Computationally Secure Information Flow

Promotionskolloquium, 16.09.2002

Peeter Laud

peeter_l@ut.ee

Universität des Saarlandes Tartu Ülikool

Cybernetica AS

Structure of the talk

- Background
 - What the problem is, how could we handle it.
- Problem statement
 - What to protect against, definitions.
- Our contribution
 - Program analysis for computationally secure information flow.
- Using a weaker cryptographic primitive
- Conclusions

Background

Programs may

- run in networked computers;
- access confidential data;
- communicate with other programs over the network.
 - some of them may be hostile.
- \Rightarrow leak confidential data.

Background

Programs may

- run in networked computers;
- access confidential data;
- communicate with other programs over the network.
 - some of them may be hostile.
- \Rightarrow leak confidential data.

How can we find out, whether a program may leak confidential data?

- Cannot test for it.
 - One can test for properties of program runs.

Background

Programs may

- run in networked computers;
- access confidential data;
- communicate with other programs over the network.
 - some of them may be hostile.
- \Rightarrow leak confidential data.

How can we find out, whether a program may leak confidential data?

- Cannot test for it.
 - One can test for properties of program runs.
 - Confidentiality all program runs are similar.

Program Analysis

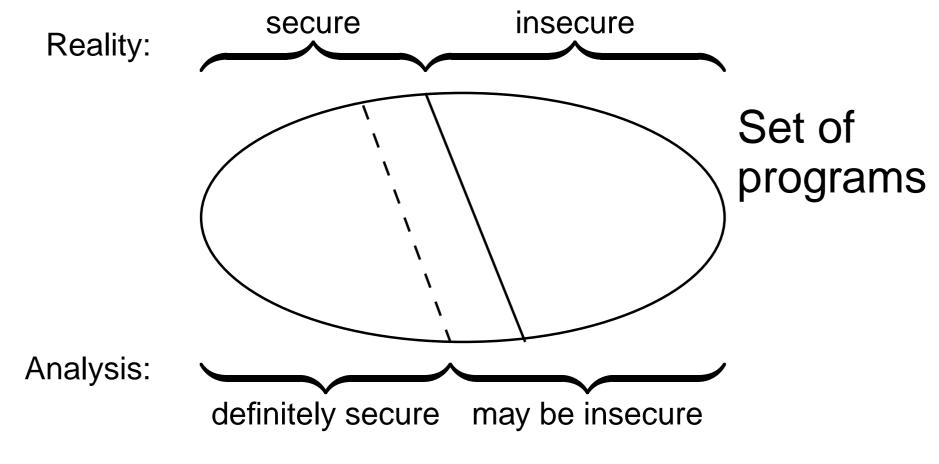
- Analyse the text of the program.
 - Try to prove that it preserves confidentiality.
- Try to automate the analysis.
- The question of preserving confidentiality is uncomputable.

Program Analysis

- Analyse the text of the program.
 - Try to prove that it preserves confidentiality.
- Try to automate the analysis.
- The question of preserving confidentiality is uncomputable.
- An automatic analysis must have
 - False positives labeling a secure program insecure.
 - inconvinient, but causes no leaks.
 - False negatives labeling an insecure program secure.
 - 🧉 unsafe.

Program Analysis

Devise an analysis with no false negatives:



and with as few false positives as possible.

Structure of the talk

Background

What the problem is, how could we handle it.

Problem statement

- What to protect against, definitions.
- Our contribution
 - Program analysis for computationally secure information flow.
- Using a weaker cryptographic primitive
- Conclusions

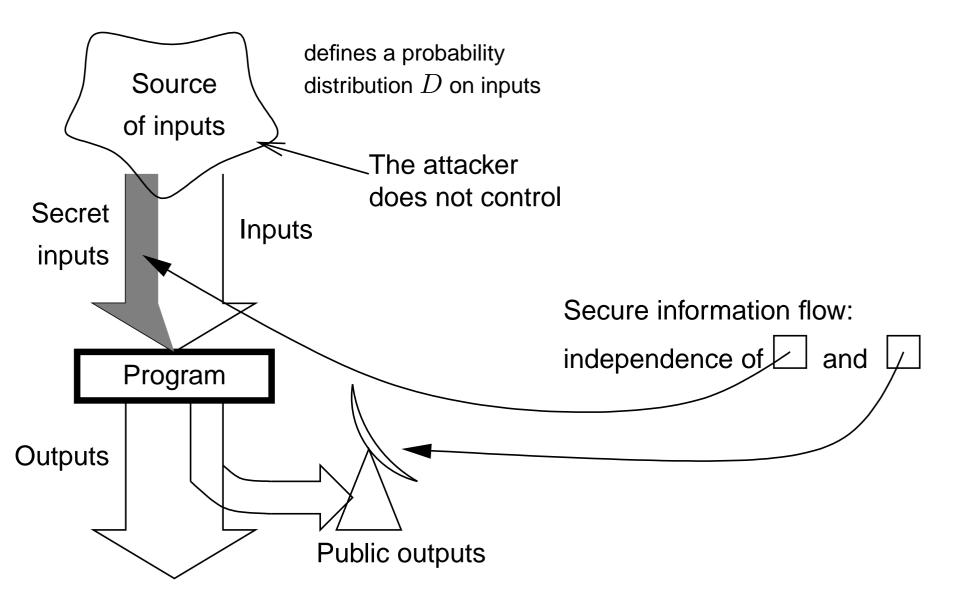
On the Attackers

- Some communication partners of the program are hostile.
 - What are their capabilities?
 - The security of the program depends on them.
- Two main categories of attackers:
 - Passive.
 - Can read from the network.
 - Cannot send any new data to the network.
 - Active.
 - Can read from the network.
 - Can also send data to the network.
- Active attackers are stronger than passive attackers.

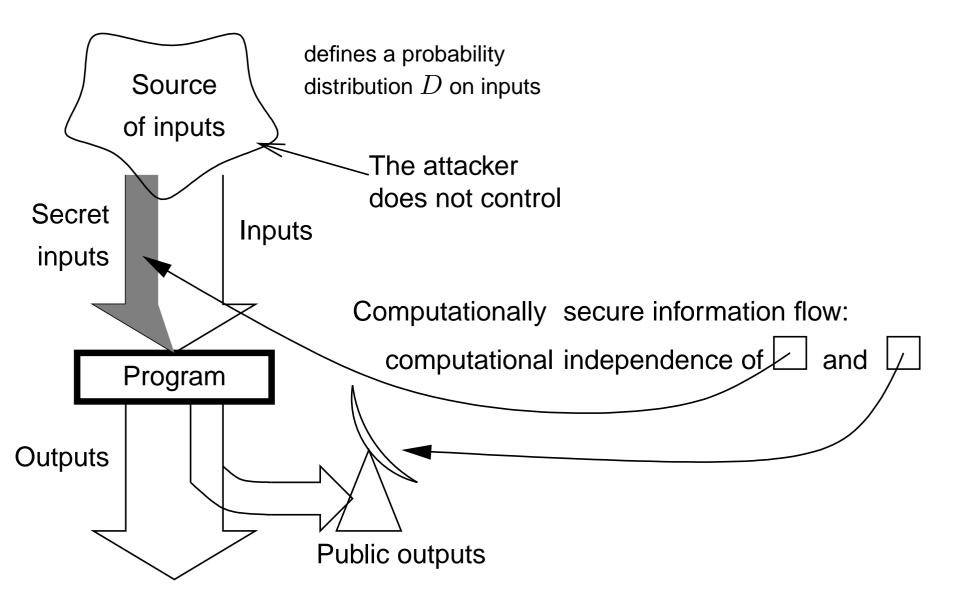
Only Passive Attackers

- We only consider security against passive attackers. In this case
 - The program has no dialogue with the environment.
 - The system may be modeled as follows:
 - The program is given its inputs. Some of the inputs are confidential.
 - The program processes the inputs and produces some outputs.
 - Some of these outputs are made public.
- This is the usual problem of secure information flow in programs.
- If we want to handle active attackers, we have to know, how to handle passive ones.

Illustration



Illustration



What do Compl.-Theor. Def.s Give?

- Allow to model cryptographic primitives more intuitively.
 - We use complexity-theoretic definitions of secure cryptographic primitives.
 - No efficient algorithm can break the primitive.
- ▶ For example symmetric encryption: $x = \mathcal{E}_k(y)$
 - Information-theoretically: x is not independent of y.
 At least when k is shorter than y.
 - Computationally: x is independent of y.
 - \checkmark As long as y does not depend on k.

What do Compl.-Theor. Def.s Give?

- Allow to model cryptographic primitives more intuitively.
 - We use complexity-theoretic definitions of secure cryptographic primitives.
 - No efficient algorithm can break the primitive.
- ▶ For example symmetric encryption: $x = \mathcal{E}_k(y)$
 - Information-theoretically: x is not independent of y.
 At least when k is shorter than y.
 - Computationally: x is independent of y.
 - \blacktriangleright As long as y does not depend on k.

Actually, the last condition is:

y is independent of $\rightarrow [\mathcal{E}_k] \rightarrow$

Then also x is independent of $\rightarrow [\mathcal{E}_k] \rightarrow$.

Structure of the talk

Background

- What the problem is, how could we handle it.
- Problem statement
 - What to protect against, definitions.
- Our contribution
 - Program analysis for computationally secure information flow.
- Using a weaker cryptographic primitive
- Conclusions

Our Contribution

- Definition of computationally secure information flow.
- Static program analysis for a simple imperative programming language.
 - Contains
 - assignments (with computations in RHS)
 - sequences of statements
 - *if-then-else*-branches
 - while-loops
 - The analysis handles symmetric encryption.
- Proof of correctness of the analysis.
 - Cannot use standard results about fix-point approximation.
- A practical implementation of the analysis.

Domain of the Analysis

- Given a program P, the analysis
 - Takes a description of the distribution of inputs.
 - Returns a description of the distribution of outputs.
- Description of distribution set of pairs of variables (X, Y).
 - (Values of) variables in X are independent of variables in Y.
- Analysis is a function with domain and range $\mathcal{P}(\mathcal{P}(\mathbf{Var}) \times \mathcal{P}(\mathbf{Var})).$

Domain of the Analysis

- Given a program P, the analysis
 - Takes a description of the distribution of inputs.
 - Returns a description of the distribution of outputs.
- Description of distribution set of pairs of variables and encrypting black boxes (EBB) (X, Y).
 - (Values of) variables and EBBs in X are independent of variables and EBBs in Y.
- Analysis is a function with domain and range $\mathcal{P}(\mathcal{P}(\mathbf{Var} \uplus \mathbf{Var}) \times \mathcal{P}(\mathbf{Var} \uplus \mathbf{Var})).$

Actually, we also have encrypting black boxes.

Base Step of the Analysis

- Consider the statement $x = o(x_1, \ldots, x_k)$
 - Let X be a set of variables and EBBs.
 - Suppose that $\{x_1, \ldots, x_k\}$ is independent of X before the statement.
 - Then x is independent of X after the statement.

Requirements for the Encryption

Encryption must hide the identities of plaintexts and keys:

- *E* must be *repetition-concealing*.
 - Let $x_1 = \mathcal{E}_k(y_1)$ and $x_2 = \mathcal{E}_k(y_2)$.
 - From x_1, x_2 impossible to find, whether $y_1 = y_2$.
 - For this, \mathcal{E}_k must be probabilistic.
- E must be which-key concealing.
 - Let $x = \mathcal{E}_k(y)$ and $x' = \mathcal{E}_{k'}(y')$.
 - From x, x' impossible to find, whether k = k'.

Requirements for the Encryption

Encryption must hide the identities of plaintexts and keys:

- *E* must be *repetition-concealing*.
 - Let $x_1 = \mathcal{E}_k(y_1)$ and $x_2 = \mathcal{E}_k(y_2)$.
 - From x_1, x_2 impossible to find, whether $y_1 = y_2$.
 - For this, \mathcal{E}_k must be probabilistic.
 - A standard property.
- E must be which-key concealing.
 - Let $x = \mathcal{E}_k(y)$ and $x' = \mathcal{E}_{k'}(y')$.
 - From x, x' impossible to find, whether k = k'.
 - A nonstandard property.
 - Some standard constructions achieve it.

Analysing the Encryption

- Consider the statement $x = \mathcal{E}_k(y)$
 - Let X be a set of variables and EBBs.
 - Suppose that $[\mathcal{E}_k]$ is independent of $X \cup \{y\}$ before the statement.
 - Note that y may be dependent of X.
 - Then x is independent of X after the statement.
- Consider the statement $k = Generate_Key()$
 - Then \mathbb{E}_k is independent of \mathbb{E}_k after the statement.

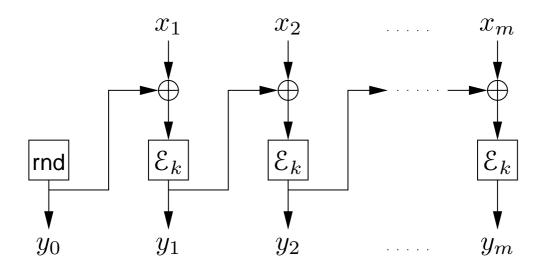
Structure of the talk

Background

- What the problem is, how could we handle it.
- Problem statement
 - What to protect against, definitions.
- Our contribution
 - Program analysis for computationally secure information flow.
- Using a weaker cryptographic primitive
- Conclusions

More Primitive Encryption

- Which-key and repetition concealing encryption primitives are usually constructed from more primitive operations.
- These operations are assumed to be *pseudorandom* permutations (PRP).
- Directly handling pseudorandom permutations may help efficiency.



Our Contribution

- Analysis for secure information flow for programs without loops.
 - The encryption is assumed to be a PRP.
- Additionally: means for checking, whether the outputs of two programs have "the same" distribution.
 - For comparing our results with earlier ones.
- We can automatically deduce the security of some block-ciphers' modes of operation.

Earlier work

- Programs without loops
- Which-key and repetition concealing encryption
- Cannot analyse encryption cycles

 $\mathcal{E}_{k_1}(k_2), \mathcal{E}_{k_2}(k_3), \dots, \mathcal{E}_{k_{n-1}}(k_n), \mathcal{E}_{k_n}(k_1)$

Neither can we, when analysing PRPs.

Conclusions

In this thesis we

- gave an analysis for secure information flow, which can analyse encryption operations;
- showed that this analysis can be implemented efficiently;
- (probably) started the study of automated reasoning about systems containing pseudorandom permutations.