
Operating Mode Specific WCET Analysis∗

Philipp Lucas, Oleg Parshin, Reinhard Wilhelm
Compiler Design Lab

Universität des Saarlandes
66123 Saarbrücken, Germany

[phlucas|oleg|wilhelm]@cs.uni-sb.de

Abstract

Many embedded control systems work in different op-
erating modes, for example start-up, stand-by, shut-down
and failure mode. These different operating modes usually
have different timing requirements, and the different func-
tional behaviour also leads to differences in timing be-
haviour. A Worst-Case Execution Time (WCET) analysis
of such a system needs to determine mode-specific bounds
on execution times, because a single overall bound may
be too pessimistic. Mode determination and mode-specific
analysis also form a prerequisite for analysing system be-
haviour during mode transitions, a most critical phase of
a system.

The operating modes of embedded control systems are
often not precisely represented, neither in hand-written
code nor in code synthesised by model-based design tools
nor on the model level. In this paper, we outline the use
of operating modes for WCET analysis. Furthermore, we
describe ongoing work on semi-automatically deducing
mode information from C source code and using that in-
formation in WCET analysis.

Keywords: operating modes, timing analysis, WCET,
embedded systems, hard real-time

1. Introduction

A safe estimation of a task’sWorst-Case Execution
Time (WCET)is necessary to verify that hard real-time ap-
plications meet their deadlines [8]. The actual execution
time of a task depends on a variety of factors:

(1) Task inputsdetermine the sequences of executed in-
structions and of memory accesses;

(2) dynamic hardware propertiessuch as cache content
and pipeline state determine the hardware execution
trace (e. g., cache hit or miss, speculation results);

(3) static hardware propertiessuch as speed of execution
units determine the time for the actual execution.

∗Supported by the European Network of ExcellenceArtistDesignand
the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement number 216008 (Predator).

Tools which statically bound Worst-Case Execution Times
in general take specific static system properties as given
(they fix (3)) and compute the worst-case over the dynam-
ically possible states (over (1) and (2)). Partitioning task
inputs into classes restricts (1), leading to a more accurate
WCET estimation [1].

The subsets of inputs we are considering here are those
corresponding tooperating modesof a software. Oper-
ating modes can be considered on several levels. Modes
on the task set level require different functionalities or cer-
tain functionality implemented byalternative tasks. These
modes give rise to different scheduling decisions or re-
source allocations, but they also determine the behaviour
of and may pose specific requirements on each single task.
We are considering this behaviour, which is not always
specified explicitly: We strive tostatically extractoper-
ating modes of a single task, to distinguish those modes
which areimportantfor WCET analysis, and to compute
mode-specific WCET boundsby specialising the analysis
to the execution context of each mode.

Domain Knowledge C Code

Mode Analysis Compilation

Input Constraints Executable

Timing Analysis

WCET Data Phase

Legend:

Figure 1. Operating modes in timing analy-
sis.

Figure 1 shows how to fit mode analysis into a general
WCET analysis framework. For the mode analysis, modes
are mutually exclusive sets of input variable value ranges
leading to specific system behaviour.

The remainder of this paper briefly introduces operat-
ing modes (Section 2) and our mode analysis tool under

development (Section 3), gives an overview of related ap-
proaches (Section 4) and outlines future work (Section 5).

2. Operating Modes

In the most general sense, we speak ofoperating modes
when a software can exhibit different behaviour under dif-
ferent circumstances, if these behaviours are mutually ex-
clusive and if they are determined at runtime. For exam-
ple, an error mode is triggered by reading a sensor vari-
able: If the variable denoting sensor input is in the range
[0,∞), the software operates in normal mode; if the vari-
able has the value−1, the software operates in error mode.
Thus, an operating mode is defined by aconstraint on in-
put variable values.

An operating mode as such is alogical concept which
does not necessarily relate to timing behaviour, but can
relate to resource usage, signal flow, or even very sub-
tle differences in behaviour. In this work, we strive to
semi-automatically derive modes from C code in a general
sense, but with focus on relevance for timing analysis: We
approximate logical modes and identify those which ex-
hibit significant variations in timing behaviour.

One usage for modes in timing analysis iswithin a
single task: Different pieces of code are executed de-
pending on the operating mode. Mutual exclusivity of
modes translates into specific subsets of code executed
per mode, and thus a WCET analysis can givedifferent
WCET bounds specific to modes, in contrast to a conser-
vative overall WCET bound.

This is useful and even necessary because tasks also
may have different timingrequirementsin different situ-
ations. Consider a task which controls fuel injection of
an engine. Because it is triggered by the crankshaft sen-
sor, the deadlines are stricter at higher RPMs. Over a cer-
tain RPM threshold, the task has to switch to a computa-
tionally less demanding mode. If only one overall WCET
bound were considered, then the task would become for-
mally unschedulable under these circumstances. Thus, the
task has a WCET motivated mode distinction which needs
to be taken into account in the timing analysis phase to en-
sure schedulability.

Another use of modes for timing analysis comes from
considering the combined mode-specific behaviour of a
set of tasks. If one task needs to perform more compu-
tations in start-up mode (e.g., initialisation of some sys-
tem), and another one in run-time mode (e.g., monitoring
some parameters), then their overall WCETs are mutually
exclusive. Combining these WCETs would unnecessar-
ily constrain schedulability analysis if the tasks run on the
same processor (Figure 2). Mode-specific WCETs allow
to ensure schedulability in the depicted case. Also, mode-
specific access patterns to global resources may be consid-
ered to gauge the possible interferences. Generally, modes
of tasks do not occur in arbitrary combinations, but form
a global modedetermining the behaviour of the complete
system.

10

12
10 12Overall:

8

12

10

9

8 12Mode 1:

10 9Mode 2:

WCETs of two tasks: Combined WCETs:

(a) Two tasks which cannot be scheduled together in a 20 ms slot.

(b) Mode-specific analysis achieves schedulability in a 20 ms slot.

Figure 2. Operating modes

3. Heuristical Mode Analysis

Here we explain the basic ideas behind a prospective
mode-analysis tool designed for incorporation into a gen-
eral WCET analysis framework. Conceptually, modes
are derived by identifyingpatternsin the code hinting at
mode-dependent behaviour, by establishing theconditions
for the derived modes, and byclusteringmodes according
to the desired properties (e.g., differences in WCET).

The analysis works on C code instead of binary level
for two reasons. For one, the modes resulting from the
analysis shall approximate natural notions of operating
modes. A mode derived from the binary level that would
not be found on source code level or that is not easily
expressiblein terms of input variables is unlikely to be
of much use. Also, variable naming conventions or user
annotation rely on debug information or the availability
of the source code. Although mode analysis on an even
higher level such as ASCET or Simulink is also useful
[4], we focus here on C code to cover the vast amount
of hand-coded legacy applications. For synergies between
Simulink analysis and mode analysis, see [9], which also
considers modes as mutually exclusive control flow path
choices, leading to asingle, lowerWCET.

3.1 Mode Conditionals and Mode Variables
As different behaviour is determined by different eval-

uations of conditionals, the rough idea of mode estima-
tion is to find outwhich conditionalsare likely to govern
modes, andwhich valueson the input variables give rise
to the varying evaluations of the conditional.

We call mode-governing conditionalsmode condition-
als and the input variables influencing their evaluation
mode variables. Both features need to be derived heuris-
tically by static analysis.

Heuristics formode variablesinclude:

• A variable is probably used as a mode variable if it is
directly used for control in largely disparate parts of
the source code.

• Mode variables are more likely directly used in a
conditional or with a small indirection than only after
a very long derivation.

• Naming conventions may enforce special names for
mode variables.

• User annotations directly identify mode variables.

A syntactical heuristics formode conditionalsis given
by the familiar implementation of a function body being
guarded completely by anif-statement. More heuris-
tics, however, are available if we take semantic informa-
tion into account and predict the conditional’s impact on
runtime behaviour: If a conditional influences whether a
significant part of the code is executed, this is more likely
to signify a mode than a choice between two slightly dif-
ferent arithmetic operations. For example, consider a con-
ditional choosing between the computation of an output
by searching through a lookup table (in normal mode) or
by passing on a default constant (in an exceptional mode).
Thus, a conditional is deemed a mode conditional, if the
differencein behaviours, such as predicted WCET influ-
ence or access to global variables, is large enough, that
is, if the conditional isunbalancedaccording to some cri-
terion. Note that even when taking semantic information
into account, the heuristics still derivelogical modes;im-
portanceof modes according to a criterion such as WCET
impact is handled in a subsequent phase (Section 3.2).

The impact of a branch may be estimated simply by
examining the operations in its branches.

• The conditional execution of loops, such as in the
implementation of lookup tables with binary or linear
search, hints at mode-dependent behaviour.

• External functions may be annotated by the user to
signify whether they are special cases. For example,
such functions may be those that communicate with
external devices.

• Accesses to global variables, be it constant inputs or
sensor values, signify differing behaviours.

In all cases, it is furthermore possible to exploitsyner-
gieswith higher levels of the toolchain. For example, con-
ditionals that are already present in the high-level tools,
such as switch blocks, are more natural candidates for
mode conditionals thanif statements arising as artifacts
of the code generation process.

Determining mode conditionals and mode variables
are linked: Mode conditionals lead to mode variables by
backward slicing, and mode variables lead to mode condi-
tionals by forward slicing. Thus, an iteration of the slicing
phases leads to an extension and refinement of mode de-
termination.

In each of the analysis steps, human intervention is
beneficial or even necessary. For example, the analysis
needs annotations for external sensor reading library func-
tions. On the other hand, annotations of known mode vari-
ables or mode conditionals simplifies the analysis. Such

annotations can be provided by the programmers or tool
users, but more likely can be passed onto the tool from
higher-level specifications.

A reducedcontrol-flow graph arises by abstracting
those conditionals which are not mode conditionals out
of the control-flow graph. The statically possible set of
paths through the reduced control-flow graph contains the
significantly differentpaths. Thereby, we havedividedthe
input space of a task in various possible operating modes
according to syntactic and semantic criteria.

Let us consider a single path in the reduced control-
flow graph. By backward interpretation from the mode
conditionals to their governing mode variables (in the
complete graph), one can gain a specification of the value
ranges of these variables giving rise to the one or the other
choice.Must information as well asmayinformation are
useful: Anunder-approximationof the input stateguaran-
teesthat these values definitely give rise to the behaviour
as determined by one path; anover-approximationensures
that at least some paths are not taken in this state.

3.2 Clustering
What remains to be done is tocluster the paths in the

reduced control-flow graph, for not all such logical modes
form significant modes for the analysis at hand. This is an
optional post-processing phase; the determination of logi-
cal modes, e. g., for program understanding, is complete at
this point. For usage in timing analysis, for example, not
all modes have to be treated differently: If their predicted
WCETs do not differ significantly, they can be handled to-
gether. To this end, the paths in the reduced control-flow
graph can be assigned a variety of properties to be used
for classification into modes. Such properties include:

• the very control-flow choices defining the paths;

• read and write accesses to communication variables;

• static length, including presence of loops;

• calls to specified external functions.

More properties corresponding to different heuristics can
be added into this framework. For a discussion of possible
heuristics, see also [4].

To ensure that paths can be compared to each other, we
need these properties to be comparable. If the comparabil-
ity is ascertained, the paths can be sorted intoclustersby
graph-theoretic clustering or gravitational clustering algo-
rithms [6].

This approach has the benefit that sensitivity to cer-
tain properties can be changed by the gravitational con-
stants. For example, if a certain conditional is already
known to be mode defining, then paths representing differ-
ent control-flow choices shall not cluster at all; or the sen-
sitivity between path length and communication patterns
can be adjusted by balancing the respective constants. In
this way, the importance of modes can be established with
respect to other criteria such as the communication fabric.

Furthermore, the clustering can also directly be used for
sub-modedetermination, by running the clustering step
again for the set of paths forming a mode with different
gravitational constants.

Deducing constraints on the input variables giving rise
to the paths of a cluster is more involved, however. Al-
though it is reasonably easy to specify the clusters by ex-
haustive enumeration of properties and property combina-
tions, be it an under- or an over-approximation, this is not
likely to be a relevant information for the users. Future
research needs to investigate whether existing approaches
(e.g, [2]) yield sufficient results in our setting.

3.3 Usage of Mode Information
With several modes identified, the WCETs specific to

each mode need to be computed. The obvious way to do
so is to conduct several timing analyses with the inputs
specifically fixed according to the modes—a costly pro-
cess. A second possibility is to only solve different ILPs
for combining the basic blocks’ WCETs into the mode-
specific task WCET by creating flow constraints from the
mode governing conditionals. These two approaches thus
enable a choice between precision and speed.

A third choice,trace partitioning[7], is a promising
approach for a middle-ground approach. Partitioning ac-
cording to a specific mode leads to a separate instance of
timing analysis for each mode. This yields not only to
a special execution time bound for each mode, one also
specialises the whole of the analysis to the mode from
the earliest phase on, without requiring several full anal-
yses. If several mode conditionals are congenerous, trace
partitioning takes care of exploiting this similarity auto-
matically. Mode analysis thus is used to provide the split
points for trace partitioning and the information to exploit
the different results.

4. Other Approaches

Operating modes have been studied before in the liter-
ature, with differing foci and differing definitions of what
constitutes a mode. For a discussion of various notions of
modes, see [5].

Closely related to our approach is the work of [3, 4],
which reports on a tool to semi-automatically derive oper-
ating modes from ASCET-MD models. Similar to our ap-
proach, various heuristics are employed to arrive at impor-
tant modes, taking properties such as syntactic patterns,
naming conventions and differences of measured execu-
tion times into account. The modes are then used to vi-
sualise mode-dependent signal flow and also for mode-
dependent timing and schedulability analysis.

Another work strongly related to ours is [2]. The au-
thors consider modes on a very low level, regarding differ-
ent paths through functions as different modes, and derive
a symbolic expression of WCET estimations. We con-
centrate on larger programs, distinguishing only between
important modes according to some heuristics, and com-

pute numeric restrictions on variables for use by WCET
analysis.

The authors of [1] group those invocations of a com-
ponent which lead to similar execution times into modes
(clusters, in their terminology). Clusters are determined
by a process of iterative refinement starting from one clus-
ter representing the complete input space: A cluster is sub-
divided if its computed BCET and WCET bounds differ
too greatly. Performing these analyses is very costly, how-
ever, and clustering in a blind search process which only
considers the span between BCET and WCET need not
lead to operating modes which are useful for scheduling
or program understanding.

5. Conclusion and Future Work

We have described a process to determine operating
modes by static analysis of C code and a usage scenario
for operating modes in timing analysis. As of now, a
source code analysis and heuristics for determination of
mode variables and conditionals are implemented. We are
developing the tool further to cover the full process, in-
cluding the derivation of input values and the clustering
phase.

References

[1] J. Fredriksson, T. Nolte, A. Ermedahl, and M. Nolin. Clus-
tering worst-case execution times for software components.
In Proceedings of the WCET Workshop, 2007.

[2] M.-L. Ji, J. Wang, S. Li, and Z.-C. Qi. Automated worst-
case execution time analysis based on program modes.The
Computer Journal, 52(5):530–544, 2009. Online 2007.

[3] J. E. Kim, R. Kapoor, M. Herrmann, J. Härdtlein,
F. Grzeschniok, and P. Lutz. Software behavior description
of real-time embedded systems in component based soft-
ware development. InProceedings of ISORC, pages 307–
311, 2008.

[4] J. E. Kim, O. Rogalla, S. Kramer, and A. Hamann. Extract-
ing, specifying and predicting software system properties
in component based real-time embedded software develop-
ment. InProceedings of ICSE, pages 28–38, 2009.

[5] P. S. M. Pedro.Schedulability of Mode Changes in Flexible
Real-Time Distributed Systems. PhD thesis, University of
York, September 1999.

[6] T. V. Ravi and K. C. Gowda. Clustering of symbolic objects
using gravitational approach.IEEE TSMC-B, 29(6):888–
894, 1999.

[7] X. Rival and L. Mauborgne. The trace partitioning abstract
domain.ACM TOPLAS, 29(5), 2007.

[8] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström. The determination of worst-case execution
times—Overview of methods and survey of tools.ACM
TECS, 7(3), 2008.

[9] R. Wilhelm, P. Lucas, O. Parshin, L. Tan, and B. Wachter.
Improving the precision of WCET analysis by input
constraints and model-derived flow constraints. In
S. Chakraborty and J. Eberspächer, editors,Advances in
Real-Time Systems. Springer-Verlag, 2010. To appear.

