Operating Mode Specific WCET Analysis

Philipp Lucas, Oleg Parshin, Reinhard Wilhelm
Compiler Design Lab
Universitat des Saarlandes
66123 Saarbrucken, Germany
[phl ucas]| ol eg| wi | hel n] @s. uni - sb. de

Abstract Tools which statically bound Worst-Case Execution Times
in general take specific static system properties as given
Many embedded control systems work in different op- (they fix (3)) and compute the worst-case over the dynam-
erating modes, for example start-up, stand-by, shut-downically possible states (over (1) and (2)). Partitionincgktas
and failure mode. These different operating modes usuallyinputs into classes restricts (1), leading to a more aceurat
have different timing requirements, and the different func WCET estimation [1].
tional behaviour also leads to differences in timing be- The subsets of inputs we are considering here are those
haviour. A Worst-Case Execution Time (WCET) analysis corresponding t@perating mode®f a software. Oper-
of such a system needs to determine mode-specific boundating modes can be considered on several levels. Modes
on execution times, because a single overall bound mayon the task set level require different functionalitieserc
be too pessimistic. Mode determination and mode-specifictain functionality implemented bgiternative tasksThese
analysis also form a prerequisite for analysing system be- modes give rise to different scheduling decisions or re-
haviour during mode transitions, a most critical phase of source allocations, but they also determine the behaviour
a system. of and may pose specific requirements on each single task.
The operating modes of embedded control systems aréNe are considering this behaviour, which is not always
often not precisely represented, neither in hand-written specified explicitly: We strive tatatically extractoper-
code nor in code synthesised by model-based design toolsiting modes of a single task, to distinguish those modes
nor on the model level. In this paper, we outline the use which areimportantfor WCET analysis, and to compute
of operating modes for WCET analysis. Furthermore, we mode-specific WCET boundyg specialising the analysis
describe ongoing work on semi-automatically deducing to the execution context of each mode.
mode information from C source code and using that in-

formation in WCET analysis. (Domain Knowwdge) C C Code
Keywords: operating modes, timing analysis, WCET, / \
embedded systems, hard real-time 3
‘ Mode Analysis ‘ Compilation

1. Introduction

A safe estimation of a task’#Vorst-Case Execution

Time (WCET])s necessary to verify that hard real-time ap- ‘ Timing Analysis
plications meet their deadlines [8]. The actual execution Legend:

time of a task depends on a variety of factors:
(1) Task inputdetermine the sequences of executed in-

structions and of memory accesses; Figure 1. Operating modes in timing analy-
sis.

(2) dynamic hardware propertiesuch as cache content
and pipeline state determine the hardware execution

trace (e. g., cache hit or miss, speculation results); Figure 1 shows how to fit mode analysis into a general

(3) static hardware propertiesuch as speed of execution WCET analysis framework. For the mode analysis, modes
units determine the time for the actual execution. are mutually exclusive sets of input variable value ranges
*Supported by the European Network of ExcelleActstDesignand Ieadlng to SpeCIfIC system behaviour.

the European Community’s Seventh Framework Programme2BB7/ _ The remainde_r of this paper briefly intmdqces operat-
2013 under grant agreement number 21600@datoy). ing modes (Section 2) and our mode analysis tool under

development (Section 3), gives an overview of related ap- WCETSs of two tasks: Combined WCETs:
proaches (Section 4) and outlines future work (Section 5).

. Overall: 10 12
2. Operating Modes verd e

. (a) Two tasks which cannot be scheduled together in a 20 ras slo
Inthe most general sense, we speatpmdrating modes

when a software can exhibit different behaviour under dif-

ferent circumstances, if these behaviours are mutually ex-Mode 1: “
clusive and if they are determined at runtime. For exam-

ple, an error mode is triggered by reading a sensor vari-

able: If the variable denoting sensor input is in the range _

[0, 00), the software operates in normal mode; if the vari- M0d€ 2: [o] Tl o |

able has the value1, the software operatesin error mode.
Thus, an operating mode is defined bgamstraint on in-
put variable values
An operating mode as such idagical concept which
does not necessarily relate to timing behaviour, but can
relate to resource usage, signal flow, or even very sub-3. Heuristical Mode Analysis
tle differences in behaviour. In this work, we strive to
semi-automatically derive modes from C code inageneral Here we explain the basic ideas behind a prospective
sense, but with focus on relevance for timing analysis: We mode-analysis tool designed for incorporation into a gen-
approximate logical modes and identify those which ex- eral WCET analysis framework. Conceptually, modes
hibit significant variations in timing behaviour. are derived by identifyingatternsin the code hinting at
One usage for modes in timing analysiswithin a mode-dependent behaviour, by establishingtheditions
single task Different pieces of code are executed de- for the derived modes, and lsjusteringmodes according
pending on the operating mode. Mutual exclusivity of to the desired properties (e.g., differences in WCET).
modes translates into specific subsets of code executed The analysis works on C code instead of binary level
per mode, and thus a WCET analysis can glifeerent for two reasons. For one, the modes resulting from the
WCET bounds specific to modes, in contrast to a conser-analysis shall approximate natural notions of operating

(b) Mode-specific analysis achieves schedulability in a 2Gshat.

Figure 2. Operating modes

vative overall WCET bound. modes. A mode derived from the binary level that would
This is useful and even necessary because tasks als@ot befound on source code level or that is not easily
may have different timingequirementsn different situ- expressiblan terms of input variables is unlikely to be

ations. Consider a task which controls fuel injection of of much use. Also, variable naming conventions or user
an engine. Because it is triggered by the crankshaft sen-annotation rely on debug information or the availability
sor, the deadlines are stricter at higher RPMs. Over a cer-of the source code. Although mode analysis on an even
tain RPM threshold, the task has to switch to a computa- higher level such as ASCET or Simulink is also useful
tionally less demanding mode. If only one overall WCET [4], we focus here on C code to cover the vast amount
bound were considered, then the task would become for-of hand-coded legacy applications. For synergies between
mally unschedulable under these circumstances. Thus, th&imulink analysis and mode analysis, see [9], which also
task has a WCET motivated mode distinction which needs considers modes as mutually exclusive control flow path
to be taken into account in the timing analysis phase to en-choices, leading to single, loweWCET.
sure schedulability.

Another use of modes for timing analysis comes from 3.1 Mode Conditionals and Mode Variables

considering the combined mode-specific behaviour of a As different behaviour is determined by different eval-
set of tasks. If one task needs to perform more compu-yations of conditionals, the rough idea of mode estima-
tations in start-up mode (e.qg., initialisation of some sys- tjon is to find outwhich conditionalsre likely to govern

tem), and another one in run-time mode (e.g., monitoring modes, andvhich valueson the input variables give rise
some parameters), then their overall WCETSs are mutua”yto the Varying evaluations of the conditional.

exclusive. Combining these WCETs would unnecessar- e call mode-governing conditionaisode condition-

ily constrain schedulability analysis if the tasks run o@ th |5 and the input variables influencing their evaluation

same processor (Figure 2). Mode-specific WCETSs allow mode variablesBoth features need to be derived heuris-
to ensure schedulability in the depicted case. Also, mode-ically by static analysis.

specific access patterns to global resources may be consid- Heyristics formode variableinclude:

ered to gauge the possible interferences. Generally, modes

of tasks do not occur in arbitrary combinations, but form e A variable is probably used as a mode variable if it is
a global modedetermining the behaviour of the complete directly used for control in largely disparate parts of
system. the source code.

e Mode variables are more likely directly used in a annotations can be provided by the programmers or tool
conditional or with a small indirection than only after users, but more likely can be passed onto the tool from

a very long derivation. higher-level specifications.

A reducedcontrol-flow graph arises by abstracting
those conditionals which are not mode conditionals out
of the control-flow graph. The statically possible set of
¢ User annotations directly identify mode variables. paths through the reduced control-flow graph contains the
significantly differenpaths. Thereby, we hawkvidedthe
input space of a task in various possible operating modes
according to syntactic and semantic criteria.

Let us consider a single path in the reduced control-
flow graph. By backward interpretation from the mode
conditionals to their governing mode variables (in the
complete graph), one can gain a specification of the value
ranges of these variables giving rise to the one or the other
choice. Mustinformation as well asnayinformation are
useful: Anunder-approximatioof the input statguaran-
teesthat these values definitely give rise to the behaviour
as determined by one path; aver-approximatioensures
‘that at least some paths are not taken in this state.

e Naming conventions may enforce special hames for
mode variables.

A syntactical heuristics fomode conditionalss given

by the familiar implementation of a function body being
guarded completely by anf -statement. More heuris-
tics, however, are available if we take semantic informa-
tion into account and predict the conditional’s impact on
runtime behaviour: If a conditional influences whether a
significant part of the code is executed, this is more likely
to signify a mode than a choice between two slightly dif-
ferent arithmetic operations. For example, consider a con-
ditional choosing between the computation of an output
by searching through a lookup table (in normal mode) or
by passing on a default constant (in an exceptional mode)
Thus, a conditional is deemed a mode conditional, if the
differencein behaviours, such as predicted WCET influ- 32 Cl .

. ustering

ence or access to global variables, is large enough, that . . .
g g g What remains to be done is thusterthe paths in the

is, if the conditional isuinbalancedaccording to some cri- duced trol-l h ¢ all h logical mod
terion. Note that even when taking semantic information reduced control-iow grapn, for not all such logical modes
form significant modes for the analysis at hand. This is an

into account, the heuristics still deril@gical modesjm- . _) o .
portanceof modes according to a criterion such as WCET optional post-processing phase; the determination of logi
cal modes, e. g., for program understanding, is complete at

[is handled i h i 2). : . 2 :
impactis handled in a subsequent phase (Section 3.2) this point. For usage in timing analysis, for example, not

ex;—rz(ianilrrz]pti(: :Ff)ea;at;irg:é:?n Ts)l;rta)li Cehs:SrTwated simply by all modes have t_o be t_rea_lt_ed differently: If their predicted
WCETSs do not differ significantly, they can be handled to-
e The conditional execution of loops, such as in the gether. To this end, the paths in the reduced control-flow
implementation of lookup tables with binary or linear graph can be assigned a variety of properties to be used
search, hints at mode-dependent behaviour. for classification into modes. Such properties include:

e External functions may be annotated by the userto 4 the very control-flow choices defining the paths;
signify whether they are special cases. For example,

such functions may be those that communicate with e read and write accesses to communication variables;

external devices. . . .
e static length, including presence of loops;

e Accesses to global variables, be it constant inputs or a)
sensor values, signify differing behaviours. ¢ calls to specified external functions.

In all cases, it is furthermore possible to expkmner- More properties corresponding to different heuristics can
gieswith higher levels of the toolchain. For example, con- be added into this framework. For a discussion of possible
ditionals that are already present in the high-level tools, heuristics, see also [4].
such as switch blocks, are more natural candidates for To ensure that paths can be compared to each other, we
mode conditionals thanf statements arising as artifacts need these properties to be comparable. If the comparabil-
of the code generation process. ity is ascertained, the paths can be sorted ahistersby

Determining mode conditionals and mode variables graph-theoretic clustering or gravitational clusteritgpa
are linked: Mode conditionals lead to mode variables by rithms [6].
backward slicing, and mode variables lead to mode condi- This approach has the benefit that sensitivity to cer-
tionals by forward slicing. Thus, an iteration of the sligin ~ tain properties can be changed by the gravitational con-
phases leads to an extension and refinement of mode destants. For example, if a certain conditional is already
termination. known to be mode defining, then paths representing differ-

In each of the analysis steps, human intervention is ent control-flow choices shall not cluster at all; or the sen-
beneficial or even necessary. For example, the analysissitivity between path length and communication patterns
needs annotations for external sensor reading library-func can be adjusted by balancing the respective constants. In
tions. On the other hand, annotations of known mode vari- this way, the importance of modes can be established with
ables or mode conditionals simplifies the analysis. Suchrespect to other criteria such as the communication fabric.

Furthermore, the clustering can also directly be used for pute numeric restrictions on variables for use by WCET
sub-modedetermination, by running the clustering step analysis.
again for the set of paths forming a mode with different The authors of [1] group those invocations of a com-
gravitational constants. ponent which lead to similar execution times into modes
Deducing constraints on the input variables giving rise (clusters in their terminology). Clusters are determined
to the paths of a cluster is more involved, however. Al- by a process of iterative refinement starting from one clus-
though it is reasonably easy to specify the clusters by ex-ter representing the complete input space: A cluster is sub-
haustive enumeration of properties and property combina-divided if its computed BCET and WCET bounds differ
tions, be it an under- or an over-approximation, this is not too greatly. Performing these analyses is very costly, how-
likely to be a relevant information for the users. Future ever, and clustering in a blind search process which only
research needs to investigate whether existing approachesonsiders the span between BCET and WCET need not
(e.qg, [2]) yield sufficient results in our setting. lead to operating modes which are useful for scheduling
or program understanding.
3.3 Usage of Mode Information)
With several modes identified, the WCETS specific to 9- Conclusion and Future Work

each mode need to be computed. The obvious way to do . _ .
so is to conduct several timing analyses with the inputs VW& have described a process to determine operating

specifically fixed according to the modes—a costly pro- Modes by static analysis of C code and a usage scenario
cess. A second possibility is to only solve different ILPs fOr Operating modes in timing analysis. As of now, a
for combining the basic blocks’ WCETSs into the mode- source che analysis anq_heurlstlcs_ for determination of
specific task WCET by creating flow constraints from the mode va_lrlables and conditionals are implemented. We_ are
mode governing conditionals. These two approaches thugl€veloping the tool further to cover the full process, in-
enable a choice between precision and speed. cluding the derivation of input values and the clustering
A third choice,trace partitioning[7], is a promising phase.
approach for a middle-ground approach. Partitioning ac-
cording to a specific mode leads to a separate instance o
timing analySIS fpr e".iCh mode. This yields not only to [1] J. Fredriksson, T. Nolte, A. Ermedahl, and M. Nolin. Glus
a sp(.au.al execution time bound for gach mode, one also tering worst-case execution times for software components
specialises the whole of the analysis to the mode from |, proceedings of the WCET Worksh@®o7.
the earliest phase on, without requiring several full anal- [2] M.-L. Ji, J. Wang, S. Li, and Z.-C. Qi. Automated worst-
yses. If several mode conditionals are congenerous, trace case execution time analysis based on program maddes.
partitioning takes care of exploiting this similarity auto Computer Journal52(5):530-544, 2009. Online 2007.
matically. Mode analysis thus is used to provide the split [31 J- E. Kim, R. Kapoor, M. Herrmann, J. Hardtein,

points for trace partitioning and the information to exploi F. Grzeschniok, and P. Lutz. Software behavior description
the different results of real-time embedded systems in component based soft-

ware development. IRroceedings of ISOR®ages 307—

References

311, 2008.
4. Other Approaches [4] J. E. Kim, O. Rogalla, S. Kramer, and A. Hamann. Extract-
ing, specifying and predicting software system properties
Operating modes have been studied before in the liter- in component based real-time embedded software develop-

ment. InProceedings of ICSEages 28-38, 2009.
P. S. M. PedroSchedulability of Mode Changes in Flexible
Real-Time Distributed System&hD thesis, University of

ature, with differing foci and differing definitions of what [5]
constitutes a mode. For a discussion of various notions of

modes, see [5]. _ York, September 1999.

Closely related to our approach is the work of [3, 4], [6] T.V.Raviand K. C. Gowda. Clustering of symbolic objects
which reports on a tool to semi-automatically derive oper- using gravitational approachlEEE TSMC-B 29(6):888—
ating modes from ASCET-MD models. Similar to our ap- 894, 1999.

proach, various heuristics are employed to arrive at impor- [7] X- Rival and L. Mauborgne. The trace partitioning abstra
domain.ACM TOPLAS29(5), 2007.

tant _modes, takl.ng propertlles such as syntactic patterns,8] R. Wilhelm, J. Engblom. A. Ermedahl, N. Holsti,
naming conventions and differences of measured execu-' * g Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-

tion times into account. The modes are then used to Vi- mann, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and

sualise mode-dependent signal flow and also for mode- p. Stenstrom. The determination of worst-case execution

dependent timing and schedulability analysis. times—Overview of methods and survey of tool&CM
Another work strongly related to ours is [2]. The au- TECS 7(3), 2008.

thors consider modes on a very low level, regarding differ- [9] R. Wilhelm, P. Lucas, O. Parshin, L. Tan, and B. Wachter.
ent paths through functions as different modes, and derive ~ 'MProving the precision of WCET analysis by input
a symbolic expression of WCET estimations. We con- constraints and model-derived flow constraints. In
L o) S. Chakraborty and J. Eberspacher, editéxrdyances in
centrate on larger programs, distinguishing only between Real-Time Sys)t/emspringer-Ve‘r)Iag 2010 ITo ;Ippear !
important modes according to some heuristics, and com- ’ ' '

