004, G70 in 2005, and G80 in 2006). Naturally, the same appliesto ompilers supporting embedded systems, where a wide variety of di�erent arhitetureswith ommon heritage exists (e. g., Freesale's MPC555, MPC565, MPC755 and derivatives).To derease the omplexity of the retargeting proess and to keep the ompiler maintainablein the long run, we propose the objet-oriented rewrite system OORS. The idea of OORSoriginated from the fat that new arhitetures share many features with their predeessors,but o�er an extended instrution set (apart from other new features). If a new instrutionset arhiteture is released with minor di�erenes to an already supported one, only smallhanges to an existing bak end are required. So, the key feature of our approah is to be foundin the reusability of existing spei�ations. We realized this by introduing objet-orientedlanguage features in the ya-like OORS language. Easily making the reuse of existingspei�ations possible, the proposed language enables a ompiler developer to implementan OORS ode generator or ode optimizer whih is less omplex than a hand-written one.Consequently, the OORS implementation is muh easier to read and to maintain in thelong run. Our experienes in introduing new GPU arhitetures (NV40/G80) in the CGiSompiler supports this laim.Basially, an OORS spei�ation desribes a pattern mather that translates attributed inputstrings into attributed output strings. Given a set of rewrite rules, the pattern matherproesses the input string as follows. First the pattern mather tries to math the possiblynon-ontiguous pattern of eah rewrite rule against the input string. If multiple rules areappliable, the pattern mather omputes the non-onstant osts of eah rule to determinethe rule to apply. Finally, the seleted rule emits an attributed string that is appended tothe output string. After onsuming the whole input string, the pattern mather terminates.The aim of this paper is to introdue the OORS language, its syntax and semantis andto demonstrate its appliability in real word appliations. Additionally, this paper brie�yintrodues the pattern mather generator OORG that ompiles an OORS spei�ation intoa C++ dynamially retargetable pattern mather. We show its appliability by means of areal-life ompiler for GPUs and SIMD CPUs.The remainder of this paper (an extended version of [15℄) is strutured as follows: Setion 2disusses related work. The objet-oriented rewrite system OORS is introdued in Setion 3.This setion overs both the OORS language and the mathing proess. Setion 4 introduesthe pattern mather generator OORG and demonstrates the integration of an OORS patternmather in a ompiler. Setion 5 onludes this paper and disusses future work. Finally,the appendix found at the end of this paper presents some ompiler-unrelated appliationsof OORS.
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2 Related WorkNumerous other approahes have been suggested for ode generator generators. Below wedisuss related work.Emmelmann et al. [9℄ propose BEG, a generator for e�ient bak ends. Using the desriptionlanguage BEGL, the developer implements tree-pattern mathers for ode generation in termsof ost-annotated rewrite rules. In ontrast to the OORS language, BEGL o�ers no rule-inheritane mehanism. The reuse of existing spei�ations is thus not possible. Additionally,a BEG pattern mather is dediated to a single target arhiteture only. The major di�ereneis to be found in the proessed input data. BEG ode generators proess trees, whereas OORSpattern mathers operate on instrution sequenes.In [13℄, Fraser et al. introdue the ode generator BURG for the bottom-up rewrite systemBURS whih is similar to BEG. BURG is able to generate tree-pattern mathers for fastoptimal instrution seletion. A BURG-generated tree-parser is able to �nd an optimal parseof an input tree in linear time. As in BEGL, the BURG grammar does not feature anymehanisms that makes the reuse of existing spei�ation possible. Additionally, BURS odegenerators are only able to generate ode for a single arhiteture only. BURG-generatedode seletors are used in the ANSI C ompiler l [12℄.Ferdinand et al. [11℄ solve the ode seletion problem with deterministi �nite tree automatathat are generated automatially from regular tree grammars. In ontrast to BURG, theleft-hand and the right-hand side of rules are not limited to leafs or nodes with one or twohild nodes. In ontrast to OORS, the osts of a rule must be onstant and thus annotdepend on the mathed instrutions. Similar to BURG, the developer annot inherit rewriterules from eah other to easily opy reusable properties. As in the other approahes disussedabove, it is not possible to target multiple arhitetures.In [1℄, Alt et al. propose the CoSy model, whih provides a framework for �exible ombina-tion and embedding of ompiler phases to ease the onstrution of parallel and optimizingompilers. Using three di�erent languages, the ompiler developer an implement the di�er-ent phases of a ompiler on a high level of abstration. Additionally, the developer is able tospeify the ontrol �ow and the interations of the ompiler phases. Existing implementationsof ompiler phases an be simply reused. However, if any modi�ations to the implemen-tation are required, the framework requires opy-and-pasting of that implementation beforethe developer an hange the ode. Just as in the approahes disussed above, the odegenerator is based on tree-pattern mathing. A omparison with OORS is hardly possible,beause OORS is designed to only implement the ode generation and ode optimizationphase.Dias and Ramsey [8℄ propose a reognizer for mahine-independent ode seletion and odeoptimization. A reognizer is generated automatially from a delarative mahine desrip-tion that desribes properties of the target platform. The generated reognizer requires theompiler to represent intermediate ode in the form of mahine-independent register-transferlists (RTLs) [7℄. By means of a delarative mahine desription, the reognizer tries to gen-erate better RTLs. The reognizer will ontinue until no more optimizations an be applied.The reognizer omits a previously generated RTL, if the new RTL annot be implementedon the target platform aording to the mahine desription. The authors have suessfullygenerated and tested a reognizer for the x86 bak end in the Quik C-- ompiler [5℄. Thisapproah di�ers greatly from OORS pattern mathers, as the developer does not have toexpliitly implement the ode optimizer. The e�ort is shifted to implementing a ompletemahine desription. 3



Farfeleder et. al [10℄ desribe a similar approah. By means of a new arhiteture desrip-tion language (ADL), the authors are able to derive an optimized tree-pattern mathinginstrution generator, a register alloator and an instrution sheduler. To demonstrate theappliability of the new ADL, the authors have implemented an ADL-generated ompiler forthe xDSPore digital signal proessor. Again, the e�ort is shifted to implementing a ompletemahine desription.In [16℄, Lerner et al. introdue Rhodium, whih is a new language for ompiler optimizations,whose soundness an be proven automatially. The developer spei�es optimizations in termsof transformation rules that are automatially proven to be semantis-preserving. Rhodiumoptimizations are not bound to a spei� target arhiteture, beause they proess inputprograms transformed into a C-like intermediate language. In this way, the optimizationsare automatially retargetable. However, the main goal of their approah is the automatedsoundness proofs of the ompiler optimizations. Rhodium optimizations do not direltyompete with OORS optimizations, beause OORS operates on the instrution level. Apartfrom that, the approah is out of sope for this paper, beause OORS was not designed forproviding automated soundness proofs.The following approahes provide methods to implement transformations on the soure odelevel and are thus not diretly omparable but nonetheless related to OORS.Cordy [6℄ proposes the Turing eXtender Language TXL, whih is a speial-purpose program-ming language that is designed for reating, manipulating and rapidly prototyping languagedesriptions, tools and appliations. In ontrast to OORS, TXL rewrite rules desribe soureto soure transformations.In [22℄, van den Brand et al. introdue the ASF+SDF meta-environment. ASF+SDF is aninterative development environment for the automati generation of interative systems foronstruting language de�nitions and orresponding tools. For instane, using ASF+SDFthe developer an automatially generate a syntax-direted text editor, an interpreter or aompiler out of a single spei�ation.Bravenboer et al. [2℄ disuss Stratego/XT, whih is a language and toolset for programtransformation. Stratego/XT is a ombination of Stratego, a language to desribe programtransformations based on the paradigm of programmable rewrite strategies, and XT, a ol-letion of reusable omponents and tools for the development of transformation systems. Themain �eld of appliation is the analysis, manipulation and generation of programs. Similarto OORS, Stratego/XT allows reuse of existing spei�ations at all levels of granularity tokeep implementations easy to read and to maintain. A loser look reveals that programtransformations are implemented in terms of (dynami) rewrite rules. However, in ontrastto OORS, the patterns of suh rewrite rules are tree patterns.In [23℄, Warth and Piumarta propose OMeta, a new objet-oriented language for patternmathing. The main purpose of OMeta is to provide developers with a onvenient way ofimplementing tokenizers, parsers, and tree transformers, all of whih an be extended usingobjet-oriented mehanisms. Apart from the objet-oriented language aspets, OMeta alsoallows proessing of arbitrary data and not just streams of haraters. The main di�erene toOORS is that OMeta rules desribe transformations of tree patterns instead of list patterns.OORS di�ers in many ways from the approahes presented above. One di�erene onerns theway in whih the subjets of pattern mathing are represented: OORS operates on sequenesof instrutions, not on trees. This is beause OORS is also employed in the ode optimizationphase. By representing the subjet of mathing as an instrution sequene, sheduling proper-ties an be expressed alongside with other low-level optimizations (see Setion 3.3). Anotherimportant point is that OORS features objet-oriented language onstruts that make the4



reuse of existing spei�ations easily possible. Apart from CoSy [1℄ and Stratego/XT [2℄,none of the presented approahes was designed with reusability in mind.3 Objet-Oriented Rewrite SystemIn this setion, we introdue the key onepts of the OORS language and disuss the patternmathing proess. For the sake of simpliity, we mainly onentrate on ode generation. Se-tion 3.3 disusses the hanges to the mathing proess required to realize ode optimization.3.1 RulesAs hinted in Setion 1, an OORS pattern mather proesses attributed strings, whih aresequenes of instrutions. We assume that eah instrution is an instane of a lass ofthe ompiler's internal representation (e. g., a binary instrution ould be an instane ofthe BinaryInstrution lass) with a ommon base lass (e. g., Instrution). The availableattributes of eah instrution objet (operands, modi�ers, et.) are then de�ned by themember funtions of the orresponding lass. So to speak, OORS rewrite rules determinetransformations on sequenes of instrution objets. The behavior of eah rule is determinedby the following four aspets:searh pattern: The searh pattern determines onstraints on the struture of the inputthat must be ful�lled before the pattern mather may apply the rule. A searh patternis a non-empty, ordered or unordered, possibly disontinuous sequene over instrutionlasses (item patterns). By using wildard patterns, the developer an speify searhpattern with an arbitrary lookahead.Eah symbol of the searh pattern may be guarded by a loal side ondition, whih issimply a boolean expression over the instrutions and their attributes. Using loal sideonditions, the developer is able to speify non-linear searh patterns. For instane,a loal side ondition ould hek whether an operand of the urrently mathed in-strution and the target of a previously mathed instrution are of the same type (seeExample 3).ondition: The ondition orresponds to the loal side onditions introdued above, but itan also hek global properties. Syntatially, the main di�erene to the loal ondi-tions is that the developer implements a boolean funtion instead of a single booleanexpression. An unde�ned ondition funtion is assumed to return true. Conditionfuntions ome in handy when deriving rules from eah other (see Setion 3.2).osts: The ost funtion assoiates a weight to eah mathed instane of the searh pattern.The omputed osts need not be onstant and may depend on the mathed instrutionobjets. If multiple rules math the input sequene, the pattern mather determinesthe rule to apply aording to the assoiated osts.replae pattern: The replae pattern determines the generated instrution sequene thatthe pattern mather appends to the output sequene when applying the rule. Eahelement of the replae pattern orresponds to a onstrutor all of the instrution lasswith appropriate arguments. It is possible to aess previously generated instrutionswhen initializing a new instrution objet.5



3.1.1 Simple RulesExample 1 demonstrates how to speify a simple ode generation rule that ompiles a binaryinstrution for whih the target arhiteture has a diret ounterpart. The rule mathes anybinary instrution objet. Thus, there is no need to implement a rule for every single binaryinstrution. This keeps the spei�ation both readable and maintainable in the long run.Example 1 (Rule that ompiles any abstrat binary instrution into its oun-terpart): Mathed instrutions objets an be aessed via the $$ and $i-operators like inya and related tools. The $i-operators enumerate both the mathed and the generatedoperations uniformly.rule binary {searh: [ BinOp ℄ost : { return 1; }replae: [ GPUBinOp ($1->opode , $1->target ,$1->operand1 , $1->operand2 ) ℄}Generi rules like the one shown in Example 1 are not always su�ient: Some instrutionsmay require speial rules. Example 2 shows how to ompile the exponentiation operator forreent GPU arhitetures.Example 2 (Code generation rule for a speial unary operator): Instrution sets ofreent GPU arhitetures do not feature an exponentiation operator. Instead, their instru-tion set ontains the EX2 instrution, whih omputes powers of two. By using the identity
2x = eln(2)x, we are able to express ex on the GPU with the rule exp. Note that OORSallows the developer to aess generated instrutions. This is required to initialize the seondgenerated instrution. In this ontext, the developer an aess the target of the generatedmultipliation instrution, the new temporary value, via the $2-operator.rule exp {searh: [ UnOp ($$->opode == OP_EXP) ℄ost : { return 2; }replae: [ GPUBinOp (OP_MUL , SymReg(TYPE_FLOAT ), $1->operand ,Const(TYPE_FLOAT , 1/ln(2))) ,GPUUnOp (OP_EX2 , $1->target , $2->target) ℄}3.1.2 Complex RulesIn some ases, the developer might want to math instrutions objets that are not neessarilyadjaent to eah other in the input instrution sequene. Example 3 demonstrates a typialase.Example 3 (Complex ode generation rule): GPU arhitetures feature a ombinedsine-osine instrution SCS [18℄. From a single operand c, the instrution writes sin c and cos cinto two register omponents. The following rule ombines sine and osine instrutions inthe intermediate representation into a single SCS operation. The wildard pattern (*-pattern)denotes that the two instrutions need not be adjaent to eah other. The urly braes inthe searh pattern indiate an unordered sequene: The instrutions may be mathed in anyorder. 6



Figure 1: Input and output instrution sequene before and after applying the rule ss.rule ss {searh: { UnOp ($$->opode == OP_COS),*,UnOp ($$->opode == OP_SIN) }ondition: { return $1->operand == $3->operand ; }ost : { return 1; }replae: [ GPUUnOp(OP_SCS , SymReg($1->target , $3->target),$1->operand ) ℄}Figure 1 illustrates the e�et on the input and output instrution sequene after applyingthe rule ss. The �gure demonstrates that the pattern mather must not apply the rulein every ase. For instane, if an instrution in-between the mathed instrutions modi�esthe operand or the target of the seond mathed instrution, the transformation will mostlikely modify the semantis of the input program and is thus invalid in general. Note thatevery rule with at least one wildard pattern in its searh pattern is subjet to this negativeside-e�et. Thus, a speial, semantis-preserving hek is required.The OORS language enables the developer to implement suh a semantis-preserving hek.The developer implements a global impliit ondition, whih deides whether the rule inquestion may be applied. It does so by heking for data dependenies between the mathedinstrutions, whih would prevent a reordering. This impliit ondition is only heked forrules whose searh pattern ontains a wildard pattern.Under ertain irumstanes, it might not be su�ient to generate the same sequene ofinstrutions all the time. Some instrutions might have to be translated into di�erent in-strution sequenes depending on the type of their operators or similar side onditions. Forthis reason, the OORS language allows the developer to guard any sequene of instrutionsto generate via if-then-else statements. This enables the developer to integrate all possi-ble alternatives into a single replae pattern, whih keeps the pattern mather spei�ationreadable. Example 4 shows the usage of guards within replae patterns.Example 4 (Rule that generates di�erent instrution sequenes for the sameinstrution type): On GPU arhitetures, eah register is a �oat vetor omprising fouromponents (alled r g b a). In the soure language, and thus in the intermediate instrutions,operations work on salars or on vetors with a length of at most 4; in general, the nativearithmeti instrutions also support suh vetorial operations. However, some instrutionsoperate only on salar operands. Thus, speial treatment is required if an operand of the or-relative abstrat instrution is of vetor type. To resolve this problem, a sequene of the samesalar instrutions has to be generated for eah vetor omponent. The rule sin generatesode for the SIN-instrution, whih omputes the sine of its operand. When generating the7



orresponding GPU ode, the rule has to make sure to selet the orret vetor omponents(e. g., mp('r') direts the instrution objet to read from and write to the r-omponent).1rule sin {searh: [ UnOp ($$->opode == OP_SIN) ℄ost : { return $1->target ->omponents ; }replae: [ i f ($1->useComponent ('r')) [GPUUnOp($1->opode , $1->target , $1->operand , omp ('r'))℄,i f ($1->useComponent ('g')) [GPUUnOp($1->opode , $1->target , $1->operand , omp ('g'))℄,i f ($1->useComponent ('b')) [GPUUnOp($1->opode , $1->target , $1->operand , omp ('b'))℄,i f ($1->useComponent ('a')) [GPUUnOp($1->opode , $1->target , $1->operand , omp ('a'))℄ ℄}To further improve the maintainability and ompositionality of the pattern mather spei-�ations, the OORS language introdues the notion of intermediate replae patterns. Thedeveloper spei�es a replae pattern not on the instrution set of the target arhiteture, buton the intermediate instrutions. This kind of rule is spei�ed by the keyword intermediateinstead of replae. These intermediate instrutions are then subjet to the mathing proessas usual. The bene�t of the intermediate instrutions is to allow ompositional spei�ations.For example, a vetorial tan instrution has to be implemented by sequenes of native sinand os instrutions just like in Example 4, followed by a division; a muh more ompliatedway than just speifying an intermediate level sin-os-div sequene and letting the matherthen generate the omponent-wise native instrutions from these intermediate instrutions,as shown in Example 5.Example 5 (Rule that ompiles instrutions by reating an intermediate basiblok): Using the immediate keyword the developer expresses that a mathed sequene ofinstrutions is to be treated as the sequene spei�ed in the immediate pattern. In thisfashion, the developer is able to implement omplex ode generation or optimization stepson a higher level of abstration.rule tan {searh: [ UnOp ($$->opode == OP_TAN) ℄ost : { return $1->target ->omponents ; }intermediate: [ UnOp (OP_SIN , TmpVar($1->operand ->type ), $1-> operand),UnOp (OP_COS , TmpVar($1->operand ->type ), $1-> operand),BinOp(OP_DIV , $1->target , $2->target , $3->target) ℄}3.2 Rule SetsAn OORS pattern mather spei�ation omprises rules, whih are organized into pro�les.A pro�le represents a set of rules dediated to a spei� target arhiteture. During runtime,the host ompiler (the ompiler using the generated ode-generator) selets the orrespondingpro�le to be used for proessing the input program(s). In this setion, we �rst desribe themathing proess with respet to a single pro�le. Afterwards, we disuss the spei�ationsmehanism onerning multiple pro�les and their relationships.1The omponents need not be onseutive. 8



3.2.1 MathingFor a given pro�le, the pattern mather tries to math the input instrution sequene againstthe searh patterns until every input symbol has been overed. In a greedy mathing mode,the input is proessed left-to-right, where always the rule with the lowest osts is seleted.In ase of a tie, the �rst spei�ed rule is hosen. The pattern mather employs baktrakingin ase the urrent math annot be enlarged further while some input instrutions remainunmathed.In ontrast to the greedy mathing, an optimal mathing mode investigates all possiblemathes to selet the one with the globally optimal osts. If osts are not negative, we donot need to exhaustively explore the searh spae, but an prune the searh spae as soon asit an be determined that the urrent, inomplete math annot outpae a previously foundmath.Independent of the used mathing mode, the pattern mather only generates the targetinstrution sequene after a omplete math of the input stream has been found. In suha ase, the pattern mather sequentially applies the mathed rules by �rst generating theinstrution objets spei�ed in the replae patterns and then deleting the mathed instrutionobjets.3.2.2 InheritaneTo keep an OORS pattern mather spei�ation readable and thus maintainable in the longrun, the OORS language omprises rule and pro�le inheritane mehanisms. The developeran derive a new pro�le from existing ones. The new pro�le inherits all rules, may add newrules and may omit and modify inherited rules. Example 6 demonstrates the pro�le and ruleinheritane mehanism.Example 6 (Pro�le and rule inheritane): The soure language features a dot-produtoperating on vetor operands. The target arhitetures support the dot-produt for vetorsof three and four omponents. The newer G80 arhiteture supports also the dot-produtfor vetors of two omponents, whereas before it had to be realized using multipliation andaddition. Thus, the NV40 pro�le omprises two distint rules to over all kinds of operands.prof i le NV40 {rule dp2 {searh: [ BinOp($$->opode == OP_DP) ℄ondition: { return $1->target ->omponents == 2; }ost : { return 2; }replae: [ /* MUL , ADD */ ℄}rule dp : extends dp2 {ondition: { return $1->target ->omponents > 2; }ost : { return 1; }replae: [ GPUBinOp (OP_DP , $1->target ,$1->operand1 , $1-> operand2 ) ℄}}prof i le G80 : extends NV40 {omit NV40 ::dp , NV40 :: dp2;rule dp : extends NV40 ::dp {ondition: { return $1->target ->omponents > 1; }}} 9



The G80 pro�le is spei�ed as an extension of the NV40 pro�le. So, it inherits per defaultall NV40 rules. The G80 pro�le omits the two NV40 rules dp and dp2 and spei�es a new,general rule as a modi�ation of the inherited dp-rule.However, when deriving rules from eah other, the developer has to keep ertain onstraintsin mind. Example 7 demonstrates two ommon pitfalls that might our.Example 7 (Two ommon rule inheritane pitfalls): In this example it is assumedthat instanes of the lasses A and B may our in any input instrution stream, whereasinstanes of the lasses C and D may appear in the generated instrution stream. Eah lass,exept A, is assumed to implement the funtion hek, whih takes no arguments and returnsa boolean value. Finally, it is assumed that the developer has implement the rule base asfollows:rule base {searh: [ A, B ℄replae: [ C, D ℄}The rule base mathes the sequene AB and translates that sequene into the target sequeneCD. Apart from that, the rule is virtual, beause the ost funtion is not de�ned. Thus, therule base is not used during runtime. Instead of rede�ning that rule, the developer spei�esthe following other rules:
• First, the user derives the rule first, whih features a ondition and ost funtion. Inontrast to the rule base, the rule first only aepts those input sequenes AB, wherethe funtion hek of the mathed objet B returns true:rule first : extends base {ondition: { return $2->hek(); }ost : { return 2; }}As every instane of the lass B implements the funtion hek, it is valid to derive therule first from the rule base in this fashion.
• Furthermore, the user derives the rule seond from the rule first and replaes theinherited searh pattern as follows:rule seond : extends first {searh: [ A ℄}However, the rule spei�ation is not valid, beause the inherited ondition funtionaesses a seond mathed objet of the searh pattern, whih only mathes one objetof the input stream. The developer must override the rule's ondition funtion to makethe rule spei�ation valid. This kind of error an be deteted statially.
• Instead, the user modi�es the rule seond, suh that the searh pattern now mathestwo instanes of the lass A:rule seond : extends first {searh: [ A, A ℄}
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On the �rst look, this rule de�nition appears to be valid, as the rule's ondition is nowable to aess the seond mathed objet. However, this rule spei�ation is also invalid,beause the lass A does not implement the funtion hek. This kind of error an alsobe heked statially by the type heking during the ompilation of the generated ode.Again, the developer must reimplement the rule's ondition to make the spei�ationvalid.
• Finally, the user de�nes the rules third and fourth. The rule third is derived fromthe rule first, and modi�es the inherited replae pattern, suh that the generatedinstane of the lass C is passed to the onstrutor of the lass D. The rule fourthinherits the properties from the rule third and overrides the searh pattern, suh thatit aepts the objet sequene ABB:rule third : extends first {replae : [ C, D($3) ℄}rule fourth : extends third {searh: [ A, B, B ℄}Beause the rule third derives from a valid rule and its replae pattern is also valid,there is nothing wrong with that rule. The interesting question is now, whih objetinstane is passed to the onstrutor of the lass D, when the pattern mather applies therule fourth. Aording to the semantis of the $-operator, one would expet that theseond instane of the lass B, is passed to the onstrutor. If so, the new searh patternwould impliitly modify the inherited replae pattern, whih ontradits the ommonnotion of inheritane2. However, as it is known that $3 has been spei�ed in a di�erentontext, it is statially possible to assoiate the pattern aess with the orret objetinstane. So, if the developer overrides the searh pattern, the inherited replae patternneeds not be reimplemented, if the replae pattern ontains inter-pattern aesses.The rule inheritane mehanism is very powerful, enabling the developer to speify the be-havior of an OORS pattern mather on a very high level of abstration. The developer nolonger has to ope with the atual mathing. Instead, the user simply has to identify theinstrution sequene patterns the pattern mather should replae.3.3 OptimizationThe pattern mathing approah an also be used for ode optimization. In ontrast to thegenerational mode disussed in Setion 3.2, both mathing and replaement are performedon a single sequene. The pattern mather searhes for instanes of the searh patterns andliterally replaes the mathed instrutions with the generated instrutions. This proess isrepeated until no more rules an be applied, that is, until a �xpoint has been reahed. Thus,there is no need for baktraking.In this way, it is possible to represent low-level ode optimizations in OORS, suh as instru-tion resheduling (see Example 8, Figure 2) or instrution merging, suh as MUL and ADD intoMAD (see Example 9).2This means that an inherited property remains unmodi�ed unless it has been expliitly overridden.11



Figure 2: Valid and invalid math of the reshedule rule. The �rst math (dark-gray) isinvalid, beause there is a de�nition-use dependeny between mov.d d2,a3 and ld a3,[a2℄0(the �rst instrution reads from and the seond instrution writes to register a3). The rule'sondition prevents this math from being aepted.Example 8 (TriCore instrution resheduling optimization): On many reent arhi-tetures, the instrution order has a major in�uene on the exeution time. For instane, theTriCore arhiteture [21℄ is only able to dispath two instrutions at one, if the �rst instru-tion will be exeuted in the arithmeti-logial unit (ALU) and the seond instrution will beissued to the load-store unit (LSU). So, the following rule tries to pull a distant memory in-strution behind an arithmeti-logial instrution. Although the impliit ondition will verifywhether possible side e�ets our, the developer has to hek manually whether it is safe topush the memory instrution in front of the seond mathed instrution (see the onditionline; the absene of on�its with the wildard is guaranteed by the impliit ondition). Theost funtion favors the math with the greatest distane between the ALU- and the LSU-instrution (for a wildard pattern, the $-operator denotes the number of instrutions thepattern has mathed). Figure 2 shows this graphially.rule reshedule {searh: [ Op($$->isIssuedTo (ALU)),Op(!$$->isIssuedTo (LSU)),*,Op($$->isIssuedTo (LSU)) ℄ondition: { return !$2-> onflitsWith ($4); }ost : { return -$3; }replae: [ $1, $4, $2 ℄}Example 9 (Instrution merging): Example 8 showed how to reorder instrutions, butthe optimization step of OORS an also reate and delete instrutions. If a target proessorsupports a multiply-aumulate operation omputing a·b+c in a single step3, a multipliationand an addition with appropriate targets be ombined into a new, ternary operation.
3If the operation is fused (rounds only after the �nal addition, not after the intermediate multipliation),a transformation of a multipliation-addition sequene into this operation may hange the preision of theresult. 12



rule merge_mad {searh: [ BinOp($$->opode == OP_MUL),*,BinOp($$->opode == OP_ADD &&($1->target == $$->operand1 ||$1->target == $$->operand2 ) &&$1->operand1 != $1->operand2 ) ℄ondition: { /* $1 ->target used only in $3 */ }ost : { return -1; }replae: [ TerOp(OP_MAD , $3->target , $1->operand1 , $1->operand2 ,get_third_op ($1, $3->operand1 , $3->operand2 ) ℄}Beause the replae pattern does not opy the mathed instrutions (by inluding them viathe $-referenes), the mathed instrutions are deleted from the instrution stream. The ostfuntion returns −1, beause the stati instrution ount will derease by 1 after applyingthe rule merge_mad.4 PratieIn Setion 4.1, we introdue the pattern mather generator OORG and demonstrate howto integrate OORG-generated pattern mathers into existing appliations. Furthermore,we disuss requirements on the integration proess in Setion 4.2. Afterwards, we presentexperimental results with OORS ode generation and ode optimization pattern mathersbeing employed in the CGiS ompiler in Setion 4.3. Setion 4.4 brie�y introdues thedebugging apabilities of OORG-generated pattern mathers.4.1 Compiler IntegrationThe integration of OORS pattern mathers works in muh the same way as for tools suhas ya or lex (see Figure 3). From the pattern mathing spei�ation, OORG generates aC++-�le implementing the mather. This �le has to be ompiled and linked with the mainompiler. The ompiler selets at runtime the pro�le to be used in a partiular ompilationand alls the generated mather for eah basi blok, passing the sequene of intermediateinstrutions and reeiving the sequene of target instrutions. To easily ater for minorvariations of the desired rule set, the appliation program an swith on and o� ertain rules.For example, di�erent sets of optimizations an be seleted in this way.The CGiS ompiler [17, 14℄ an ompile a ommon input program for GPUs and for SIMDCPUs, using a ommon intermediate representation. OORG-generated mathers are em-ployed in three phases; the atual mathers used in a ompilation are seleted at runtimedepending on the atual target. An early optimizer performs various transformations onintermediate ode, whih are needed for implementation on SIMD CPUs. A generator trans-forms the sequene of of intermediate instrutions, whih are ommon for GPUs and SIMDCPUs, into a target-spei� instrution sequene. To this end, there are three hierarhies ofpro�les: For various generations of GPUs, SSE, and AltiVe. In a later phase, the GPU odeis transformed by an OORG-generated peephole optimizer.
13



Figure 3: Integration of OORS into an existing appliation.4.2 Requirements on the IntegrationTo integrate an OORG-generated pattern mather into a ompiler, a ertain infrastrutureneeds to be present. The representation of the intermediate ode as a sequene of virtualinstrutions per basi blok, where eah instrution is an instane of some lass, is the basirequirement for the tool's appliability. Other work has to be done, however, to ahieve aomplete integration.Currently, our pattern mather generator OORG only supports C++. This inesapably meansthat at least those parts of the ompiler must be implemented in C++, where OORS patternmathers should ome into play. Furthermore, the urrent implementation uses the standardtemplate library STL [20℄ for internal representation. Thus, the ompiler likewise has touse the STL to represent sequenes of instrutions. However, adopting OORG to a di�erentobjet-oriented language, suh as Java or C#, or to using di�erent types of data struturesfor internal representation does not pose an insuperable problem.When planning to integrate OORS into an existing ompiler, the developer inevitably hasto fae these restritions. When it omes to implementing rules for ode generation or odeoptimization, the developer has to take other problems into aount, as disussed in thefollowing.One requirement is that of aurate liveness information at the instrutions. The liveness isexpliitly needed by ertain transformations, e. g., the elimination of the intermediate mul-tipliative result by the rule merge_mad in Example 9 is valid only if it is not live after theaddition instrution. In the same rule, it is guaranteed that the liveness of the intermediateresult spans until the addition instrution4, beause this is veri�ed by the reordering on-straint aross a *-pattern heked by the impliit ondition (see Setion 3.1). That impliitondition itself has to be written by the designer of the rule set. However, this dependenyanalysis is quite simple given the instrution's representation.In our examples, the ost funtion was rather straightforward, beause there were no on�it-ing optimization ases: Although a partiular subsequene of instrutions ould be mathedin a multitude of ways, there always was one math whih ould be statially and loallydetermined to be preferable. Thus, the ost funtions in the rules needed only to make surethat the preferable math is hosen to ahieve the optimal result.In general, however, the situation is more omplex: Di�erent optimizations might preludeone another. For example, onsider the ombined Examples 8 and 9. In an arhiteture whihan issue the simple arithmetial operations of multipliation and addition simultaneously tothe memory instrutions, but annot do so for the more ompliated aumulation instrution,4We assume that it is live at all. 14



the two optimization goals on�it, and it is not immediately obvious how the on�it anbe resolved loally.In these kinds of situation, the ompiler writer has to use heuristis to statially approah apredited, dynami result, just like he would have to do in other ode optimization methods.However, OORS an still aid the programmer by its baktraking or global searh, whih anahieve a guaranteed stati optimum.4.3 Experimental ResultsThis setion demonstrates the OORG-generated ode generation and ode optimization pat-tern mather that are employed in the CGiS ompiler. We have ompiled eight examples forthe NV40 and the G80 arhiteture. The NV40 ode generator pattern mather omprises42 rules, whereas the G80 ode generator pattern mather ontains 48 rules. The G80 odegeneration pro�le inherits most NV40 rules, but replaes some NV40 rules with more speial-ized ones. The NV40 and the G80 pro�le of the ode optimization pattern mather omprise12 rules, whih realize simple optimizations, suh as dead ode elimination, onstant folding,and onstant propagation. Both optimization pro�les use the same rule set.The example appliations omprise image �lters (demosai, laplae and skeleton), simulations(game of life and wave propagation), a mathematial algorithm (mandelbrot), a rayaster andan enryption algorithm (RC5 ). We have ompiled these examples on a Pentium 4 2.6GHzwith 512MB RAM running under Linux (Ubuntu 6.06). To determine the values shown inTable 1 and Table 2, we have ompiled the test examples seven times and omitted the worstand the best run.Table 1 shows the time required to ompile and optimize the examples using the NV40 pro�le.On average, the NV40 ode generation pattern mather ompiles an abstrat instrutionwithin 0.23ms. The ode optimization pattern mather is slightly slower and optimizes aninstrution within 0.35ms.Test Abstrat Instr. Gen. Instr. Gen. Time Opt. Instr. Opt. Timedemosai 113 88 17.8 83 4.0laplae 93 70 10.4 66 5.4life 85 76 7.2 74 13.2mandelbrot 145 105 18.8 92 14.8rayaster 673 471 100.6 447 319.6RC5 � � � � �skeleton 760 456 313.6 456 67.0wave 346 255 56.4 243 77.2Average 316.43 217.29 74.97 208.71 75.19Table 1: Time in milliseonds to ompile and optimize examples for the NV40 arhiteture.RC5 ould not be ompiled, beause the NV40 arhiteture does not support integer arithmeti.Table 2 shows the time to ompile and optimize the examples for the G80 arhiteture. TheG80 ode generation pattern mather is slightly slower than the NV40 ode generation patternmather, whih is expeted, beause the G80 pro�le omprises more rules than the NV40pro�le. On average, it takes about 0.25ms to ompile an abstrat instrution. Unsurprisingly,the G80 ode optimization pattern mather is just as fast as the NV40 ode optimizationpattern mather. 15



For both pro�les, the CGiS ompiler spends approximately 10% of the total ompile timewithin the ode generation and the ode optimization pattern mather. So, the in�ueneof OORG-generated ode generation and ode optimization pattern mathers of the overallruntime is negligible.However, there is room available for performane improvements. Currently, OORG-generatedpattern mathers math the rules one after another, whih is somewhat ine�ient. A greatdeal of time ould be saved, if the generated pattern mathers would math the used rules inparallel. Additionally, other minor improvements to the OORS library ould further dereasethe runtime of OORG-generated pattern mathers.Test Abstrat Instr. Gen. Instr. Gen. Time Opt. Instr. Opt. Timedemosai 113 88 17.8 83 6.0laplae 93 70 13.6 66 4.0life 85 76 9.0 74 13.2mandelbrot 145 105 18.5 92 15.8rayaster 673 471 114.6 447 172.8RC5 136 113 18.2 111 59.0skeleton 760 456 339.2 456 232.0wave 346 255 64.2 243 71.6Average 293.88 204.25 74.39 196.5 71.8Table 2: Time in milliseonds to ompile and optimize examples for the G80 arhiteture.Retargeting the CGiS ompiler to the NV40 and G80 ompiler was not muh of an e�ort interms of lines of OORS ode (los). The basis of the OORS ode generation pattern matherforms an NV30 pro�le, whih omprises about 770 los. The NV40 pro�le inherits from theNV30 pro�le adding about 200 los to the pattern mather spei�ation. Adding support forthe G80 GPU arhiteture required another 350 los.Retargeting the ode optimization pattern mather required even less e�ort. An initial NV30optimization pro�le omprising about 300 los provides the basi funtionality. The NV40optimization pro�le adds just a single rule in 20 los. The G80 optimization pro�le is justone line of ode (the G80 optimization pro�le is an alias of the NV40 optimization pro�le).4.4 DebuggingTo understand how a pattern mather proesses its input, the OORS library provides the usewith a debugger interfae. During runtime, this interfae reeives di�erent kind of events thatdesribe a state transition within the generated pattern mather. Currently, the debuggerinterfae emits �ve di�erent lasses of events, whih are introdued in the following.rule events: The urrentRule event informs the debugger that a new rule starts to maththe urrent input. If a rule has �nished mathing the urrent input instrution stream,the pattern mather emits the �nishRule event. When the pattern mather is going toapply the rule, the debugger interfae reeives the applyRule event.math events: Whenever a rule reates a new alternative5, the generated pattern matheremits the newAlternative event. To indiate whih alternative is urrently being pro-essed, the pattern mather produes the urrentAlternative event. To report thatan alternative ould not be proessed any further, the debugger interfae reeives thedeleteAlternative event.5An alternative represents the urrent, un�nished math of a rule.16



ondition events: Before an item pattern may math an objet of the input stream, thepattern mather must �rst hek the loal side ondition of that item pattern. ThehekItemPattern event reports, whether the loal side ondition is satis�ed (in asenot, a deleteAlternative event follows).pattern events: The events mathItemPattern and mathWildardPattern indiate that anitem pattern or a wildard pattern respetively has been mathed against a symbol ofthe input stream. Whenever a rule deides not to math the input stream against awildard pattern, the pattern mather emits the �nishWildardPattern event.basi blok events: After proessing a basi blok has �nished, the pattern mather gen-erates the �nishBasiBlok event, whih reports the sum of the osts of the appliedrules.5 Conlusion and Future WorkIn this paper, we have presented the new objet-oriented rewrite system OORS with appli-ations in ode generation and ode optimization. Using the presented OORS language, adeveloper is able to implement the ode generation and ode optimization phase of a om-piler's bak end in terms of pattern mathers. Retargetability is ahieved by organizing rulesinto pro�les, one for eah supported hardware arhiteture. In ontrast to other approahes,the OORS language features onstruts, suh as a rule and pro�le inheritane mehanism,that make the reuse of existing spei�ation possible. Thus, an OORS pattern matherspei�ation is maintainable as well as easily retargetable in the long run.We have additionally introdued the pattern mather generator OORG that ompiles anOORS spei�ation into a C++ dynamially retargetable pattern mather. By means of theCGiS ompiler, we have demonstrated the usage of OORG-generated pattern mathers in areal world appliation. OORG is open soure and available for download on our homepage:http://rw4.s.uni-sb.de/~gebhard/projets/oors/.The OORS language o�ers room for further improvements. Currently, OORS pattern math-ers proess only basi bloks. This restrition dereases the e�ieny of ertain optimizations,suh as dead-ode elimination. A dead-ode elimination rule is urrently not in itself able todetermine whether the target register is still live, if e. g., a register is written at the end of abasi blok. Thus, we want to extend OORS suh that mathes over the whole ontrol �owgraph are possible. Apart from that, all instrutions are assumed to be pushed upwards pastwildard patterns (remember Example 8, where a load-store instrution is pushed upwards).In some ases however, a developer might want to push instrutions the other way around.To further improve the expressiveness of OORS, we thus want to introdue a mehanism thatindiates the diretion of a rule. Finally, we plan to improve the performane of the OORG-generated pattern mathers. The urrent implementation generates pattern mathers thatmath eah rule one after another. This mathing method beomes ine�ient if the searhpatterns of two (or more) rules share the same pre�x. In suh a ase, the OORG-generatedpattern mather would math that pre�x multiple times. So, to overome this drawbak, wewant to improve OORG, suh that the generator produes pattern mathers that math allrules in parallel.
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AppendixAlthough the primary fous of OORS and the reason for its oneption is the use in odegeneration and optimization, it is, in fat, a very general list pattern mather. The followingtwo examples show the use of OORS in this more general sense. First, a list of elements issorted by OORS' optimization apabilities: A sequene is not-optimal (and hene subjetto an OORG-generated optimization) if it ontains an unsorted subsequene. Seond, wepresent an even more general example, where the pattern mather is used for stati expressionevaluation.A List SortingThis example shows how to realize a very simple list sorting algorithm, also known as bubblesort. The pattern mather sorts (optimizes) an arbitrary list in either asending or desendingorder with respet to the value of eah item. The pattern mather omprises two pro�les,one to sort a list in asending order and the other to sort a list in desending order. Bothpro�les ontain a rule named sort that �ips two adjaent items in the list depending on theirvalue. The rule in the pro�le Asending heks if the value of the �rst item is smaller thanthe value of the seond item and �ips both items to push the heap item to left and theexpensive item to the right. Note that it is not neessary to respeify the searh pattern, theost funtion or the replae pattern, if another sorting behavior is desired.prof i le Asending {rule sort {searh: [ Item , Item ℄ondition: { return $1->value() > $2->value (); }ost : { return 1; }replae: [ $2, $1 ℄}}prof i le Desending {rule sort : extends Asending :: sort {ondition: { return $1->value() < $2->value (); }}}Independent from the used sort pro�le, the pattern mather sorts the list in the desired orderafter a �nite number of steps. As expeted, the sorting method is quite ine�ient and has aworst runtime of O(n2), where n is the length of the list. In any ase, this example shows thatOORS an be used to implement various kinds of sheduling algorithms. Note in partiularthat the searh pattern need not be spei�ed onseutively, that is, that it an (re-)sheduledistant elements.
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B Polish-Notation CalulatorThis example demonstrates how to implement a Polish and a Reverse Polish notation al-ulator in OORS. The Polish notation is a speial kind of notation for logi, arithmeti andalgebra. Under the assumption that the arity of eah operator is given, this notation is ableto funtion without any kind of parenthesis. The Polish notation is also known as pre�x no-tation, beause it plaes the operators in front of their arguments. In ontrast to the Polishnotation, the Reverse Polish notation, also known as post�x notation, plaes the operatorsafter their arguments.Given the expression e = (2 + ((2 ∗ 4.5)/0.5))/(3− 1.5). The expressions ePN and eRPN areequivalent expressions in Polish and Reverse Polish notation respetively:
ePN = / + 2 / x 2 4.5 0.5 − 3 1.5

eRPN = 2 2 4.5 x 0.5 / + 3 1.5 − /Due to the simple struture of Polish notation expressions, a pattern mather that evaluatesthese expressions an be easily realized. The pattern mather �optimizes� a list of instanesof the Objet lass, from whih the lasses Operator and Number derive. Eah number has aunique value that an be aessed with the value funtion. An operator implements the evalfuntion that omputes the result of the operation. To simplify this example, it is assumedthat all operators are binary. So, the pattern mather is implemented as follows:prof i le Polish {rule Step {searh: [ Operator , Number , Number ℄ost : { return 1; }replae: [ Number($1->eval ($2->value(), $3->value ())) ℄}}prof i le ReversePolish {rule Step {searh: [ Number , Number , Operator ℄ost : { return 1; }replae: [ Number($3->eval ($1->value(), $2->value ())) ℄}}Depending on the given pro�le, the generated pattern mather evaluates the given expressionby iteratively applying the rule step as long as possible. To detet an invalid expression, theuser simply has to hek whether the �nal expression only ontains one inÂstane of thelass Number. The number of neessary steps inreases linearly with the number of operators.So, the overall runtime is O(n), where n is the number of operators.
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