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Structure of the talk

Background
What the problem is, how could we handle it.

Problem statement
What to protect against, definitions.

Our contribution
Program analysis for computationally secure
information flow.

Using a weaker cryptographic primitive

Conclusions
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Background

Programs may

run in networked computers;

access confidential data;

communicate with other programs over the network.
some of them may be hostile.

⇒ leak confidential data.

How can we find out, whether a program may leak
confidential data?

Cannot test for it.
One can test for properties of program runs.
Confidentiality — all program runs are similar.
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Program Analysis

Analyse the text of the program.
Try to prove that it preserves confidentiality.

Try to automate the analysis.

The question of preserving confidentiality is
uncomputable.

An automatic analysis must have
False positives — labeling a secure program
insecure.

inconvinient, but causes no leaks.
False negatives — labeling an insecure program
secure.

unsafe.
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Program Analysis

Devise an analysis with no false negatives:

secure
︷ ︸︸ ︷

insecure
︷ ︸︸ ︷

︸ ︷︷ ︸

definitely secure
︸ ︷︷ ︸

may be insecure

programs
Set of

Reality:

Analysis:

and with as few false positives as possible.
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On the Attackers

Some communication partners of the program are
hostile.

What are their capabilities?
The security of the program depends on them.

Two main categories of attackers:
Passive.

Can read from the network.
Cannot send any new data to the network.

Active.
Can read from the network.
Can also send data to the network.

Active attackers are stronger than passive attackers.
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Only Passive Attackers

We only consider security against passive attackers. In
this case

The program has no dialogue with the environment.
The system may be modeled as follows:

The program is given its inputs. Some of the
inputs are confidential.
The program processes the inputs and produces
some outputs.
Some of these outputs are made public.

This is the usual problem of secure information flow in
programs.

If we want to handle active attackers, we have to know,
how to handle passive ones.
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Illustration

Program

Source

of inputs

inputs

Outputs

Public outputs

defines a probability
distribution D on inputs

Secret
Inputs

does not control
The attacker

Secure information flow:

independence of and
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Public outputs
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Secret
Inputs

does not control
The attacker

secure information flow:

independence of and

Computationally

computational
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What do Compl.-Theor. Def.s Give?

Allow to model cryptographic primitives more intuitively.
We use complexity-theoretic definitions of secure
cryptographic primitives.

No efficient algorithm can break the primitive.

For example — symmetric encryption: x = Ek(y)

Information-theoretically: x is not independent of y.
At least when k is shorter than y.

Computationally: x is independent of y.
As long as y does not depend on k.

Actually, the last condition is:

y is independent of → Ek →

Then also x is independent of → Ek →.
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Our Contribution

Definition of computationally secure information flow.

Static program analysis for a simple imperative
programming language.

Contains
assignments (with computations in RHS)
sequences of statements
if-then-else-branches
while-loops

The analysis handles symmetric encryption.

Proof of correctness of the analysis.
Cannot use standard results about fix-point
approximation.

A practical implementation of the analysis.
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Domain of the Analysis

Given a program P, the analysis
Takes a description of the distribution of inputs.
Returns a description of the distribution of outputs.

Description of distribution — set of pairs of variables
(X, Y ).

(Values of) variables in X are independent of
variables in Y .

Analysis is a function with domain and range
P(P(Var) × P(Var)).

Actually, we also have encrypting black boxes.
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Base Step of the Analysis

Consider the statement x = o(x1, . . . , xk)

Let X be a set of variables and EBBs.
Suppose that {x1, . . . , xk} is independent of X before
the statement.
Then x is independent of X after the statement.
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Requirements for the Encryption

Encryption must hide the identities of plaintexts and keys:

E must be repetition-concealing.
Let x1 = Ek(y1) and x2 = Ek(y2).
From x1, x2 impossible to find, whether y1 = y2.
For this, Ek must be probabilistic.

A standard property.

E must be which-key concealing.
Let x = Ek(y) and x′ = Ek′(y′).
From x, x′ impossible to find, whether k = k′.

A nonstandard property.
Some standard constructions achieve it.
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Analysing the Encryption

Consider the statement x = Ek(y)

Let X be a set of variables and EBBs.
Suppose that Ek is independent of X ∪ {y} before
the statement.

Note that y may be dependent of X.
Then x is independent of X after the statement.

Consider the statement k = Generate_Key()

Then Ek is independent of Ek after the statement.
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More Primitive Encryption

Which-key and repetition concealing encryption
primitives are usually constructed from more primitive
operations.

These operations are assumed to be pseudorandom
permutations (PRP).

Directly handling pseudorandom permutations may help
efficiency.

y0

Ek

x1

y1

Ek

x2

y2

Ek

xm

ym

rnd
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Our Contribution

Analysis for secure information flow for programs
without loops.

The encryption is assumed to be a PRP.

Additionally: means for checking, whether the outputs
of two programs have “the same” distribution.

For comparing our results with earlier ones.

We can automatically deduce the security of some
block-ciphers’ modes of operation.
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Earlier work

Programs without loops

Which-key and repetition concealing encryption

Cannot analyse encryption cycles

Ek1
(k2), Ek2

(k3), . . . , Ekn−1
(kn), Ekn

(k1)

Neither can we, when analysing PRPs.
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Conclusions

In this thesis we

gave an analysis for secure information flow, which can
analyse encryption operations;

showed that this analysis can be implemented
efficiently;

(probably) started the study of automated reasoning
about systems containing pseudorandom permutations.
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