
The CGiS Compiler—A Tool Demonstration

Philipp Lucas�, Nicolas Fritz�, and Reinhard Wilhelm

Compiler Design Lab, Saarland University, Saarbrücken, Germany
{phlucas, cage, wilhelm}@cs.uni-sb.de

Abstract. The CGiS programming language is designed to open up the
parallel performance possibilities of graphics processing units (GPUs) to
general purpose programmers. This tool demonstration paper sums up
the ideas behind CGiS and the compiler framework and shows its usage.

1 Introduction

Graphics processing units (GPUs), the processors used by standard graphics
hardware in PCs, underwent a fast and incessant development in the past few
years. Designed to execute small programs determining the pixel colours in an
image, they make use of parallel execution units. Such programs can also be used
for non-graphics related general purpose programming on GPUs (GPGPU) [6].

Scientists have developed various parallel algorithms on GPUs and experi-
enced performance gains for several kinds of algorithms with high algebraic
density. But nearly all of such applications were implemented using the GPU’s
assembly language or languages with a very low level of hardware abstraction,
or the programmer had to interact with the graphics API to program the GPU.
Recently more general purpose programming languages for GPUs have emerged
(Brook for GPUs, Sh, CGiS [1, 8, 4]). In this tool demonstration paper we
introduce GPGPU and the compiler for our language, CGiS.

In Section 2, we briefly describe GPUs as targets for general purpose pro-
gramming. In Section 3, we describe the programming language and the usage
of CGiS. Section 4 gives an outlook into future development.

2 GPUs

We give a very short introduction without using the terminology of the graph-
ics world. For further information on features of current GPUs, the reader
should consult the documentation of APIs [9, 12] or homepages of vendors (ATI,
NVIDIA, 3Dlabs).

Because of their legacy, GPUs have a number of features distinguishing them
from usual CPUs. They are built around a pipeline model of graphics operations,
eventually transforming geometry data into screen pixels. The latter part of the
pipeline, which works on single pixels, is implemented with parallel execution
� Supported by DFG grant WI 576/10-3.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 105–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

106 P. Lucas, N. Fritz, and R. Wilhelm

pipelines, which have become programmable in recent years. The processor pro-
vides the usual arithmetical instructions on single-precision floating-point four-
vectors and some special computer graphics instructions. It is this part with
programmable, relatively simple and slow but parallel processing units1 that is
used in general purpose programming. A wide variety of applications have been
ported to GPUs, from image synthesis [10] and linear algebra [7] to database
operations [5] and cryptography [2].2

The main restrictions of GPUs lie in the memory model and the support
for control flow. Sections of memory are used either for reading or for writing
during the execution of a program. This can be switched by the controlling
application after a GPU program (hereafter: kernel) has completed its execution,
or the data have to be copied from write-memory into read-memory. Thus, only
a streaming kind of execution is possible. Newer GPUs offer restricted dynamic
control flow, whereas only straight-line control flow was available before. The
restriction concerns the nesting level of conditionals and the maximal iteration
count of loops, which are bounded.3 In general, only naturally parallel algorithms
without complex control flow can benefit from GPUs; but those which can take
advantage of the massive raw floating point power can outperform current CPUs.

The restrictions of this memory model and the number of outputs pose the
main difficulties to a compiler writer. Only in the newest generation of NVIDIA’s
GPUs, each of the programs running in parallel can output more than one four-
vector (upto four such vectors). Functions have to be split at appropriate points,
such that only few values need to be passed between the different kernels [3, 11].
Also, the severe limits on the control flow (if supported it at all) pose a diffi-
culty to compilers. But it is exactly this combination of restricted features with
powerful capabilities which makes high-level GPU languages desirable.

3 CGiS

A CGiS program [4] describes the computation as a sequence of parallel ex-
ecutions of functions over streams of data, where each function operates on a
single element of each stream. Figure 1 gives an example of the general layout
of a CGiS program. More elaborate examples and a detailed explanation can be
found in [4].

The usage of CGiS is illustrated in Figure 2. The programmer writes the code
to be executed on the GPU in CGiS. The compiler generates the kernels and
directing C++ code for the platform independent graphics API OpenGL [12], as
well as all necessary code to switch between kernels, to realign the streams and
to transfer data. The user interfaces with the generated code by giving pointers
to input data, starting the computation and receiving the output data.
1 For example, the current NVIDIA chip GeForce 7800 features 24 lanes at about

400 MHz and a memory bandwidth of more than 38 GB/s to 256 MB RAM.
2 See [6] for pointers to other applications.
3 To enable the programer to write general loops in CGiS, the language allows to

annotate loops with a guaranteed maximal number of iterations.

The CGiS Compiler—A Tool Demonstration 107

PROGRAM vector_add;
INTERFACE // Declare streams.
extern inout float4 in_out_data<_>;
extern in float4 in_data<_>;
CODE // Declare element functions.
function add(in float4 a, in float4 b, out float4 c){

c = a + b;
}
CONTROL // Perform parallel computation on streams.
forall(float4 io in in_out_data; float4 i in in_data){

add(io,i,io);
}

Fig. 1. A small CGiS program, computing the sum of two vectors of unspecified length

CGiS source CGiS compiler

GPU code

C++ code CGiS runtimeapplication

Fig. 2. Basic usage pattern of CGiS. Dotted lines denote linkage, solid arrows denote
in- or output. The left rectangles denote user-provided sources, the other rectangles
are the output of the CGiS compiler. The ellipses stand for the CGiS base system
components. There is no direct connection between the application and the GPU.

The GPU is invisible to the programmer and to the end user. The programmer
interacts only with the CGiS runtime system. For the user, the use of the GPU
is invisible, because the program computes in off-screen memory space.

With each GPU generation, new features become available. The compiler
generates code using features of a desired generation. Thus, the GPU code needs
a GPU of the chosen kind or a newer model.4 Currently, the main focus of the
CGiS compiler is on the NV30 generation of GPUs. We have begun upgrading
our compiler to the newer, more powerful NV40 generation.

The generated C++ code is independent of operating system or windowing
system. All such differences are either abstracted away in the runtime library of
CGiS (such as the procedure of creating an invisible window and an OpenGL
context) or are part of OpenGL proper and thus in itself platform independent.
Thus, the generated code can be compiled and run on any system with the
runtime and an appropriately powerful GPU. Currently, the CGiS runtime is
available for Windows and Linux (i386), though we expect it to be adaptable
trivially to other systems with the Windows or X window model and OpenGL
support. The main prerequisite for porting is the availability of current OpenGL

4 The programmer may generate code for various GPU architectures, the best fitting
of which is to be used at run-time of the application.

108 P. Lucas, N. Fritz, and R. Wilhelm

drivers. NVIDIA drivers are developed also for Solaris and FreeBSD on i386 and
for other processors with Windows, Linux or MacOS.

4 Future Work

When the adaption to the NV40 architecture is completed, we will focus on the
development of a general analysis and optimisation framework in the compiler.
At present very few optimisations are implemented. Then we will develop other
back-ends to support newer generations of GPUs. We also plan to create a general
library for linear algebra functions and a visualisation framework.

References

1. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for GPUs: Stream computing on graphics hardware. In Proceedings
of SIGGRAPH, 2004.

2. D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck. CryptoGraphics: Secret
key cryptography using graphics cards. In Proceedings of the RSA Conference,
pages 334–350, February 2005.

3. T. Foley, M. Houston, and P. Hanrahan. Efficient partitioning of fragment shaders
for multiple-output hardware. In Proceedings of Graphics Hardware, August 2004.

4. N. Fritz, P. Lucas, and P. Slusallek. CGiS, a new language for data-parallel GPU
programming. In B. Girod, H.-P. Seidel, and M. Magnor, editors, Proceedings of
“Vision, Modeling, and Visualization”, pages 241–248, 2004.

5. N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast computa-
tion of database operations using graphics processors. In SIGMOD, 2004.

6. General-purpose computation using graphics hardware. http://www.gpgpu.org,
2005.

7. J. Krüger and R. Westermann. Linear algebra operators for GPU implementation
of numerical algorithms. In Proceedings of SIGGRAPH, 2003.

8. M. D. McCool, Z. Qin, and T. S. Popu. Shader metaprogramming. In Eurographics
Workshop on Graphics Hardware. ACM, 2002. Revised version.

9. Microsoft. DirectX 9.0 C++ reference. http://msdn.microsoft.com/library/
en-us/directx9_c/directx/graphics/reference/reference.asp, August 2005.

10. T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan. Pho-
ton mapping on programmable graphics hardware. In Proceedings of the SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, 2003.

11. A. Riffel, A. E. Lefohn, K. Vidimce, M. Leone, and J. D. Owens. Mio: Fast
multipass partitioning via priority-based instruction scheduling. In Proceedings
of Graphics Hardware, August 2004.

12. M. Segal and K. Akeley. The OpenGL Graphics System: A Specification (Version
2.0), 2004.

	Introduction
	GPUs
	CGiS
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

