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tober 2007Abstra
tRetargeting a 
ompiler's ba
k end to a new ar
hite
ture is a time-
onsuming pro-
ess. This be
omes an evident problem in the area of programmable graphi
s hardware(graphi
s pro
essing units, GPUs) or embedded pro
essors, where ar
hite
tural 
hangesare faster than elsewhere. We propose the obje
t-oriented rewrite system OORS to over-
ome this problem. Using the OORS language, a 
ompiler developer 
an express the
ode generation and optimization phase in terms of 
ost-annotated rewrite rules sup-porting 
omplex non-linear mat
hing and repla
ing patterns. Retargetability is a
hievedby organizing rules into pro�les, one for ea
h supported target ar
hite
ture. Featuring arule and pro�le inheritan
e me
hanism, OORS makes the reuse of existing spe
i�
ationspossible. This is an improvement regarding traditional approa
hes. Altogether OORSin
reases the maintainability of the 
ompiler's ba
k end and thus both de
reases the
omplexity and redu
es the e�ort of the retargeting pro
ess. To show the potential ofthis approa
h, we have implemented a 
ode generation and a 
ode optimization pat-tern mat
her supporting di�erent target ar
hite
tures using the OORS language andintrodu
ed them in a 
ompiler of a programming language for CPUs and GPUs.
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1 Introdu
tionAs the number of di�erent hardware ar
hite
tures is steadily growing, easily retargetable 
om-pilers are most valuable. Amongst others, this applies to graphi
s pro
essing units (GPUs).For the last few years the performan
e of GPUs has been in
reasing at a mu
h faster rate thanthat of general-purpose pro
essors and now ex
eeds the peak performan
e of high-end CPUs.The amount of transistors on graphi
s 
hips has been growing by a fa
tor of 32 every twoyears [3℄; 16 times faster than the CPU transistor 
ount growth that Moore's Law predi
ts.Thus, GPUs have be
ome more and more interesting for general-purpose programming [19℄.Several high-level languages, su
h as Brook for GPUs [4℄ or CGiS [17, 14℄, have emerged toexploit the vast 
omputational power that GPUs have to o�er. Easily retargetable 
ompilersfor these languages are ne
essary, be
ause new GPU ar
hite
tures are released at a fast rate(e. g., NVIDIA's NV40 in 2004, G70 in 2005, and G80 in 2006). Naturally, the same appliesto 
ompilers supporting embedded systems, where a wide variety of di�erent ar
hite
tureswith 
ommon heritage exists (e. g., Frees
ale's MPC555, MPC565, MPC755 and derivatives).To de
rease the 
omplexity of the retargeting pro
ess and to keep the 
ompiler maintainablein the long run, we propose the obje
t-oriented rewrite system OORS. The idea of OORSoriginated from the fa
t that new ar
hite
tures share many features with their prede
essors,but o�er an extended instru
tion set (apart from other new features). If a new instru
tionset ar
hite
ture is released with minor di�eren
es to an already supported one, only small
hanges to an existing ba
k end are required. So, the key feature of our approa
h is to be foundin the reusability of existing spe
i�
ations. We realized this by introdu
ing obje
t-orientedlanguage features in the ya

-like OORS language. Easily making the reuse of existingspe
i�
ations possible, the proposed language enables a 
ompiler developer to implementan OORS 
ode generator or 
ode optimizer whi
h is less 
omplex than a hand-written one.Consequently, the OORS implementation is mu
h easier to read and to maintain in thelong run. Our experien
es in introdu
ing new GPU ar
hite
tures (NV40/G80) in the CGiS
ompiler supports this 
laim.Basi
ally, an OORS spe
i�
ation des
ribes a pattern mat
her that translates attributed inputstrings into attributed output strings. Given a set of rewrite rules, the pattern mat
herpro
esses the input string as follows. First the pattern mat
her tries to mat
h the possiblynon-
ontiguous pattern of ea
h rewrite rule against the input string. If multiple rules areappli
able, the pattern mat
her 
omputes the non-
onstant 
osts of ea
h rule to determinethe rule to apply. Finally, the sele
ted rule emits an attributed string that is appended tothe output string. After 
onsuming the whole input string, the pattern mat
her terminates.The aim of this paper is to introdu
e the OORS language, its syntax and semanti
s andto demonstrate its appli
ability in real word appli
ations. Additionally, this paper brie�yintrodu
es the pattern mat
her generator OORG that 
ompiles an OORS spe
i�
ation intoa C++ dynami
ally retargetable pattern mat
her. We show its appli
ability by means of areal-life 
ompiler for GPUs and SIMD CPUs.The remainder of this paper (an extended version of [15℄) is stru
tured as follows: Se
tion 2dis
usses related work. The obje
t-oriented rewrite system OORS is introdu
ed in Se
tion 3.This se
tion 
overs both the OORS language and the mat
hing pro
ess. Se
tion 4 introdu
esthe pattern mat
her generator OORG and demonstrates the integration of an OORS patternmat
her in a 
ompiler. Se
tion 5 
on
ludes this paper and dis
usses future work. Finally,the appendix found at the end of this paper presents some 
ompiler-unrelated appli
ationsof OORS.
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2 Related WorkNumerous other approa
hes have been suggested for 
ode generator generators. Below wedis
uss related work.Emmelmann et al. [9℄ propose BEG, a generator for e�
ient ba
k ends. Using the des
riptionlanguage BEGL, the developer implements tree-pattern mat
hers for 
ode generation in termsof 
ost-annotated rewrite rules. In 
ontrast to the OORS language, BEGL o�ers no rule-inheritan
e me
hanism. The reuse of existing spe
i�
ations is thus not possible. Additionally,a BEG pattern mat
her is dedi
ated to a single target ar
hite
ture only. The major di�eren
eis to be found in the pro
essed input data. BEG 
ode generators pro
ess trees, whereas OORSpattern mat
hers operate on instru
tion sequen
es.In [13℄, Fraser et al. introdu
e the 
ode generator BURG for the bottom-up rewrite systemBURS whi
h is similar to BEG. BURG is able to generate tree-pattern mat
hers for fastoptimal instru
tion sele
tion. A BURG-generated tree-parser is able to �nd an optimal parseof an input tree in linear time. As in BEGL, the BURG grammar does not feature anyme
hanisms that makes the reuse of existing spe
i�
ation possible. Additionally, BURS 
odegenerators are only able to generate 
ode for a single ar
hite
ture only. BURG-generated
ode sele
tors are used in the ANSI C 
ompiler l

 [12℄.Ferdinand et al. [11℄ solve the 
ode sele
tion problem with deterministi
 �nite tree automatathat are generated automati
ally from regular tree grammars. In 
ontrast to BURG, theleft-hand and the right-hand side of rules are not limited to leafs or nodes with one or two
hild nodes. In 
ontrast to OORS, the 
osts of a rule must be 
onstant and thus 
annotdepend on the mat
hed instru
tions. Similar to BURG, the developer 
annot inherit rewriterules from ea
h other to easily 
opy reusable properties. As in the other approa
hes dis
ussedabove, it is not possible to target multiple ar
hite
tures.In [1℄, Alt et al. propose the CoSy model, whi
h provides a framework for �exible 
ombina-tion and embedding of 
ompiler phases to ease the 
onstru
tion of parallel and optimizing
ompilers. Using three di�erent languages, the 
ompiler developer 
an implement the di�er-ent phases of a 
ompiler on a high level of abstra
tion. Additionally, the developer is able tospe
ify the 
ontrol �ow and the intera
tions of the 
ompiler phases. Existing implementationsof 
ompiler phases 
an be simply reused. However, if any modi�
ations to the implemen-tation are required, the framework requires 
opy-and-pasting of that implementation beforethe developer 
an 
hange the 
ode. Just as in the approa
hes dis
ussed above, the 
odegenerator is based on tree-pattern mat
hing. A 
omparison with OORS is hardly possible,be
ause OORS is designed to only implement the 
ode generation and 
ode optimizationphase.Dias and Ramsey [8℄ propose a re
ognizer for ma
hine-independent 
ode sele
tion and 
odeoptimization. A re
ognizer is generated automati
ally from a de
larative ma
hine des
rip-tion that des
ribes properties of the target platform. The generated re
ognizer requires the
ompiler to represent intermediate 
ode in the form of ma
hine-independent register-transferlists (RTLs) [7℄. By means of a de
larative ma
hine des
ription, the re
ognizer tries to gen-erate better RTLs. The re
ognizer will 
ontinue until no more optimizations 
an be applied.The re
ognizer omits a previously generated RTL, if the new RTL 
annot be implementedon the target platform a

ording to the ma
hine des
ription. The authors have su

essfullygenerated and tested a re
ognizer for the x86 ba
k end in the Qui
k C-- 
ompiler [5℄. Thisapproa
h di�ers greatly from OORS pattern mat
hers, as the developer does not have toexpli
itly implement the 
ode optimizer. The e�ort is shifted to implementing a 
ompletema
hine des
ription. 3



Farfeleder et. al [10℄ des
ribe a similar approa
h. By means of a new ar
hite
ture des
rip-tion language (ADL), the authors are able to derive an optimized tree-pattern mat
hinginstru
tion generator, a register allo
ator and an instru
tion s
heduler. To demonstrate theappli
ability of the new ADL, the authors have implemented an ADL-generated 
ompiler forthe xDSP
ore digital signal pro
essor. Again, the e�ort is shifted to implementing a 
ompletema
hine des
ription.In [16℄, Lerner et al. introdu
e Rhodium, whi
h is a new language for 
ompiler optimizations,whose soundness 
an be proven automati
ally. The developer spe
i�es optimizations in termsof transformation rules that are automati
ally proven to be semanti
s-preserving. Rhodiumoptimizations are not bound to a spe
i�
 target ar
hite
ture, be
ause they pro
ess inputprograms transformed into a C-like intermediate language. In this way, the optimizationsare automati
ally retargetable. However, the main goal of their approa
h is the automatedsoundness proofs of the 
ompiler optimizations. Rhodium optimizations do not dire
lty
ompete with OORS optimizations, be
ause OORS operates on the instru
tion level. Apartfrom that, the approa
h is out of s
ope for this paper, be
ause OORS was not designed forproviding automated soundness proofs.The following approa
hes provide methods to implement transformations on the sour
e 
odelevel and are thus not dire
tly 
omparable but nonetheless related to OORS.Cordy [6℄ proposes the Turing eXtender Language TXL, whi
h is a spe
ial-purpose program-ming language that is designed for 
reating, manipulating and rapidly prototyping languagedes
riptions, tools and appli
ations. In 
ontrast to OORS, TXL rewrite rules des
ribe sour
eto sour
e transformations.In [22℄, van den Brand et al. introdu
e the ASF+SDF meta-environment. ASF+SDF is anintera
tive development environment for the automati
 generation of intera
tive systems for
onstru
ting language de�nitions and 
orresponding tools. For instan
e, using ASF+SDFthe developer 
an automati
ally generate a syntax-dire
ted text editor, an interpreter or a
ompiler out of a single spe
i�
ation.Bravenboer et al. [2℄ dis
uss Stratego/XT, whi
h is a language and toolset for programtransformation. Stratego/XT is a 
ombination of Stratego, a language to des
ribe programtransformations based on the paradigm of programmable rewrite strategies, and XT, a 
ol-le
tion of reusable 
omponents and tools for the development of transformation systems. Themain �eld of appli
ation is the analysis, manipulation and generation of programs. Similarto OORS, Stratego/XT allows reuse of existing spe
i�
ations at all levels of granularity tokeep implementations easy to read and to maintain. A 
loser look reveals that programtransformations are implemented in terms of (dynami
) rewrite rules. However, in 
ontrastto OORS, the patterns of su
h rewrite rules are tree patterns.In [23℄, Warth and Piumarta propose OMeta, a new obje
t-oriented language for patternmat
hing. The main purpose of OMeta is to provide developers with a 
onvenient way ofimplementing tokenizers, parsers, and tree transformers, all of whi
h 
an be extended usingobje
t-oriented me
hanisms. Apart from the obje
t-oriented language aspe
ts, OMeta alsoallows pro
essing of arbitrary data and not just streams of 
hara
ters. The main di�eren
e toOORS is that OMeta rules des
ribe transformations of tree patterns instead of list patterns.OORS di�ers in many ways from the approa
hes presented above. One di�eren
e 
on
erns theway in whi
h the subje
ts of pattern mat
hing are represented: OORS operates on sequen
esof instru
tions, not on trees. This is be
ause OORS is also employed in the 
ode optimizationphase. By representing the subje
t of mat
hing as an instru
tion sequen
e, s
heduling proper-ties 
an be expressed alongside with other low-level optimizations (see Se
tion 3.3). Anotherimportant point is that OORS features obje
t-oriented language 
onstru
ts that make the4



reuse of existing spe
i�
ations easily possible. Apart from CoSy [1℄ and Stratego/XT [2℄,none of the presented approa
hes was designed with reusability in mind.3 Obje
t-Oriented Rewrite SystemIn this se
tion, we introdu
e the key 
on
epts of the OORS language and dis
uss the patternmat
hing pro
ess. For the sake of simpli
ity, we mainly 
on
entrate on 
ode generation. Se
-tion 3.3 dis
usses the 
hanges to the mat
hing pro
ess required to realize 
ode optimization.3.1 RulesAs hinted in Se
tion 1, an OORS pattern mat
her pro
esses attributed strings, whi
h aresequen
es of instru
tions. We assume that ea
h instru
tion is an instan
e of a 
lass ofthe 
ompiler's internal representation (e. g., a binary instru
tion 
ould be an instan
e ofthe BinaryInstru
tion 
lass) with a 
ommon base 
lass (e. g., Instru
tion). The availableattributes of ea
h instru
tion obje
t (operands, modi�ers, et
.) are then de�ned by themember fun
tions of the 
orresponding 
lass. So to speak, OORS rewrite rules determinetransformations on sequen
es of instru
tion obje
ts. The behavior of ea
h rule is determinedby the following four aspe
ts:sear
h pattern: The sear
h pattern determines 
onstraints on the stru
ture of the inputthat must be ful�lled before the pattern mat
her may apply the rule. A sear
h patternis a non-empty, ordered or unordered, possibly dis
ontinuous sequen
e over instru
tion
lasses (item patterns). By using wild
ard patterns, the developer 
an spe
ify sear
hpattern with an arbitrary lookahead.Ea
h symbol of the sear
h pattern may be guarded by a lo
al side 
ondition, whi
h issimply a boolean expression over the instru
tions and their attributes. Using lo
al side
onditions, the developer is able to spe
ify non-linear sear
h patterns. For instan
e,a lo
al side 
ondition 
ould 
he
k whether an operand of the 
urrently mat
hed in-stru
tion and the target of a previously mat
hed instru
tion are of the same type (seeExample 3).
ondition: The 
ondition 
orresponds to the lo
al side 
onditions introdu
ed above, but it
an also 
he
k global properties. Synta
ti
ally, the main di�eren
e to the lo
al 
ondi-tions is that the developer implements a boolean fun
tion instead of a single booleanexpression. An unde�ned 
ondition fun
tion is assumed to return true. Conditionfun
tions 
ome in handy when deriving rules from ea
h other (see Se
tion 3.2).
osts: The 
ost fun
tion asso
iates a weight to ea
h mat
hed instan
e of the sear
h pattern.The 
omputed 
osts need not be 
onstant and may depend on the mat
hed instru
tionobje
ts. If multiple rules mat
h the input sequen
e, the pattern mat
her determinesthe rule to apply a

ording to the asso
iated 
osts.repla
e pattern: The repla
e pattern determines the generated instru
tion sequen
e thatthe pattern mat
her appends to the output sequen
e when applying the rule. Ea
helement of the repla
e pattern 
orresponds to a 
onstru
tor 
all of the instru
tion 
lasswith appropriate arguments. It is possible to a

ess previously generated instru
tionswhen initializing a new instru
tion obje
t.5



3.1.1 Simple RulesExample 1 demonstrates how to spe
ify a simple 
ode generation rule that 
ompiles a binaryinstru
tion for whi
h the target ar
hite
ture has a dire
t 
ounterpart. The rule mat
hes anybinary instru
tion obje
t. Thus, there is no need to implement a rule for every single binaryinstru
tion. This keeps the spe
i�
ation both readable and maintainable in the long run.Example 1 (Rule that 
ompiles any abstra
t binary instru
tion into its 
oun-terpart): Mat
hed instru
tions obje
ts 
an be a

essed via the $$ and $i-operators like inya

 and related tools. The $i-operators enumerate both the mat
hed and the generatedoperations uniformly.rule binary {sear
h: [ BinOp ℄
ost : { return 1; }repla
e: [ GPUBinOp ($1->op
ode , $1->target ,$1->operand1 , $1->operand2 ) ℄}Generi
 rules like the one shown in Example 1 are not always su�
ient: Some instru
tionsmay require spe
ial rules. Example 2 shows how to 
ompile the exponentiation operator forre
ent GPU ar
hite
tures.Example 2 (Code generation rule for a spe
ial unary operator): Instru
tion sets ofre
ent GPU ar
hite
tures do not feature an exponentiation operator. Instead, their instru
-tion set 
ontains the EX2 instru
tion, whi
h 
omputes powers of two. By using the identity
2x = eln(2)x, we are able to express ex on the GPU with the rule exp. Note that OORSallows the developer to a

ess generated instru
tions. This is required to initialize the se
ondgenerated instru
tion. In this 
ontext, the developer 
an a

ess the target of the generatedmultipli
ation instru
tion, the new temporary value, via the $2-operator.rule exp {sear
h: [ UnOp ($$->op
ode == OP_EXP) ℄
ost : { return 2; }repla
e: [ GPUBinOp (OP_MUL , SymReg(TYPE_FLOAT ), $1->operand ,Const(TYPE_FLOAT , 1/ln(2))) ,GPUUnOp (OP_EX2 , $1->target , $2->target) ℄}3.1.2 Complex RulesIn some 
ases, the developer might want to mat
h instru
tions obje
ts that are not ne
essarilyadja
ent to ea
h other in the input instru
tion sequen
e. Example 3 demonstrates a typi
al
ase.Example 3 (Complex 
ode generation rule): GPU ar
hite
tures feature a 
ombinedsine-
osine instru
tion SCS [18℄. From a single operand c, the instru
tion writes sin c and cos cinto two register 
omponents. The following rule 
ombines sine and 
osine instru
tions inthe intermediate representation into a single SCS operation. The wild
ard pattern (*-pattern)denotes that the two instru
tions need not be adja
ent to ea
h other. The 
urly bra
es inthe sear
h pattern indi
ate an unordered sequen
e: The instru
tions may be mat
hed in anyorder. 6



Figure 1: Input and output instru
tion sequen
e before and after applying the rule s
s.rule s
s {sear
h: { UnOp ($$->op
ode == OP_COS),*,UnOp ($$->op
ode == OP_SIN) }
ondition: { return $1->operand == $3->operand ; }
ost : { return 1; }repla
e: [ GPUUnOp(OP_SCS , SymReg($1->target , $3->target),$1->operand ) ℄}Figure 1 illustrates the e�e
t on the input and output instru
tion sequen
e after applyingthe rule s
s. The �gure demonstrates that the pattern mat
her must not apply the rulein every 
ase. For instan
e, if an instru
tion in-between the mat
hed instru
tions modi�esthe operand or the target of the se
ond mat
hed instru
tion, the transformation will mostlikely modify the semanti
s of the input program and is thus invalid in general. Note thatevery rule with at least one wild
ard pattern in its sear
h pattern is subje
t to this negativeside-e�e
t. Thus, a spe
ial, semanti
s-preserving 
he
k is required.The OORS language enables the developer to implement su
h a semanti
s-preserving 
he
k.The developer implements a global impli
it 
ondition, whi
h de
ides whether the rule inquestion may be applied. It does so by 
he
king for data dependen
ies between the mat
hedinstru
tions, whi
h would prevent a reordering. This impli
it 
ondition is only 
he
ked forrules whose sear
h pattern 
ontains a wild
ard pattern.Under 
ertain 
ir
umstan
es, it might not be su�
ient to generate the same sequen
e ofinstru
tions all the time. Some instru
tions might have to be translated into di�erent in-stru
tion sequen
es depending on the type of their operators or similar side 
onditions. Forthis reason, the OORS language allows the developer to guard any sequen
e of instru
tionsto generate via if-then-else statements. This enables the developer to integrate all possi-ble alternatives into a single repla
e pattern, whi
h keeps the pattern mat
her spe
i�
ationreadable. Example 4 shows the usage of guards within repla
e patterns.Example 4 (Rule that generates di�erent instru
tion sequen
es for the sameinstru
tion type): On GPU ar
hite
tures, ea
h register is a �oat ve
tor 
omprising four
omponents (
alled r g b a). In the sour
e language, and thus in the intermediate instru
tions,operations work on s
alars or on ve
tors with a length of at most 4; in general, the nativearithmeti
 instru
tions also support su
h ve
torial operations. However, some instru
tionsoperate only on s
alar operands. Thus, spe
ial treatment is required if an operand of the 
or-relative abstra
t instru
tion is of ve
tor type. To resolve this problem, a sequen
e of the sames
alar instru
tions has to be generated for ea
h ve
tor 
omponent. The rule sin generates
ode for the SIN-instru
tion, whi
h 
omputes the sine of its operand. When generating the7




orresponding GPU 
ode, the rule has to make sure to sele
t the 
orre
t ve
tor 
omponents(e. g., 
mp('r') dire
ts the instru
tion obje
t to read from and write to the r-
omponent).1rule sin {sear
h: [ UnOp ($$->op
ode == OP_SIN) ℄
ost : { return $1->target ->
omponents ; }repla
e: [ i f ($1->useComponent ('r')) [GPUUnOp($1->op
ode , $1->target , $1->operand , 
omp ('r'))℄,i f ($1->useComponent ('g')) [GPUUnOp($1->op
ode , $1->target , $1->operand , 
omp ('g'))℄,i f ($1->useComponent ('b')) [GPUUnOp($1->op
ode , $1->target , $1->operand , 
omp ('b'))℄,i f ($1->useComponent ('a')) [GPUUnOp($1->op
ode , $1->target , $1->operand , 
omp ('a'))℄ ℄}To further improve the maintainability and 
ompositionality of the pattern mat
her spe
i-�
ations, the OORS language introdu
es the notion of intermediate repla
e patterns. Thedeveloper spe
i�es a repla
e pattern not on the instru
tion set of the target ar
hite
ture, buton the intermediate instru
tions. This kind of rule is spe
i�ed by the keyword intermediateinstead of repla
e. These intermediate instru
tions are then subje
t to the mat
hing pro
essas usual. The bene�t of the intermediate instru
tions is to allow 
ompositional spe
i�
ations.For example, a ve
torial tan instru
tion has to be implemented by sequen
es of native sinand 
os instru
tions just like in Example 4, followed by a division; a mu
h more 
ompli
atedway than just spe
ifying an intermediate level sin-
os-div sequen
e and letting the mat
herthen generate the 
omponent-wise native instru
tions from these intermediate instru
tions,as shown in Example 5.Example 5 (Rule that 
ompiles instru
tions by 
reating an intermediate basi
blo
k): Using the immediate keyword the developer expresses that a mat
hed sequen
e ofinstru
tions is to be treated as the sequen
e spe
i�ed in the immediate pattern. In thisfashion, the developer is able to implement 
omplex 
ode generation or optimization stepson a higher level of abstra
tion.rule tan {sear
h: [ UnOp ($$->op
ode == OP_TAN) ℄
ost : { return $1->target ->
omponents ; }intermediate: [ UnOp (OP_SIN , TmpVar($1->operand ->type ), $1-> operand),UnOp (OP_COS , TmpVar($1->operand ->type ), $1-> operand),BinOp(OP_DIV , $1->target , $2->target , $3->target) ℄}3.2 Rule SetsAn OORS pattern mat
her spe
i�
ation 
omprises rules, whi
h are organized into pro�les.A pro�le represents a set of rules dedi
ated to a spe
i�
 target ar
hite
ture. During runtime,the host 
ompiler (the 
ompiler using the generated 
ode-generator) sele
ts the 
orrespondingpro�le to be used for pro
essing the input program(s). In this se
tion, we �rst des
ribe themat
hing pro
ess with respe
t to a single pro�le. Afterwards, we dis
uss the spe
i�
ationsme
hanism 
on
erning multiple pro�les and their relationships.1The 
omponents need not be 
onse
utive. 8



3.2.1 Mat
hingFor a given pro�le, the pattern mat
her tries to mat
h the input instru
tion sequen
e againstthe sear
h patterns until every input symbol has been 
overed. In a greedy mat
hing mode,the input is pro
essed left-to-right, where always the rule with the lowest 
osts is sele
ted.In 
ase of a tie, the �rst spe
i�ed rule is 
hosen. The pattern mat
her employs ba
ktra
kingin 
ase the 
urrent mat
h 
annot be enlarged further while some input instru
tions remainunmat
hed.In 
ontrast to the greedy mat
hing, an optimal mat
hing mode investigates all possiblemat
hes to sele
t the one with the globally optimal 
osts. If 
osts are not negative, we donot need to exhaustively explore the sear
h spa
e, but 
an prune the sear
h spa
e as soon asit 
an be determined that the 
urrent, in
omplete mat
h 
annot outpa
e a previously foundmat
h.Independent of the used mat
hing mode, the pattern mat
her only generates the targetinstru
tion sequen
e after a 
omplete mat
h of the input stream has been found. In su
ha 
ase, the pattern mat
her sequentially applies the mat
hed rules by �rst generating theinstru
tion obje
ts spe
i�ed in the repla
e patterns and then deleting the mat
hed instru
tionobje
ts.3.2.2 Inheritan
eTo keep an OORS pattern mat
her spe
i�
ation readable and thus maintainable in the longrun, the OORS language 
omprises rule and pro�le inheritan
e me
hanisms. The developer
an derive a new pro�le from existing ones. The new pro�le inherits all rules, may add newrules and may omit and modify inherited rules. Example 6 demonstrates the pro�le and ruleinheritan
e me
hanism.Example 6 (Pro�le and rule inheritan
e): The sour
e language features a dot-produ
toperating on ve
tor operands. The target ar
hite
tures support the dot-produ
t for ve
torsof three and four 
omponents. The newer G80 ar
hite
ture supports also the dot-produ
tfor ve
tors of two 
omponents, whereas before it had to be realized using multipli
ation andaddition. Thus, the NV40 pro�le 
omprises two distin
t rules to 
over all kinds of operands.prof i le NV40 {rule dp2 {sear
h: [ BinOp($$->op
ode == OP_DP) ℄
ondition: { return $1->target ->
omponents == 2; }
ost : { return 2; }repla
e: [ /* MUL , ADD */ ℄}rule dp : extends dp2 {
ondition: { return $1->target ->
omponents > 2; }
ost : { return 1; }repla
e: [ GPUBinOp (OP_DP , $1->target ,$1->operand1 , $1-> operand2 ) ℄}}prof i le G80 : extends NV40 {omit NV40 ::dp , NV40 :: dp2;rule dp : extends NV40 ::dp {
ondition: { return $1->target ->
omponents > 1; }}} 9



The G80 pro�le is spe
i�ed as an extension of the NV40 pro�le. So, it inherits per defaultall NV40 rules. The G80 pro�le omits the two NV40 rules dp and dp2 and spe
i�es a new,general rule as a modi�
ation of the inherited dp-rule.However, when deriving rules from ea
h other, the developer has to keep 
ertain 
onstraintsin mind. Example 7 demonstrates two 
ommon pitfalls that might o

ur.Example 7 (Two 
ommon rule inheritan
e pitfalls): In this example it is assumedthat instan
es of the 
lasses A and B may o

ur in any input instru
tion stream, whereasinstan
es of the 
lasses C and D may appear in the generated instru
tion stream. Ea
h 
lass,ex
ept A, is assumed to implement the fun
tion 
he
k, whi
h takes no arguments and returnsa boolean value. Finally, it is assumed that the developer has implement the rule base asfollows:rule base {sear
h: [ A, B ℄repla
e: [ C, D ℄}The rule base mat
hes the sequen
e AB and translates that sequen
e into the target sequen
eCD. Apart from that, the rule is virtual, be
ause the 
ost fun
tion is not de�ned. Thus, therule base is not used during runtime. Instead of rede�ning that rule, the developer spe
i�esthe following other rules:
• First, the user derives the rule first, whi
h features a 
ondition and 
ost fun
tion. In
ontrast to the rule base, the rule first only a

epts those input sequen
es AB, wherethe fun
tion 
he
k of the mat
hed obje
t B returns true:rule first : extends base {
ondition: { return $2->
he
k(); }
ost : { return 2; }}As every instan
e of the 
lass B implements the fun
tion 
he
k, it is valid to derive therule first from the rule base in this fashion.
• Furthermore, the user derives the rule se
ond from the rule first and repla
es theinherited sear
h pattern as follows:rule se
ond : extends first {sear
h: [ A ℄}However, the rule spe
i�
ation is not valid, be
ause the inherited 
ondition fun
tiona

esses a se
ond mat
hed obje
t of the sear
h pattern, whi
h only mat
hes one obje
tof the input stream. The developer must override the rule's 
ondition fun
tion to makethe rule spe
i�
ation valid. This kind of error 
an be dete
ted stati
ally.
• Instead, the user modi�es the rule se
ond, su
h that the sear
h pattern now mat
hestwo instan
es of the 
lass A:rule se
ond : extends first {sear
h: [ A, A ℄}

10



On the �rst look, this rule de�nition appears to be valid, as the rule's 
ondition is nowable to a

ess the se
ond mat
hed obje
t. However, this rule spe
i�
ation is also invalid,be
ause the 
lass A does not implement the fun
tion 
he
k. This kind of error 
an alsobe 
he
ked stati
ally by the type 
he
king during the 
ompilation of the generated 
ode.Again, the developer must reimplement the rule's 
ondition to make the spe
i�
ationvalid.
• Finally, the user de�nes the rules third and fourth. The rule third is derived fromthe rule first, and modi�es the inherited repla
e pattern, su
h that the generatedinstan
e of the 
lass C is passed to the 
onstru
tor of the 
lass D. The rule fourthinherits the properties from the rule third and overrides the sear
h pattern, su
h thatit a

epts the obje
t sequen
e ABB:rule third : extends first {repla
e : [ C, D($3) ℄}rule fourth : extends third {sear
h: [ A, B, B ℄}Be
ause the rule third derives from a valid rule and its repla
e pattern is also valid,there is nothing wrong with that rule. The interesting question is now, whi
h obje
tinstan
e is passed to the 
onstru
tor of the 
lass D, when the pattern mat
her applies therule fourth. A

ording to the semanti
s of the $-operator, one would expe
t that these
ond instan
e of the 
lass B, is passed to the 
onstru
tor. If so, the new sear
h patternwould impli
itly modify the inherited repla
e pattern, whi
h 
ontradi
ts the 
ommonnotion of inheritan
e2. However, as it is known that $3 has been spe
i�ed in a di�erent
ontext, it is stati
ally possible to asso
iate the pattern a

ess with the 
orre
t obje
tinstan
e. So, if the developer overrides the sear
h pattern, the inherited repla
e patternneeds not be reimplemented, if the repla
e pattern 
ontains inter-pattern a

esses.The rule inheritan
e me
hanism is very powerful, enabling the developer to spe
ify the be-havior of an OORS pattern mat
her on a very high level of abstra
tion. The developer nolonger has to 
ope with the a
tual mat
hing. Instead, the user simply has to identify theinstru
tion sequen
e patterns the pattern mat
her should repla
e.3.3 OptimizationThe pattern mat
hing approa
h 
an also be used for 
ode optimization. In 
ontrast to thegenerational mode dis
ussed in Se
tion 3.2, both mat
hing and repla
ement are performedon a single sequen
e. The pattern mat
her sear
hes for instan
es of the sear
h patterns andliterally repla
es the mat
hed instru
tions with the generated instru
tions. This pro
ess isrepeated until no more rules 
an be applied, that is, until a �xpoint has been rea
hed. Thus,there is no need for ba
ktra
king.In this way, it is possible to represent low-level 
ode optimizations in OORS, su
h as instru
-tion res
heduling (see Example 8, Figure 2) or instru
tion merging, su
h as MUL and ADD intoMAD (see Example 9).2This means that an inherited property remains unmodi�ed unless it has been expli
itly overridden.11



Figure 2: Valid and invalid mat
h of the res
hedule rule. The �rst mat
h (dark-gray) isinvalid, be
ause there is a de�nition-use dependen
y between mov.d d2,a3 and ld a3,[a2℄0(the �rst instru
tion reads from and the se
ond instru
tion writes to register a3). The rule's
ondition prevents this mat
h from being a

epted.Example 8 (TriCore instru
tion res
heduling optimization): On many re
ent ar
hi-te
tures, the instru
tion order has a major in�uen
e on the exe
ution time. For instan
e, theTriCore ar
hite
ture [21℄ is only able to dispat
h two instru
tions at on
e, if the �rst instru
-tion will be exe
uted in the arithmeti
-logi
al unit (ALU) and the se
ond instru
tion will beissued to the load-store unit (LSU). So, the following rule tries to pull a distant memory in-stru
tion behind an arithmeti
-logi
al instru
tion. Although the impli
it 
ondition will verifywhether possible side e�e
ts o

ur, the developer has to 
he
k manually whether it is safe topush the memory instru
tion in front of the se
ond mat
hed instru
tion (see the 
onditionline; the absen
e of 
on�i
ts with the wild
ard is guaranteed by the impli
it 
ondition). The
ost fun
tion favors the mat
h with the greatest distan
e between the ALU- and the LSU-instru
tion (for a wild
ard pattern, the $-operator denotes the number of instru
tions thepattern has mat
hed). Figure 2 shows this graphi
ally.rule res
hedule {sear
h: [ Op($$->isIssuedTo (ALU)),Op(!$$->isIssuedTo (LSU)),*,Op($$->isIssuedTo (LSU)) ℄
ondition: { return !$2-> 
onfli
tsWith ($4); }
ost : { return -$3; }repla
e: [ $1, $4, $2 ℄}Example 9 (Instru
tion merging): Example 8 showed how to reorder instru
tions, butthe optimization step of OORS 
an also 
reate and delete instru
tions. If a target pro
essorsupports a multiply-a

umulate operation 
omputing a·b+c in a single step3, a multipli
ationand an addition with appropriate targets be 
ombined into a new, ternary operation.
3If the operation is fused (rounds only after the �nal addition, not after the intermediate multipli
ation),a transformation of a multipli
ation-addition sequen
e into this operation may 
hange the pre
ision of theresult. 12



rule merge_mad {sear
h: [ BinOp($$->op
ode == OP_MUL),*,BinOp($$->op
ode == OP_ADD &&($1->target == $$->operand1 ||$1->target == $$->operand2 ) &&$1->operand1 != $1->operand2 ) ℄
ondition: { /* $1 ->target used only in $3 */ }
ost : { return -1; }repla
e: [ TerOp(OP_MAD , $3->target , $1->operand1 , $1->operand2 ,get_third_op ($1, $3->operand1 , $3->operand2 ) ℄}Be
ause the repla
e pattern does not 
opy the mat
hed instru
tions (by in
luding them viathe $-referen
es), the mat
hed instru
tions are deleted from the instru
tion stream. The 
ostfun
tion returns −1, be
ause the stati
 instru
tion 
ount will de
rease by 1 after applyingthe rule merge_mad.4 Pra
ti
eIn Se
tion 4.1, we introdu
e the pattern mat
her generator OORG and demonstrate howto integrate OORG-generated pattern mat
hers into existing appli
ations. Furthermore,we dis
uss requirements on the integration pro
ess in Se
tion 4.2. Afterwards, we presentexperimental results with OORS 
ode generation and 
ode optimization pattern mat
hersbeing employed in the CGiS 
ompiler in Se
tion 4.3. Se
tion 4.4 brie�y introdu
es thedebugging 
apabilities of OORG-generated pattern mat
hers.4.1 Compiler IntegrationThe integration of OORS pattern mat
hers works in mu
h the same way as for tools su
has ya

 or lex (see Figure 3). From the pattern mat
hing spe
i�
ation, OORG generates aC++-�le implementing the mat
her. This �le has to be 
ompiled and linked with the main
ompiler. The 
ompiler sele
ts at runtime the pro�le to be used in a parti
ular 
ompilationand 
alls the generated mat
her for ea
h basi
 blo
k, passing the sequen
e of intermediateinstru
tions and re
eiving the sequen
e of target instru
tions. To easily 
ater for minorvariations of the desired rule set, the appli
ation program 
an swit
h on and o� 
ertain rules.For example, di�erent sets of optimizations 
an be sele
ted in this way.The CGiS 
ompiler [17, 14℄ 
an 
ompile a 
ommon input program for GPUs and for SIMDCPUs, using a 
ommon intermediate representation. OORG-generated mat
hers are em-ployed in three phases; the a
tual mat
hers used in a 
ompilation are sele
ted at runtimedepending on the a
tual target. An early optimizer performs various transformations onintermediate 
ode, whi
h are needed for implementation on SIMD CPUs. A generator trans-forms the sequen
e of of intermediate instru
tions, whi
h are 
ommon for GPUs and SIMDCPUs, into a target-spe
i�
 instru
tion sequen
e. To this end, there are three hierar
hies ofpro�les: For various generations of GPUs, SSE, and AltiVe
. In a later phase, the GPU 
odeis transformed by an OORG-generated peephole optimizer.
13



Figure 3: Integration of OORS into an existing appli
ation.4.2 Requirements on the IntegrationTo integrate an OORG-generated pattern mat
her into a 
ompiler, a 
ertain infrastru
tureneeds to be present. The representation of the intermediate 
ode as a sequen
e of virtualinstru
tions per basi
 blo
k, where ea
h instru
tion is an instan
e of some 
lass, is the basi
requirement for the tool's appli
ability. Other work has to be done, however, to a
hieve a
omplete integration.Currently, our pattern mat
her generator OORG only supports C++. This ines
apably meansthat at least those parts of the 
ompiler must be implemented in C++, where OORS patternmat
hers should 
ome into play. Furthermore, the 
urrent implementation uses the standardtemplate library STL [20℄ for internal representation. Thus, the 
ompiler likewise has touse the STL to represent sequen
es of instru
tions. However, adopting OORG to a di�erentobje
t-oriented language, su
h as Java or C#, or to using di�erent types of data stru
turesfor internal representation does not pose an insuperable problem.When planning to integrate OORS into an existing 
ompiler, the developer inevitably hasto fa
e these restri
tions. When it 
omes to implementing rules for 
ode generation or 
odeoptimization, the developer has to take other problems into a

ount, as dis
ussed in thefollowing.One requirement is that of a

urate liveness information at the instru
tions. The liveness isexpli
itly needed by 
ertain transformations, e. g., the elimination of the intermediate mul-tipli
ative result by the rule merge_mad in Example 9 is valid only if it is not live after theaddition instru
tion. In the same rule, it is guaranteed that the liveness of the intermediateresult spans until the addition instru
tion4, be
ause this is veri�ed by the reordering 
on-straint a
ross a *-pattern 
he
ked by the impli
it 
ondition (see Se
tion 3.1). That impli
it
ondition itself has to be written by the designer of the rule set. However, this dependen
yanalysis is quite simple given the instru
tion's representation.In our examples, the 
ost fun
tion was rather straightforward, be
ause there were no 
on�i
t-ing optimization 
ases: Although a parti
ular subsequen
e of instru
tions 
ould be mat
hedin a multitude of ways, there always was one mat
h whi
h 
ould be stati
ally and lo
allydetermined to be preferable. Thus, the 
ost fun
tions in the rules needed only to make surethat the preferable mat
h is 
hosen to a
hieve the optimal result.In general, however, the situation is more 
omplex: Di�erent optimizations might pre
ludeone another. For example, 
onsider the 
ombined Examples 8 and 9. In an ar
hite
ture whi
h
an issue the simple arithmeti
al operations of multipli
ation and addition simultaneously tothe memory instru
tions, but 
annot do so for the more 
ompli
ated a

umulation instru
tion,4We assume that it is live at all. 14



the two optimization goals 
on�i
t, and it is not immediately obvious how the 
on�i
t 
anbe resolved lo
ally.In these kinds of situation, the 
ompiler writer has to use heuristi
s to stati
ally approa
h apredi
ted, dynami
 result, just like he would have to do in other 
ode optimization methods.However, OORS 
an still aid the programmer by its ba
ktra
king or global sear
h, whi
h 
ana
hieve a guaranteed stati
 optimum.4.3 Experimental ResultsThis se
tion demonstrates the OORG-generated 
ode generation and 
ode optimization pat-tern mat
her that are employed in the CGiS 
ompiler. We have 
ompiled eight examples forthe NV40 and the G80 ar
hite
ture. The NV40 
ode generator pattern mat
her 
omprises42 rules, whereas the G80 
ode generator pattern mat
her 
ontains 48 rules. The G80 
odegeneration pro�le inherits most NV40 rules, but repla
es some NV40 rules with more spe
ial-ized ones. The NV40 and the G80 pro�le of the 
ode optimization pattern mat
her 
omprise12 rules, whi
h realize simple optimizations, su
h as dead 
ode elimination, 
onstant folding,and 
onstant propagation. Both optimization pro�les use the same rule set.The example appli
ations 
omprise image �lters (demosai
, lapla
e and skeleton), simulations(game of life and wave propagation), a mathemati
al algorithm (mandelbrot), a ray
aster andan en
ryption algorithm (RC5 ). We have 
ompiled these examples on a Pentium 4 2.6GHzwith 512MB RAM running under Linux (Ubuntu 6.06). To determine the values shown inTable 1 and Table 2, we have 
ompiled the test examples seven times and omitted the worstand the best run.Table 1 shows the time required to 
ompile and optimize the examples using the NV40 pro�le.On average, the NV40 
ode generation pattern mat
her 
ompiles an abstra
t instru
tionwithin 0.23ms. The 
ode optimization pattern mat
her is slightly slower and optimizes aninstru
tion within 0.35ms.Test Abstra
t Instr. Gen. Instr. Gen. Time Opt. Instr. Opt. Timedemosai
 113 88 17.8 83 4.0lapla
e 93 70 10.4 66 5.4life 85 76 7.2 74 13.2mandelbrot 145 105 18.8 92 14.8ray
aster 673 471 100.6 447 319.6RC5 � � � � �skeleton 760 456 313.6 456 67.0wave 346 255 56.4 243 77.2Average 316.43 217.29 74.97 208.71 75.19Table 1: Time in millise
onds to 
ompile and optimize examples for the NV40 ar
hite
ture.RC5 
ould not be 
ompiled, be
ause the NV40 ar
hite
ture does not support integer arithmeti
.Table 2 shows the time to 
ompile and optimize the examples for the G80 ar
hite
ture. TheG80 
ode generation pattern mat
her is slightly slower than the NV40 
ode generation patternmat
her, whi
h is expe
ted, be
ause the G80 pro�le 
omprises more rules than the NV40pro�le. On average, it takes about 0.25ms to 
ompile an abstra
t instru
tion. Unsurprisingly,the G80 
ode optimization pattern mat
her is just as fast as the NV40 
ode optimizationpattern mat
her. 15



For both pro�les, the CGiS 
ompiler spends approximately 10% of the total 
ompile timewithin the 
ode generation and the 
ode optimization pattern mat
her. So, the in�uen
eof OORG-generated 
ode generation and 
ode optimization pattern mat
hers of the overallruntime is negligible.However, there is room available for performan
e improvements. Currently, OORG-generatedpattern mat
hers mat
h the rules one after another, whi
h is somewhat ine�
ient. A greatdeal of time 
ould be saved, if the generated pattern mat
hers would mat
h the used rules inparallel. Additionally, other minor improvements to the OORS library 
ould further de
reasethe runtime of OORG-generated pattern mat
hers.Test Abstra
t Instr. Gen. Instr. Gen. Time Opt. Instr. Opt. Timedemosai
 113 88 17.8 83 6.0lapla
e 93 70 13.6 66 4.0life 85 76 9.0 74 13.2mandelbrot 145 105 18.5 92 15.8ray
aster 673 471 114.6 447 172.8RC5 136 113 18.2 111 59.0skeleton 760 456 339.2 456 232.0wave 346 255 64.2 243 71.6Average 293.88 204.25 74.39 196.5 71.8Table 2: Time in millise
onds to 
ompile and optimize examples for the G80 ar
hite
ture.Retargeting the CGiS 
ompiler to the NV40 and G80 
ompiler was not mu
h of an e�ort interms of lines of OORS 
ode (lo
s). The basis of the OORS 
ode generation pattern mat
herforms an NV30 pro�le, whi
h 
omprises about 770 lo
s. The NV40 pro�le inherits from theNV30 pro�le adding about 200 lo
s to the pattern mat
her spe
i�
ation. Adding support forthe G80 GPU ar
hite
ture required another 350 lo
s.Retargeting the 
ode optimization pattern mat
her required even less e�ort. An initial NV30optimization pro�le 
omprising about 300 lo
s provides the basi
 fun
tionality. The NV40optimization pro�le adds just a single rule in 20 lo
s. The G80 optimization pro�le is justone line of 
ode (the G80 optimization pro�le is an alias of the NV40 optimization pro�le).4.4 DebuggingTo understand how a pattern mat
her pro
esses its input, the OORS library provides the usewith a debugger interfa
e. During runtime, this interfa
e re
eives di�erent kind of events thatdes
ribe a state transition within the generated pattern mat
her. Currently, the debuggerinterfa
e emits �ve di�erent 
lasses of events, whi
h are introdu
ed in the following.rule events: The 
urrentRule event informs the debugger that a new rule starts to mat
hthe 
urrent input. If a rule has �nished mat
hing the 
urrent input instru
tion stream,the pattern mat
her emits the �nishRule event. When the pattern mat
her is going toapply the rule, the debugger interfa
e re
eives the applyRule event.mat
h events: Whenever a rule 
reates a new alternative5, the generated pattern mat
heremits the newAlternative event. To indi
ate whi
h alternative is 
urrently being pro-
essed, the pattern mat
her produ
es the 
urrentAlternative event. To report thatan alternative 
ould not be pro
essed any further, the debugger interfa
e re
eives thedeleteAlternative event.5An alternative represents the 
urrent, un�nished mat
h of a rule.16




ondition events: Before an item pattern may mat
h an obje
t of the input stream, thepattern mat
her must �rst 
he
k the lo
al side 
ondition of that item pattern. The
he
kItemPattern event reports, whether the lo
al side 
ondition is satis�ed (in 
asenot, a deleteAlternative event follows).pattern events: The events mat
hItemPattern and mat
hWild
ardPattern indi
ate that anitem pattern or a wild
ard pattern respe
tively has been mat
hed against a symbol ofthe input stream. Whenever a rule de
ides not to mat
h the input stream against awild
ard pattern, the pattern mat
her emits the �nishWild
ardPattern event.basi
 blo
k events: After pro
essing a basi
 blo
k has �nished, the pattern mat
her gen-erates the �nishBasi
Blo
k event, whi
h reports the sum of the 
osts of the appliedrules.5 Con
lusion and Future WorkIn this paper, we have presented the new obje
t-oriented rewrite system OORS with appli-
ations in 
ode generation and 
ode optimization. Using the presented OORS language, adeveloper is able to implement the 
ode generation and 
ode optimization phase of a 
om-piler's ba
k end in terms of pattern mat
hers. Retargetability is a
hieved by organizing rulesinto pro�les, one for ea
h supported hardware ar
hite
ture. In 
ontrast to other approa
hes,the OORS language features 
onstru
ts, su
h as a rule and pro�le inheritan
e me
hanism,that make the reuse of existing spe
i�
ation possible. Thus, an OORS pattern mat
herspe
i�
ation is maintainable as well as easily retargetable in the long run.We have additionally introdu
ed the pattern mat
her generator OORG that 
ompiles anOORS spe
i�
ation into a C++ dynami
ally retargetable pattern mat
her. By means of theCGiS 
ompiler, we have demonstrated the usage of OORG-generated pattern mat
hers in areal world appli
ation. OORG is open sour
e and available for download on our homepage:http://rw4.
s.uni-sb.de/~gebhard/proje
ts/oors/.The OORS language o�ers room for further improvements. Currently, OORS pattern mat
h-ers pro
ess only basi
 blo
ks. This restri
tion de
reases the e�
ien
y of 
ertain optimizations,su
h as dead-
ode elimination. A dead-
ode elimination rule is 
urrently not in itself able todetermine whether the target register is still live, if e. g., a register is written at the end of abasi
 blo
k. Thus, we want to extend OORS su
h that mat
hes over the whole 
ontrol �owgraph are possible. Apart from that, all instru
tions are assumed to be pushed upwards pastwild
ard patterns (remember Example 8, where a load-store instru
tion is pushed upwards).In some 
ases however, a developer might want to push instru
tions the other way around.To further improve the expressiveness of OORS, we thus want to introdu
e a me
hanism thatindi
ates the dire
tion of a rule. Finally, we plan to improve the performan
e of the OORG-generated pattern mat
hers. The 
urrent implementation generates pattern mat
hers thatmat
h ea
h rule one after another. This mat
hing method be
omes ine�
ient if the sear
hpatterns of two (or more) rules share the same pre�x. In su
h a 
ase, the OORG-generatedpattern mat
her would mat
h that pre�x multiple times. So, to over
ome this drawba
k, wewant to improve OORG, su
h that the generator produ
es pattern mat
hers that mat
h allrules in parallel.
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AppendixAlthough the primary fo
us of OORS and the reason for its 
on
eption is the use in 
odegeneration and optimization, it is, in fa
t, a very general list pattern mat
her. The followingtwo examples show the use of OORS in this more general sense. First, a list of elements issorted by OORS' optimization 
apabilities: A sequen
e is not-optimal (and hen
e subje
tto an OORG-generated optimization) if it 
ontains an unsorted subsequen
e. Se
ond, wepresent an even more general example, where the pattern mat
her is used for stati
 expressionevaluation.A List SortingThis example shows how to realize a very simple list sorting algorithm, also known as bubblesort. The pattern mat
her sorts (optimizes) an arbitrary list in either as
ending or des
endingorder with respe
t to the value of ea
h item. The pattern mat
her 
omprises two pro�les,one to sort a list in as
ending order and the other to sort a list in des
ending order. Bothpro�les 
ontain a rule named sort that �ips two adja
ent items in the list depending on theirvalue. The rule in the pro�le As
ending 
he
ks if the value of the �rst item is smaller thanthe value of the se
ond item and �ips both items to push the 
heap item to left and theexpensive item to the right. Note that it is not ne
essary to respe
ify the sear
h pattern, the
ost fun
tion or the repla
e pattern, if another sorting behavior is desired.prof i le As
ending {rule sort {sear
h: [ Item , Item ℄
ondition: { return $1->value() > $2->value (); }
ost : { return 1; }repla
e: [ $2, $1 ℄}}prof i le Des
ending {rule sort : extends As
ending :: sort {
ondition: { return $1->value() < $2->value (); }}}Independent from the used sort pro�le, the pattern mat
her sorts the list in the desired orderafter a �nite number of steps. As expe
ted, the sorting method is quite ine�
ient and has aworst runtime of O(n2), where n is the length of the list. In any 
ase, this example shows thatOORS 
an be used to implement various kinds of s
heduling algorithms. Note in parti
ularthat the sear
h pattern need not be spe
i�ed 
onse
utively, that is, that it 
an (re-)s
heduledistant elements.
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B Polish-Notation Cal
ulatorThis example demonstrates how to implement a Polish and a Reverse Polish notation 
al-
ulator in OORS. The Polish notation is a spe
ial kind of notation for logi
, arithmeti
 andalgebra. Under the assumption that the arity of ea
h operator is given, this notation is ableto fun
tion without any kind of parenthesis. The Polish notation is also known as pre�x no-tation, be
ause it pla
es the operators in front of their arguments. In 
ontrast to the Polishnotation, the Reverse Polish notation, also known as post�x notation, pla
es the operatorsafter their arguments.Given the expression e = (2 + ((2 ∗ 4.5)/0.5))/(3− 1.5). The expressions ePN and eRPN areequivalent expressions in Polish and Reverse Polish notation respe
tively:
ePN = / + 2 / x 2 4.5 0.5 − 3 1.5

eRPN = 2 2 4.5 x 0.5 / + 3 1.5 − /Due to the simple stru
ture of Polish notation expressions, a pattern mat
her that evaluatesthese expressions 
an be easily realized. The pattern mat
her �optimizes� a list of instan
esof the Obje
t 
lass, from whi
h the 
lasses Operator and Number derive. Ea
h number has aunique value that 
an be a

essed with the value fun
tion. An operator implements the evalfun
tion that 
omputes the result of the operation. To simplify this example, it is assumedthat all operators are binary. So, the pattern mat
her is implemented as follows:prof i le Polish {rule Step {sear
h: [ Operator , Number , Number ℄
ost : { return 1; }repla
e: [ Number($1->eval ($2->value(), $3->value ())) ℄}}prof i le ReversePolish {rule Step {sear
h: [ Number , Number , Operator ℄
ost : { return 1; }repla
e: [ Number($3->eval ($1->value(), $2->value ())) ℄}}Depending on the given pro�le, the generated pattern mat
her evaluates the given expressionby iteratively applying the rule step as long as possible. To dete
t an invalid expression, theuser simply has to 
he
k whether the �nal expression only 
ontains one inÂ­stan
e of the
lass Number. The number of ne
essary steps in
reases linearly with the number of operators.So, the overall runtime is O(n), where n is the number of operators.
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