
OORS: An Object-Oriented Rewrite System
with Applications in Retargetable Code

Generation and Optimization

Gernot Gebhard and Philipp Lucas

Saarland University, Dept. 6.2 Computer Science,
Building E1.3, Compiler Design Lab,

D-66041 Saarbrücken, Germany
[gebhard|phlucas]@cs.uni-sb.de,

Website: http://rw4.cs.uni-sb.de/∼gebhard/projects/oors/

Abstract. Retargeting a compiler’s back end to a new architecture is a
time-consuming process. This becomes an evident problem in the area of
programmable graphics hardware (graphics processing units, GPUs) or
embedded processors, where architectural changes are faster than else-
where. We propose the object-oriented rewrite system OORS to over-
come this problem. Using the OORS language, a compiler developer can
express the code generation and optimization phase in terms of cost-
annotated rewrite rules supporting complex non-linear matching and
replacing patterns. Retargetability is achieved by organizing rules into
profiles, one for each supported target architecture. Featuring a rule and
profile inheritance mechanism, OORS makes the reuse of existing specifi-
cation possible. This is an improvement regarding traditional approaches.
Altogether OORS increases the maintainability of the compiler’s back
end and thus both decreases the complexity and reduces the effort of
the retargeting process. To show the potential of this approach, we have
implemented a code generation and a code optimization pattern matcher
supporting different target architectures using the OORS language and
introduced them in a GPU compiler.

1 Introduction

As the number of different hardware architectures is steadily growing, easily
retargetable compilers are most valuable. For instance, this applies to graphics
processing units (GPUs). For the last few years the performance of GPUs has
been increasing at a much faster rate than that of general-purpose processors and
now exceeds the peak performance of high-end CPUs. The amount of transistors
on graphics chips has been growing by a factor of 32 every two years [2]; 16 times
faster than the CPU transistor count growth, which Moore’s Law predicts. Thus,
GPUs have become more and more interesting for general-purpose programming
[17]. Several high-level languages, such as Brook for GPUs [3] or CGiS [14, 15],
have emerged to exploit the vast computational power that GPUs have to offer.
Easily retargetable compilers for these languages are necessary, because new

GPU architectures are released at a fast rate (e. g., NVIDIA’s NV40 in 2004, G70
in 2005, and G80 in 2006). Naturally, the same applies to compilers supporting
embedded systems, where a wide variety of different architectures with common
heritage exists (e. g., Freescale’s MPC555, MPC565, MPC755 and derivatives).

To decrease the complexity of the retargeting process and to keep the com-
piler maintainable in the long run, we propose the object-oriented rewrite sys-
tem OORS. The idea of OORS originated from the fact that new architectures
share many features with their predecessors, but offer an extended instruction
set (apart from other new features). If a new architecture is released with mi-
nor differences to an already supported one, only small changes to an existing
back end are required. So, the key feature of our approach is to be found in
the reusability of existing specifications. We realized this by introducing object-
oriented language features in the bison-like OORS language. Easily making the
reuse of existing specifications possible, the proposed language enables a com-
piler developer to implement an OORS code generator or code optimizer which
is less complex than a hand-written one. Consequently, the OORS implementa-
tion is much easier to read and to maintain in the long run. Our experiences in
introducing new GPU architectures (NV40/G80) in the CGiS compiler supports
this claim.

Basically, an OORS specification describes a pattern matcher that translates
attributed input strings into attributed output strings. Given a set of rewrite
rules, the pattern matcher processes the input string as follows. First the pattern
matcher tries to match the possibly non-contiguous pattern of each rewrite rule
against the input string. If multiple rules are applicable, the pattern matcher
computes the non-constant costs of each rule to determine the rule to apply.
Finally, the selected rule emits an attributed string that is appended to the
output string. After the whole input string has been consumed, the pattern
matcher terminates.

The aim of this paper is to introduce the OORS language, its syntax and
semantics and to demonstrate its applicability in real word applications. Addi-
tionally, this paper briefly introduces the pattern matcher generator OORG that
compiles an OORS specification into a C++ dynamically retargetable pattern
matcher. We show its applicability by means of a real-life compiler for GPUs.

The remainder of this paper is structured as follows: Section 2 discusses re-
lated work. The object-oriented rewrite system OORS is introduced in Section 3.
This section covers both the OORS language and the matching process. Section 4
introduces the pattern matcher generator OORG and demonstrates the integra-
tion of an OORS pattern matcher in a compiler. Section 5 concludes this paper
and discusses future work.

2 Related Work

Numerous other approaches have been suggested for code generator generators.
Below we discuss a representative set of such work. More systems are mentioned
in [12].

Emmelmann et al. [7] propose BEG, a generator for efficient back ends. Using
the description language BEGL, the developer implements tree-pattern match-
ers for code generation in terms of cost-annotated rewrite rules. In contrast to
the OORS language, BEGL offers no rule-inheritance mechanism. The reuse of
existing specifications is thus not possible. Additionally, a BEG pattern matcher
is dedicated to a single target architecture only. The major difference is to be
found in the processed input data. BEG code generators process trees, whereas
OORS pattern matchers operate on instruction sequences.

In [11] Fraser et al. introduce the code generator BURG for the bottom-
up rewrite system BURS which is similar to BEG. BURG is able to generate
tree-pattern matchers for fast optimal instruction selection. A BURG-generated
tree-parser is able to find an optimal parse of an input tree in linear time. As in
BEGL, the BURG grammar does not feature any mechanisms that makes the
reuse of existing specification possible. Additionally, BURS code generators are
only able to generate code for a single architecture only. BURG-generated code
selectors are used in the ANSI C compiler lcc [10].

Ferdinand et al. [9] solve the code selection problem with deterministic finite
tree automata that are generated automatically from regular tree grammars. In
contrast to BURG, the left-hand and the right-hand side of rules are not limited
to leafs or nodes with one or two child nodes. In contrast to OORS, the costs of
a rule must be constant and thus cannot depend on the matched instructions.
Similar to BURG, the developer cannot inherit rewrite rules from each other to
easily copy reusable properties. As in the other approaches discussed above, it is
not possible to target multiple architectures. Deterministic tree automata have
been successfully tested for several architectures, but are not employed in any
existing compiler – at least not to our knowledge.

In [1] Alt et al. propose the CoSy model, which provides a framework for
flexible combination and embedding of compiler phases to ease the construction
of parallel and optimizing compilers. Using three different languages, the com-
piler developer can implement the different phases of a compiler on a high level
of abstraction. Additionally, the developer is able to specify the control flow and
the interactions of the compiler phases. Existing implementations of compiler
phases can be simply reused. However, if any modifications to the implemen-
tation are required, the framework does not prevent copy-and-pasting of that
implementation before the developer can change the code. Just as in the ap-
proaches discussed above, the code generator is based on tree-pattern matching.
A comparison with OORS is hardly possible, because OORS is designed to only
implement the code generation and code optimization phase.

Dias and Ramsey [6] propose a recognizer for machine-independent code se-
lection and code optimization. A recognizer is generated automatically from a
declarative machine description that describes properties of the target platform.
The generated recognizer requires the compiler to represent intermediate code in
the form of machine-independent register-transfer lists (RTLs) [5]. By means of
a declarative machine description, the recognizer tries to generate better RTLs.
The recognizer will continue until no more optimizations can be applied. The

recognizer omits a previously generated RTL, if the new RTL cannot be im-
plemented on the target platform according to the machine description. The
authors have successfully generated and tested a recognizer for the x86 back end
in the Quick C-- compiler [4]. This approach differs greatly from OORS pat-
tern matchers, as the developer does not have to explicitly implement the code
optimizer. The effort is shifted to implement a complete machine description.

Farfeleder et. al [8] describe a similar approach. By means of a new architec-
ture description language (ADL), the authors are able to derive an optimized
tree-pattern matching instruction generator, a register allocator and an instruc-
tion scheduler. To demonstrate the applicability of the new ADL, the authors
have implemented an ADL-generated compiler for the xDSPcore digital signal
processor. Again, the effort is shifted to implement a complete machine descrip-
tion.

In [13] Lerner et al. introduce Rhodium, which is a new language for com-
piler optimizations, whose soundness can be automatically proven. The developer
specifies optimizations in terms of transformation rules that are automatically
proven to be semantics-preserving. Rhodium optimizations are not bound to a
specific target architecture, because they process input programs transformed
into a C-like intermediate language. In this way, the optimizations are automat-
ically retargetable. However, the main goal of their approach are the automated
soundness proofs of the compiler optimizations. It is unclear how Rhodium op-
timizations compete with OORS optimizations, because OORS operates on the
instruction level. Apart from that, the approach is out of scope for this paper,
because OORS was not designed for automated soundness proofs.

OORS differs in many ways from the approaches presented above. One differ-
ence concerns the way in which the subjects of pattern matching are represented:
OORS operates on sequences of instructions, not on trees. This is because OORS
is also employed in the code optimization phase. By representing the subject of
matching as an instruction sequence, scheduling properties can be expressed
alongside with other low-level optimizations (see Section 3.3). Another impor-
tant point is that OORS features object-oriented language constructs that make
the reuse of existing specifications easily possible. Apart from CoSy [1], none of
the presented approaches was designed with reusability in mind.

3 Object-Oriented Rewrite System

In this section, we introduce the key concepts of the OORS language and discuss
the pattern matching process. For the sake of simplicity, we only concentrate on
code generation. Section 3.3 briefly discusses the changes to the matching process
required to realize code optimization.

3.1 Rules

As hinted in Section 1, an OORS pattern matcher processes attributed strings,
which are sequences of instructions. We assume that each instruction is an in-

stance of a class of the compiler’s internal representation (e. g., a binary instruc-
tion could be an instance of the BinaryInstruction class) with a common base
class. The available attributes of each instruction object are then defined by the
member functions of the corresponding class. So to speak, OORS rewrite rules
determine transformations on sequences of instruction objects. The behavior of
each rule is determined by the following four aspects:

search pattern: The search pattern determines constraints on the structure
of the input that must be fulfilled before the pattern matcher may apply
the rule. A search pattern is a non-empty, ordered or unordered, possibly
discontinuous sequence over instruction classes. By using wildcard patterns,
the developer can specify search pattern with an arbitrary lookahead.

Each symbol of the search pattern may be guarded by a local side condi-
tion, which is simply a boolean expression. Using local side conditions, the
developer is able to specify non-linear search patterns. For instance, a local
side condition could check whether an operand of the currently matched in-
struction and the target of a previously matched instruction are of the same
type (see Example 3).

condition: The condition corresponds to the local side conditions introduced
above. The main difference is that the developer implements a boolean func-
tion instead of a single boolean expression. An undefined condition function
is assumed to return true. Condition functions come in handy, when deriving
rules from each other (see Section 3.2).

costs: The cost function associates a weight to each matched instance of the
search pattern. The computed costs need not be constant and may depend on
the matched instruction objects. If multiple rules match the input sequence,
the pattern matcher determines the rule to apply according to the associated
costs.

replace pattern: The replace pattern determines the generated instruction se-
quence that the pattern matcher appends to the output sequence when
applying the rule. Each element of the replace pattern corresponds to a
constructor call of the instruction class with appropriate arguments. It is
possible to access previously generated instructions when initializing a new
instruction object.

Simple Rules Example 1 demonstrates how to specify a simple code generation
rule that compiles a binary instruction for which the target architecture has a
direct counterpart. The rule matches any binary instruction object. Thus, there
is no need to implement a rule for every single binary instruction. This keeps
the specification both readable and maintainable in the long run.

Example 1 (Rule that compiles any abstract binary instruction into its counter-
part). Matched instructions objects can be accessed via the $$ and $i-operators
like in yacc and related tools. The $i-operators enumerate both the matched
and the generated operations uniformly.

rule binary {

search: [BinOp]

cost: { return 1; }

replace: [GPUBinOp($1->opcode ,$1->tgt ,$1->op1 ,$1->op2)]

}

Generic rules like the one shown in Example 1 are not always sufficient:
Some instructions may require special rules. Example 2 shows how to compile
the exponentiation operator for recent GPU architectures.

Example 2 (Code generation rule for a special unary operator). Instruction sets
of recent GPU architectures do not feature an exponentiation operator. Instead,
their instruction set contains the EX2 instruction, which computes powers of two.
By using the identity 2x = eln(2)x, we are able to express ex on the GPU with the
rule exp. Note that OORS allows the developer to access generated instructions.
This is required to initialize the second generated instruction. In this context,
the developer can access the target of the generated multiplication instruction
via the $2-operator.

rule exp {

search: [UnOp($$->opcode == OP_EXP)]

cost: { return 2; }

replace: [GPUBinOp(OP_MUL , SymReg(TYPE_FLOAT), $1->op ,
Constant(TYPE_FLOAT , 1/ln(2))) ,

GPUUnOp(OP_EX2 , $1->tgt , $2->tgt)]

}

Complex Rules In general simple rules as demonstrated above are not suf-
ficient. In some cases, the developer might want to match instructions objects
that are not necessarily adjacent to each other in the input instruction sequence.
Example 3 demonstrates a typical case.

Example 3 (Complex code generation rule). GPU architectures feature a com-
bined sine-cosine instruction SCS [16]. From a single operand c, the instruction
writes sin c and cos c into two register components. The following rule combines
sine and cosine instructions in the intermediate representation into a single SCS
operation. The wildcard pattern (*-pattern) denotes that the two instructions
need not be adjacent to each other. The curly braces in the search pattern indi-
cate an unordered sequence: The instructions may be matched in any order.

rule scs {

search: { UnOp($$->opcode == OP_COS),

*,

UnOp($$->opcode == OP_SIN) }

condition: { return $1->op == $3->op; }

cost: { return 1; }

replace: [GPUUnOp(OP_SCS , SymReg ($1->tgt , $3->tgt),
$1->op)]

}

Figure 1 illustrates the effect on the input and output instruction sequence af-
ter applying the rule scs. The figure demonstrates that the pattern matcher must
not apply the rule in every case. For instance, if an instruction in-between the
matched instructions modifies the operand or the target of the second matched
instruction, the transformation will most likely modify the semantics of the in-
put program and is thus invalid in general. Note that every rule with at least
on wildcard pattern in its search pattern is subject to this negative side-effect.
Thus, a special, semantics-preserving check is required.

The OORS language enables the developer to implement such a semantics-
preserving check. The developer implements a global implicit condition, which
decides whether the rule in question may be applied. It does so by checking
for data dependencies between the matched instructions, which would prevent a
reordering. This implicit condition is only checked for rules whose search pattern
contains a wildcard pattern.

Fig. 1. Input and output instruction sequence before and after applying the rule scs.

Under certain circumstances, it might not be sufficient to generate the same
sequence of instructions all the time. Some instructions might have to be trans-
lated into different instruction sequences depending on the type of their opera-
tors or similar side conditions. For this reason, the OORS language allows the
developer to guard any sequence of instructions to generate via if-then-else
statements. This enables the developer to integrate all possible alternatives into
a single replace pattern, which keeps the pattern matcher specification readable.
Example 4 shows the usage of guards within replace patterns.

Example 4 (Rule that generates different instruction sequences for the same in-
struction type). On GPU architectures, each register is a float vector comprising
four components (called r g b a). In the source language, and thus in the inter-
mediate instructions, operations work on scalars or on vectors with a length of at
most 4; in general, the native arithmetic instructions also support such vectorial
operations. However, some instructions operate only on scalar operands. Thus,
special treatment is required if an operand of the correlative abstract instruc-
tion is of vector type. To resolve this problem, a sequence of the same scalar
instructions has to be generated for each vector component. The rule sin gener-
ates code for the SIN-instruction, which computes the sine of its operand. When
generating the corresponding GPU code, the rule has to make sure to select the

correct vector components (e. g., cmp(’r’) directs the instruction object to read
from and write to the r-component).1

rule sin {

search: [UnOp($$->opcode == OP_SIN)]

cost: { return $1->target ->components; }

replace: [i f ($1->useComponent(’r’)) [

GPUUnOp($1->opcode , $1->tgt , $1->op , cmp(’r’))

],

i f ($1->useComponent(’g’)) [

GPUUnOp($1->opcode , $1->tgt , $1->op , cmp(’g’))

],

i f ($1->useComponent(’b’)) [

GPUUnOp($1->opcode , $1->tgt , $1->op , cmp(’b’))

],

i f ($1->useComponent(’a’)) [

GPUUnOp($1->opcode , $1->tgt , $1->op , cmp(’a’))

]]

}

To further improve the maintainability and compositionality of the pattern
matcher specifications, the OORS language introduces the notion of intermediate
replace patterns. The developer specifies a replace pattern not on the instruction
set of the target architecture, but on the intermediate instructions.2 These in-
termediate instructions are then subject to the matching process as usual. The
benefit of the intermediate instructions is to allow compositional specifications.
For example, a vectorial tan instruction has to be implemented by sequences
of native sin and cos instructions just like in Example 4, followed by a divi-
sion; a much more complicated way than just specifying an intermediate level
sin-cos-div sequence and letting the matcher then generate the component-
wise native instructions from these intermediate instructions.

3.2 Rule Sets

An OORS pattern matcher specification comprises rules, which are organized
into profiles. A profile represents a set of rules dedicated to a specific target ar-
chitecture. During runtime, the host compiler (the compiler using the generated
code-generator) selects the corresponding profile to be used for processing the
input program(s). In this section, we first describe the matching process with
respect to a single profile. Afterwards, we discuss the specifications mechanism
concerning multiple profiles and their relationships.

Matching For a given profile, the pattern matcher tries to match the input
instruction sequence against the search patterns until every input symbol has

1 The components need not be consecutive.
2 This kind of rule is specified by the keyword intermediate instead of replace.

been covered. In a greedy matching mode, the input is processed left-to-right,
where always the rule with the lowest costs is selected. In case of a tie, the first
specified rule is chosen. The pattern matcher employs backtracking in case the
current match cannot be enlarged further while some input instructions remain
unmatched.

In contrast to the greedy matching, an optimal matching mode investigates
all possible matches to select the one with the globally optimal costs. If costs
are not negative, we do not need to exhaustively explore the search space, but
can prune the search space as soon as it can be determined that the current,
incomplete match cannot outpace a previously found match.

Inheritance To keep an OORS pattern matcher specification readable and thus
maintainable in the long run, the OORS language comprises rule and profile
inheritance mechanisms. The developer can derive a new profile from existing
ones. The new profile inherits all rules, may add new rules and may omit and
modify inherited rules. Example 5 demonstrates the profile and rule inheritance
mechanism.

Example 5 (Profile and rule inheritance). The source language features a dot-
product operating on vector operands. The target architectures support the dot-
product for vectors of three and four components. The newer G80 architecture
supports also the dot-product for vectors of two components, whereas before it
had to be realized using multiplication and addition. Thus, the NV40 profile
comprises two distinct rules to cover all kinds of operands.

prof i l e NV40 {

rule dp2 {

search: [BinOp($$->opcode == OP_DP)]

condition: { return $1->target ->components == 2; }

cost: { return 2; }

replace: [/* MUL , ADD */]

}

rule dp : extends dp2 {

condition: { return $1->target ->components > 2; }

cost: { return 1; }

replace: [GPUBinOp(OP_DP , $1->tgt , $1->op1 , $1->op2)]

}

}

prof i l e G80 : extends NV40 {

omit NV40::dp, NV40::dp2;

rule dp : extends NV40::dp {

condition: { return $1->target ->components > 1; }

}

}

The G80 profile is specified as an extension of the NV40 profile. So, it inherits
per default all NV40 rules. The G80 profile omits the two NV40 rules dp and
dp2 and specifies a new, general rule as a modification of the inherited dp-rule.

3.3 Optimization

The pattern matching approach can also be used for code optimization. In con-
trast to the generational mode discussed in Section 3.2, there is only one se-
quence upon which the matching is performed. The pattern matcher searches
for instances of the search patterns and literally replaces the matched instruc-
tions with the generated instructions. This process is repeated until no more
rules can be applied, that is, until a fixpoint has been reached. Thus, there is no
need for backtracking.

In this way, it is possible to represent low-level code optimizations in OORS,
such as instruction rescheduling (see Example 6, Figure 2) or instruction merging
(such as MUL and ADD into MAD).

Example 6 (TriCore instruction rescheduling optimization). On many recent ar-
chitectures, the instruction order has a major influence on the execution time. For
instance, the TriCore architecture [18] is only able to dispatch two instructions at
once, if the first instruction will be executed in the arithmetic-logical unit (ALU)
and the second instruction will be issued to the load-store unit (LSU). So, the
following rule tries to pull a distant memory instruction behind an arithmetic-
logical instruction. Although the implicit condition will verify whether possible
side effects occur, the developer has to check manually whether it is safe to
push the memory instruction in front of the second matched instruction (see
the condition line; the absence of conflicts with the wildcard is guaranteed by
the implicit condition). The cost function favors the match with the greatest
distance between the ALU- and the LSU-instruction (for a wildcard pattern,
the $-operator denotes the number of instructions the pattern has matched).
Figure 2 shows this graphically.

rule reschedule {

search: [Op($$->isIssuedTo(ALU)),
Op(!$$->isIssuedTo(LSU)),
*,

Op($$->isIssuedTo(LSU))]

condition: { return !$2->conflictsWith($4); }

cost: { return -$3; }

replace: [$1, $4, $2]

}

4 Practice

The integration of OORS pattern matchers works in much the same way as for
tools such as yacc or flex (see Figure 3). From the pattern matching specifica-
tion, OORG generates a C++-file implementing the matcher. This file has to be
compiled and linked with the main compiler. The compiler selects at runtime the
profile to be used in a particular compilation and calls the generated matcher for
each basic block, passing the sequence of intermediate instructions and receiving

Fig. 2. Valid and invalid match of the reschedule rule. The first match (dark-gray)
is invalid, because there is a definition-use dependency between mov.d d2,a3 and ld

a3,[a2]0 (the first instruction reads from and the second instruction writes to register
a3). The rule’s condition prevents this match from being accepted.

the sequence of target instructions. To easily cater for minor variations of the
desired rule set, the application program can switch on and off certain rules. For
example, different sets of optimizations can be selected in this way.

The CGiS compiler [14, 15] can compile a common input program for GPUs
and for SIMD CPUs. OORG-generated matchers are employed in three phases;
the actual matchers used in a compilation are selected at runtime depending
on the actual target. An early optimizer performs various transformations on
intermediate code, which are needed for implementation on SIMD CPUs. A
generator transforms the sequence of of intermediate instructions, which are
common for GPUs and SIMD CPUs, into a target-specific instruction sequence.
To this end, there are three hierarchies of profiles: For various generations of
GPUs, SSE, and AltiVec. In a later phase, the GPU code is transformed by an
OORG-generated peephole optimizer.

Fig. 3. Integration of OORS into an existing application.

We have implemented an NV40 code generation pattern matcher that com-
prises 43 rules, and a G80 code generation pattern matcher consisting of 50 rules.
The G80 code generation profile inherits most NV40 rules, but replaces some
NV40 rules with more specialized ones. The NV40 and the G80 profile of the
code optimization pattern matcher comprise 12 rules. Both optimization profiles
use the same rule set.

For both profiles, the CGiS compiler spends approximately 10% of the to-
tal compile time within the code generation and the code optimization pattern
matcher. So, the influence of OORG-generated code generation and code opti-
mization pattern matchers of the overall runtime is negligible.

5 Conclusion and Future Work

In this paper, we have presented the novel object-oriented rewrite system OORS
with applications in code generation and code optimization. Using the presented
OORS language, a developer is able to implement the code generation and code
optimization phase of a compiler’s back end in terms of pattern matchers. Re-
targetability is achieved by organizing rules into profiles, one for each supported
hardware architecture. In contrast to other approaches, the OORS language fea-
tures constructs, such as a rule and profile inheritance mechanism, that make
the reuse of existing specification possible. Thus, an OORS pattern matcher
specification is maintainable as well as easily retargetable in the long run.

We have additionally introduced the pattern matcher generator OORG that
compiles an OORS specification into a C++ dynamically retargetable pattern
matcher. By means of the CGiS compiler, we have demonstrated the usage of
OORG-generated pattern matchers in a real world application. OORG is open
source and available for download on our homepage.

The OORS language offers room for further improvements. Currently, OORS
pattern matcher process only basic blocks. This restriction decreases the ef-
ficiency of certain optimizations, such as dead-code elimination. A dead-code
elimination rule is currently not able to determine whether the target register is
still live, if e. g., a register is written at the end of a basic block. Thus, we want to
extend OORS such that matches over the whole control flow graph are possible.
Apart from that, all instructions are assumed to be pushed upwards past wild-
card patterns (remember Example 6, where a load-store instruction is pushed
upwards). In some cases however, a developer might want to push instructions
the other way around. To further improve the expressiveness of OORS, we thus
want to introduce a mechanism that indicates the direction of a rule. Finally, we
plan to improve the performance of the OORG-generated pattern matchers. The
current implementation generates pattern matchers that match each rule one af-
ter another. This matching method becomes inefficient if the search patterns of
two (or more) rules share the same prefix. In such a case, the OORG-generated
pattern matcher would match that prefix multiple times. So, to overcome this
drawback, we want to improve OORG, such that the generator produces pattern
matchers that match all rules in parallel.

Acknowledgements

We thank the anonymous reviewers for their encouraging and helpful comments
about this paper. Due to lack of space however, we were not able to add more
content regarding further details about OORS or comparisons with other, similar
approaches.

References

[1] M. Alt, U. Aßmann, and H. van Someren. Cosy Compiler Phase Embedding
with the CoSy Compiler Model. In 5th International Conference on Compiler
Construction, volume 786 of LNCS, pages 278–293. Springer-Verlag, 1994.

[2] M. Breternitz Jr., H. Hum, and S. Kumar. Compilation, Architectural Support,
and Evaluation of SIMD Graphics Pipeline Programs on a General-Purpose CPU.
In PACT ’03: Proceedings of the 12th International Conference on Parallel Ar-
chitectures and Compilation Techniques, page 135, Washington, DC, USA, 2003.
IEEE Computer Society.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for GPUs: Stream Computing on Graphics Hardware. ACM Trans.
Graph., 23(3):777–786, 2004.

[4] Quick C-- compiler. http://cminusminus.org/qc--.html.
[5] J. W. Davidson and C. W. Fraser. Register Allocation and Exhaustive Peep-

hole Optimization. Software – Practise and Experience, 14(9):857–865, September
1984.

[6] J. Dias and N. Ramsey. Converting intermediate code to assembly code using
declarative machine descriptions. In CC, pages 217–231, 2006.

[7] H. Emmelmann, F.-W. Schröer, and R. Landwehr. BEG – A Generator for Effi-
cient Back Ends. In PLDI, pages 227–237, 1989.

[8] S. Farfeleder, A. Krall, E. Steiner, and F. Brandner. Effective compiler genera-
tion by architecture description. In LCTES ’06: Proceedings of the 2006 ACM
SIGPLAN/SIGBED conference on Language, compilers, and tool support for em-
bedded systems, pages 145–152, New York, NY, USA, 2006. ACM Press.

[9] C. Ferdinand, H. Seidl, and R. Wilhelm. Tree Automata for Code Selection. Acta
Informatica, 31(9):741–760, 1994.

[10] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: Design and Imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[11] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG – Fast Optimal Instruc-
tion Selection and Tree Parsing. SIGPLAN Notices, 27(4):68–76, 1992.

[12] G. Gebhard and P. Lucas. OORS: An Object-Oriented Rewrite System with Ap-
plications in Retargetable Code Generation and Optimization. Technical report,
University of the Saarland, 2007. To appear.

[13] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated Soundness Proofs
for Dataflow Analyses and Transformations via Local Rules. SIGPLAN Notices,
40(1):364–377, 2005.

[14] P. Lucas, N. Fritz, and R. Wilhelm. The CGiS compiler—a tool demonstration. In
A. Mycroft and A. Zeller, editors, Proceedings of the 15th International Conference
on Compiler Construction (CC), volume 3923 of LNCS, pages 105–108. Springer-
Verlag, 2006.

[15] P. Lucas, N. Fritz, and R. Wilhelm. The Development of the Data-Parallel GPU
Programming Language CGiS. In International Conference on Computational
Science (4), volume 3994 of Lecture Notes in Computer Science, pages 200–203.
Springer Verlag, 2006.

[16] NVIDIA. Nv gpu program4. OpenGL Extension 322, 2007.
[17] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and

T. J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, March 2007.

[18] TriCore microcontroller. http://www.infineon.com/tricore/.

