
1

Sensors Data
Acquisition Memory Processor Output Actuators

A/D

Codec

Digital
(Fifo, Latch
Register)

Dual Port
RAM

RAM

Multi Port
RAM

Shared
RAM

Fifo

Micro-
controller

Transputer

DSP

Micro-
processor

Core-
Processor

DSP Multi-
Proc essor

System

D/A

Digital

SSI/SPI

CAN,
Profibus

Display

Network
(Ethernet)

A more generall view to
different functional blocks
used in embedded
systems.

Bus-
Interfaces

Voltage,
Current

Temp-
erature

Light,
Pressure,

Noise

Audio,
Ultrasound

Position,
Velocity

Acceleration

Human
Interfaces

....

Relay, Led
Lamp

Loud-
speaker

Switch

Motor

....

31.10.02

Part of next lectures

2

Microcontroller (CISC or RISC)

• CISC (Complex Instruction Set Computer)
– 50 to 250 complex multi-cycle instructions

– Example: MC68HC705 (Motorola)

• RISC (Reduced Instruction Set Computer)
– 30 to 50 special one cycle instructions within a pipeline structure

– Example: PIC 54C5x (MicroChip)

3

Memory

Central Processor
Unit (CPU)

Clock

Usefull
Program

Switch

Keypad

Sensor

Expanded View of
a Microcontroller

Led

Beeper

Actuator

Display

Program
Memory

Data
Memory

I/O &
Peripherals

Central Procesing Unit
CPU

Oscillator &
Clock

Digital
Inputs

Digital
Outputs

Address Bus Data Bus

Reset

4

USER EPROM/OTPROM - 504 Bytes

MASK OPTION REGISTER (EPROM/OTPROM)

Personalty EPROM/OTPROM - 64 Bit

CPU Control
ARITHMTIC/LOGIC

UNIT

Accumulator

Index Register

Stack Pointer

Program Counter

CONDITION CODE REGISTER (H,N,Z,C)

DDRA
PORT

A

DDRB
PORT

B

15 Bit Multifunction
Timer

:2
INTERNAL
OSCILLATOR

COP WATCHDOG
ILLEGAL ADDRESS

DETECT

LOW VOLTAGE
DETECT

OSC1
OSC2

Vdd
Vss

RESET

/IRQ,Vpp

PB1/OSC3

PB0

PA7*
PA6*
PA5*
PA4*
PA3$
PA2$
PA1$
PA0$

*: 8 mA Sink Capacity
$: IRQ Interrupt Capacity

Features

MC68HC705K1

• Memory Mapped I/O
• 504 Bytes Erasable ROM
• 32 Bytes User Ram
• 64 Bit Personaltity Rom
• 10 Bidrectional I/O (SPullDown)
• 8 mA Sink Capability on 4 I/O
• External Interrupt on 4 I/O
• Hardware Mask and Flag for

External Interrupt
• Fully Static Operation with no

Minimum Clock Speed
• On Chip Oscillator (Crystal,

Ceramic)
• Computer Operating Properly

COP Watchdog
• 15 Bit Multifunction Timing (IRQ)
• Power-Saving Stop, Wait, Halt, and

Data-Retention Modes
• 8 x 8 Unsigned Multiply Instruction
• 16 Pin Plastic Dual In-Line Package

(PDIP)
• 16 Pin Small Outline Integrated
Circuit (SOIC)

• 16 Pin Ceramic (Cerdip)

SRAM - 32 Bit

5

Memory Support
Memory
• The CPU is able to address 1 Kbyte of memory space. Typically the program counter (PC) advances one

address through the memory, reading the programm instructions and data.
• The program instructions are hold in the EEPROM part of memory as well as fixed data, user defined

vectors, and interrupt service routines.
• The RAM portion of the memory contains the variable data. I/O register are memory-mapped so that the

CPU can access their locations in the same way that it accesses all other memory locations.
Input/Output Section
• The first 32 addresses of the memory locations, $0000 to $001F, are the I/O section. There are the

addresses of the I/O control registers, status registers, and data registers.
RAM
• Addresses $00E0 to $00FF serve as both the user RAM and the stack RAM. The CPU uses five RAM bytes

to store/save the content of all CPU registers before processing an interrupt. If a subroutine is executed,
the CPU uses two bytes to store the return address. The stack pointer (SP) decrements during pushes and
increments during pulls.

EPROM/OTPROM
• A MCU with a quarz window has 504 bytes of erasable, programmable EPROM (erased by ultravioletlight).

A MCU without a quarz window allows only a one-time programming action (OTPROM).
Personality EPROM/OTPROM
• A MCU with a quarz window has an additional 64-bit array of erasable, programmable EPROM. This

locations serves as a personality memory area. Without a quarz window, this area is a one time
programmable memory location.

6

A memory map is a pictorial representation of the total MCU memory space.

I/O
32 Bytes

Unused
192 Bytes

Stack Ram
32 Bytes

$0000

Unused
256 Bytes

User Eprom
496 Bytes

Test Rom and
COP Register

User Vectors
(EPROM)
8 Bytes

$001F
$0020

$00DF
$00E0

$00FF
$0100

$01FF
$0200

$03EF
$03F0

$03EF
$03F8

$03FF

Port A Data Register

Port B Data Register

Unused

Unused

Port A Data Direction Register

Port B Data Direction Register

Unusedr

Unused

Timer Status & Control

Timer Counter Register

IRQ Status & Control

Unused

Unused

Unused

PEPROM Bit Select Register

PEPROM Status & Control

Pulldown Regsiter A

Pulldown Register B

Unusedl

Unusedl

Unusedl

Unusedl

Unusedl

Mask Option Register

EPROM Programming Register

Unused

Unused

Unused

Unused

Unused

Unused

Reserved

COP Register
Reserved

Reserved
Timer Vector (High Byte)
Timer Vector (Low Byte)
IRQ Vector (High Byte)r
IRQ Vector (Low Byte)
SWI Vector (High Byte)
SWI Vector (Low Byte)
Reset Vector (High Byte)
Reset Vector (Low Byte)

$03F7
.
.
.
.
.
.
.
.
.

$03FF

$00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

$1F

$03F0
$03F1

Typical Memory Map

7

CPU Registers: In the M68HC05 there are only 5 registers, because it is a relatively simple CPU.

Stack Pointer (SP)

C1 ZI NH1 1

15

15 5

11100000000

7 0

0

0

7

7 0

7 0

Index Register (X)

Accumulator (A)

Program Counter (PC)

Condition Code Register (CCR)

A

C

PCL

SP

X

PCH

Programming ModelAccumulator:

• General purpose 8-bit register
• The MCU uses the accumulator to hold operands and

results of arithmetic/nonarithmetic results.

Index Register

• In the indexed addressing modes, the MCU uses
the byte in the index register to determine the
conditional address of the operand; the 8-bit index
register generally serve as an additional temporary location

Stack Pointer

• A 16-bit register that contains the address of the
next location on stack. If a reset occurs the SP is
set to $00FF. The address in the stack pointer
decrements as data is pushed onto the stack and
increments as data is pulled from the stack. The
eleven MSBs are fixed; the stack handles addresses
from $00E0 to $00FF. A subroutine has to be limited
to 32 locations (only in this example). A subroutine
uses two stack locations; an interrupt uses five locations.

Condition Code Register

• The CCR is an 8-bit register, which contains the interrupt
the interrupt mask (I) and four flags. The flags indicate the
results of executed instructions.

The flags are: Half-Carry flag, Interrupt-Mask (i), Negative-
Flag, Zero-Flag and Carry/Borrow-Flag.

Program Counter

• A 16-bit register that contains the address of the next
instruction or operand the CPU has to fetch. The six most
significant bits are not used and assumed to 0. The address
the PC automatically increments to the next memory location
every time an instruction or operand is fetched. Branch, jump
and interrupt operations load the program counter with an
address, which is not in sequential order.

0 0 0 0 0 0

8

Arithmetic/Logic Unit (ALU):

• The Arithemtik/Logic Unit performs the arithmetic
and logical operations defined by the instruction set.

• The decoded instructions set up the ALU for the operation.
Most binary arithmetic instructions are based on addition and
subtraction. Multiplication is not achieved as a discrete
operation. It is realized by a number of additions and shift
operations within the ALU. The multiply instruction (MUL)
needs 11 internal processor cycles to complete the chain of
operations.

For more details especially for the Interrupt-structure, Timer and
Input/Output:

see: www.motorola.com/semiconductor

9

MC68HC705
Instruction Set: The MCU has a set of basic instructions. The instructions can be divided

into five different categories:

• Register/memory,
• Read-modify-write
• Branch,
• Bit manipulation
• Control

Addressing Modes: The CPU uses eight adressing modes for accessing data. These addressing modes define
the manner in which the CPU finds the data to execute an instruction. The eight addressing
modes are:

• Inherent
• Immediate
• Direct
• Extended
• Indexed no offset
• Indexed 8-Bit offset
• Indexed 8-Bit offset
• Relative

10

Instruction Short
Form

Adressing Modes
for Operand

Cycles

Load Accumulator from Memory LDA 6 2-5
Load Index Register from Memory LDX 6 2-5
Store Accumulator in Memory STA 5 4-6
Store Index Register in Memory STX 5 4-6
Add Memory to Accumulator ADD 6 2-5
Add Memory and Carry to Accumulator ADC 6 2-5
Subtract memory contents from accumulator SUB 6 2-5
Subtract memory from Accumulator with Borrow SBC 6 2-5
AND Memory to Accumulator AND 6 2-5
OR Memory with Accumulator ORA 6 3-6
Exclusive OR memory with Accumulator EOR 6 2-5
Aritmetic Compare Accumulator with memory CMP 6 2-5
Arithmetic Compare Index Register with Memory CPX 6 2-5
Bit Test Memory with Accumulator (Logical Compare) BIT 6 2-5
Unsigned Multiply MUL - 11
Count: 15

MC68HC705: Register/Memory Instructions

Most of these instructions use two operands. One operand is either the accumulator or the index register.
The other operand is obtained from memory using one one of the following addressing modes:

• Immediate, Direct, Extended, Indexed (no offset), Indexed (8-bit offset), Index (16 Bit offset)

11

Instruction Short
Form

Addressing Mode
for Operand

Cycles

Increment INC 5 3-5
Decrenent DEC 5 3-5
Clear CLR 5 3-6
Complement COM 5 3-5
Negate (Twos Complement) NEG 5 3-6
Rotate Left thruough Carry ROL 5 3-5
Rotate Right through Carry ROR 5 3-5
Logical Shift Left LSL 5 3-5
Logical Shift Right LSR 5 3-5
Arithemtic Shift Right ASR 5 3-6
Arithmetic Shift Left ASL 5 3-6
Test for Negative or Zero TST 5 3-5
Count: 12

MC68HC705: Read-Modify-Write Instructions

These instructions read a memory location or a register, modify/test the content, and write the modified
value back to the register or to the memory. The test for negative or zero (TST) instruction is an exception
to the read-modify-write sequence, because ist does not write A replacement value. Used Adressing modes are:

• Inherent, Direct, Indexed (no offset), Indexed (8-bit offset), Indexed (16-bit offset)

12

Instruction Short Form Adrressing Mode
for Operand

Cycles

Branch Always BRA 1 3

Branch Never BRN 1 3

Branch if Higher BHI 1 3
Banch if Bit n of M = 0 BRCLR 1 5
Branch if Bit n of M = 1 BRSET 1 5
Branch Lower or Same BLS 1 3
Branch if Carry Bit Clear BCC 1 3

Branch if Higher or Same BHS 1 3

Branch if Carry Bit Set BCS 1 3

Branch if Lower BLO 1 3
Branch if Not Equal BNE 1 3

Branch if Equal BEQ 1 3
Branch if Half Carry Clear BHCC 1 3
Branch if Half Carry Set BHCS 1 3
Branch if Plus BPL 1 3
Branch if Minus BMI 1 3
Branch if Interrupt Mask is Clear BMC 1 3
Branch if Interrupt Mask is Set BMS 1 3
Branch if Interrupt Line is Low BIL 1 3
Branch if Interrupt Line is High BIH 1 3
Branch to Subroutine BSR 1 6
Jump uncoditional JMP 5 2-4
Jump Subroutine JSR 6 5-7
Count 23

MC68HC705: Branch/Jump Instructions

These instructions branch if a particular
condition is met. Otherwise, no operation
is performed. Branch instructions are two
byte instructions. The jump instructions
have no register operand. The jump/branch
instructions use the following addressing
modes:

JMP/JSR:
• Direct
• Extended
• Indexed (no offset)
• Indexed (8-bit offset)
• Indexed (16-bit offset)

Branch:
Relative

By branch/jump instructions the MCU is able
to interrupt the normal sequence of the
program counter when a test condition is met,
otherwise the branch is not performed.

13

Instruction Short
Form

Address Modes
for Opernad

Cycles

Transfer Accumulator to Index Register TAX 1 2
Transfe Index Register to Accumulator TXA 1 2
Set Carry Bit SEC 1 2
Clear Carry Bit CLC 1 2
Set Interrupt Mask Bit SEI 1 2
Clear Interrupt Mask Bit CLI 1 2
Software Interrupt SWI 1 10
Return from Subroutine RTS 1 6
Return from Interrupt RTI 1 9
Reset Stack Pointer RSP 1 2
No Operation NOP 1 2
Stop STOP 1 2
Wait WAIT 1 2
Count: 13

MC68HC705: Control Instructions

These instructions are register reference instructions and are only used to control the
operation of the processor during program execution. Control instructions use the
inherent addressing mode.

14

Instruction Short Form Address Modes
of Operands

Cycles

Set Bit n BSET n [0...7] 1 5

Clear Bit n BCLR n [0...7] 1 5
Count: 2

MC68HC705: Bit Manipulation Instructions

The MCU is capable of setting or clearing any writable bit which is located in the first 256 bytes of
the memory space. In this area are all port registers, port DDRs, timer, timer control, and on-chip
and RAM locations. An additional feature allows the software to test and branch on the state of any bit
within the 256 locations. The bit clear, bir set, and bit test and branch functions are all one-cycle instructions.
These instructions use the direct addressing mode.

15

Immediate instructions contain a value which is to be used in an operation with the value in the accumulator
or index register. Immediate instructions require no memory address and are two bytes long. The opcode is the
first byte and the immediate data value is the second byte.

Example: 0200 A6 02 LDA #$12 /* Load accumulator with immediate value */

$0200 $A6 /* MCU reads opcode $A6, load accumultaor with the value

immediately follows the opcode */
$0201 $12 /* MCU reads the immediate data $12 from location

$0201 into the accumulator*/

Inherent instructions have no operand, such as return from interrupt (RTI). Some of the instructions act
on data in the CPU registers, such as set carry flag (SEC) and increment accumulator (INCA). The
instructions require no memory address and are one byte long (8-bit CPU).

Eample: 0200 $4C INCA /* Increment accumulator */

$0200 $4C /* MCU reads opcode $4C, increment accumulator */

/* MCU adds one to the current accumulator value */
/* MCU stores the new value in the accumulator, and

adjusts the condition code flag bits, if necessary */

Addressing Modes

16

By the extended addessing mode, the effective address of the argument is contained in the two bytes
following the opcode byte. Instructions with extended addressing modes are capable of referencing
arguments anywhere in memory by a thre-byte instruction.

Example: 0200 C6 03 65 LDA $0365 /* Load accumulator with immediate value */

$0200 $C6 /* MCU reads opcode $C6, load accumulator with

extended addressing mode */
$0201 $03 /* MCU reads $03 from location $0201. $03 is interpreted

as the high-order half of an address */
$0202 $65 /* MCU reads $65 from location $0202. $65 is interpreted

as the low-order half of an address */
/* MCU calculates the complete extended address $0365

from the two values. The address is placed on the the
address bus and the MCUreads the data value from
location $0365 into the accumulator */

Addressing Modes

17

Direct addressing mode can access any of the first 256 memory addresses with only two bytes.The first byte
is the opcode and the second byte is the low byte of the oparand address. In the direct mode, the CPU uses
automatically $00 as the high byte of the operand address. BRESET and BRCLR are three-byte instructions
that use direct addressing to access the operand and relative addressing to specify a branch destination.

Example: 0200 B6 E0 LDA $E0 /* Load accumulator from a direct page address */

$0200 $B6 /* MCU reads opcode $B6, load accumulator with

direct addressing mode */
$0201 $E0 /* MCU reads $E0 from location $0201. This $E0 is

interpreted as the low order half of an address in the
direct page ($0000 to $00FF)*/

/* MCU builds the complexe direct address $00E0 from
the assumed high-order value $00 and thepreviously
read low-order address value. This address is set on the
bus and the MCU reads the data value from location
$00E0 into the accumulator */

Addressing Modes

18

In the indexed mode with no offset the effective address of the argument is contained in the 8-bit index register.
This addressing mode can access the first 256 memory locations. The instructions are only one byte long. This
mode is only used to move a pointer through a table or to hold the address of a frequently referenced RAM or
I/O location

Example: 0200 F6 LDA 0,X /* Load accumulator from address pointed to by X */

$0200 $F6 /* MCU reads opcode $F6, load accumulator with

indexed addressing mode with no offset */
/* MCU builds a complete address by adding $0000 to

the contents of the 8-bit index register X */
/* The builded address is set on the bus and the MCU

reads the data value from that location into the
accumulator */

Addressing Modes

19

In the indexed mode with 8-bit offset, the effective address is the sum of the contents of the unsigned
index register X and the unsigned byte, which followes the opcode. This mode is usefull for selecting
the Ith element in an n element table. With the two-byte instruction , I is typically in X with the address of
the beginning of the table in the instruction.

Example: 0200 E6 05 LDA 5,X /* Load accumulator with the 6th item in table
starting at X */

$0200 $E6 /* MCU reads opcode $F6, load accumulator with

indexed 8-bit offset addressing mode */
$0201 $05 /* MCU reads 8-bit offset ($05) from address $0201 */

/* MCU builds a complete address by adding the value
just read ($05) to the contents of the 8-bit index
register X */

/* This address is placed on the address bus and the
CPU reads the data value from that location to the
accumulator */

Addressing Modes

20

In the indexed mode with 16-bit offset, the effective address is the sum of the contents of the unsigned
index register X and the two unsigned byte, which followes the opcode. This mode is usefull for selecting
the Ith element in an n element table. With the three-byte instruction , I is typically in X with the address of
the beginning of the table in the instruction.

Example: 0200 D6 03 77 LDA $377,X /* Load accumulator with the Xth item in table
at $0377 */

$0200 $D6 /* MCU reads opcode $D6, load accumulator using

indexed 16-bit offset addressing mode */
$0201 $03 /* MCU reads high-order half of 16-bit base address

($03) from address $0201*/
$0202 $77 /* MCU reads low-order half of 16-bit base address

($77) from address $0202*/
/* MCU builds a complete address by adding the

contents of the 8-bit index register (X) to the 16-bit
base address previously read */

/* The address is set on the bus and the MCU reads
the data value from that location into the accumulator */

Addressing Modes

21

The relative addressing mode is exclusively used in branch instructions. In relative addressing mode, the content
of the 8-bit signed byte following the opcode (offset). Is added to the PC if, and only if, the branch conditions are
true.

Example: 0200 27 rr BEQ DEST /* Branch to DEST if Z=1 (equal or zero) */

$0200 $27 /* MCU reads opcode $27, branch if Z=1. The Z

condition code will be 1 if the result of the previous
arithmetic or logical operation was zero *7

$0201 $rr /* MCU reads the offset value $rr from loaction $201.
After this cycle the program counter (PC) is pointing at
the first byte of the next instruction ($0202(*/
($03) from address $0201*/

/* If Z-bit is zero, no action takes place in this cycle, and
the program will just continue to the next instruction
at $0202. If Z-bit is one, the MCU will add the signed
offset $rr to the present value in the PC to get the address
of the branch destination. This causes program execution
to start from the addres DEST */

Addressing Modes

22

MC68HC705:

Max count of different instructions is 65; with the various addressing modes
the MCU works with 207 various instructions.

Why ??

Source: Understanding Small Microcontrollers; James M. Sibigtroth, Motorola CSIC

Microcontroller Division,

23

Simple Example for MC68HC05

• Read state of switch at port A bit-0; 1 = closed
• When switch closed, light LED on for about 1 second, LED on
• Turn LED off (port A bit-7 = 0)
• When port A bit-7 = 0; Wait for switch releases, then repeat.
• Debounce switch for 50 ms on & off

•Note: The timing is based on the instruction execution times.

24

Example:Begin

Set Initial Conditions
Port A bit 7 = 1 (Led off)
Port A bit 7 = Output

Read Switch

Closed ?

Delay to Debounce

Turn on Led

Switch
still closed ?

Delay to Debounce

Turn off LED

Delay 1 Second

$BASE 10T

PORTA EQU $00 /* Direct address port A*/
DDRA EQU $04 /* Data direction control, port A*/
TEMP1 EQU $E4 /* One byte scratch storage loaction */

ORG $0200 /* start at this location */

INIT LDA #$80 /* Begin initialisation */
STA PORTA /* LED is off */
STA DDRA /* Set port A bit-7 as output */

TOP LDA PORTA /* Read switch at LSB of port A */
AND #$01 /* Test bit-0 */
BEQ TOP /* Loop till bit-0 = 1*/
JSR DLY50 /* Delay about 50 ms to debounce */
BCLR 7, PORTA /* Turn on LED (bit-7 = 0 */
LDA #20 /* Decimal 20 assembles to $14 */

DLYLP JSR DLY50 /* Delay 50 ms */
DECA /* Loop counter fro 20 loops */
BNE DLYLP /* 20 times (20-19,...1-,0) */
BSET 7, PORTA /* Turn LED off */

OFFLP BRESET 0, PORTA, OFFLP /* Loop here till switch off */
JSR DLY50 /* Debounce Release */
BRA TOP /* Look and wait for next swicth closed */

*/ Subroutine */

DLY50 STA TEMP1 /* Save accunulator in RAM*/
LDA #65 /* Do outer loop 32 times */

OUTLP CLRX /* X used as inner loop count */
INNRLP DECX /* (0-FF, FF-FE,1-0), 256 times ! */

BNE INNRLP /* 6 cycles * 256 * 500 ns/cycle = 0.768 ms*/
DECA /* (65-64,, 1-0) */
BNE OUTLP /* 154 cycles * 65*500ns/cycle = 50.212 ms*/
LDA TEMP1 /* Recover saved Accumulator val*/
RTS /* Return */

25

A memory map is a pictorial representation of the total MCU memory space.

I/O
32 Bytes

Unused
192 Bytes

Stack Ram
32 Bytes

$0000

Unused
256 Bytes

User Eprom
496 Bytes

Test Rom and
COP Register

User Vectors
(EPROM)
8 Bytes

$001F
$0020

$00DF
$00E0

$00FF
$0100

$01FF
$0200

$03EF
$03F0

$03EF
$03F8

$03FF

Port A Data Register

Port B Data Register

Unused

Unused

Port A Data Direction Register

Port B Data Direction Register

Unusedr

Unused

Timer Status & Control

Timer Counter Register

IRQ Status & Control

Unused

Unused

Unused

PEPROM Bit Select register

PEPROM Status & Control

Pulldown Regsiter A

Pulldown Register B

Unusedl

Unusedl

Unusedl

Unusedl

Unusedl

Mask Option Registerl

EPROM Programming Register

Unused

Unused

Unused

Unused

Unused

Unused

Reserved

COP Register
Reserved

Reserved
Timer Vector (High Byte)
Timer Vector (Low Byte)
IRQ Vector (High Byte)r
IRQ Vector (Low Byte)
SWI Vector (High Byte)
SWI Vector (Low Byte)
Reset Vector (High Byte)
Reset Vector (Low Byte)

$03F7
.
.
.
.
.
.
.
.
.

$03FF

$00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

$1F

$03F0
$03F1

Typical Memory Map

26

Sensors Data
Acquisition Memory Processor Output Actuators

A/D

Codec

Digital
(Fifo, Latch
Register)

Dual Port
RAM

RAM

Multi Port
RAM

Shared
RAM

Fifo

Micro-
controller

Transputer

DSP

Micro-
processor

Core-
Processor

DSP Multi-
Proc essor

System

D/A

Digital

SSI/SPI

CAN,
Profibus

Display

Network
(Ethernet)

A more generall view to
different functional blocks
used in embedded
systems.

Bus-
Interfaces

Voltage,
Current

Temp-
erature

Light,
Pressure,

Noise

Audio,
Ultrasound

Position,
Velocity

Acceleration

Human
Interfaces

....

Relay, Led
Lamp

Loud-
speaker

Switch

Motor

....

31.10.02

Part of next lectures

27

• Wireless handsets and personal communication systems
• Portable audio players
• Personal medical devices
• Digital cameras
• Internet/information purposes
• Power-efficient multichannel telephony systems
• Speech recognition and decoding
• Line or Acoustic Echo cancellation; noise cancellation and

reduction
• Modulation and demodulation
• Image and audio compression and decompression
• speech encryption, decryption
• speech recognition, speech analysis
• industrial, automotive, consumer white goods and office market
• fast instrumentation and measurement devices

What are specific DSP applications ?

28

Characteristics: of DSPs

• Single Chip Devices
• Low power by low core voltage (1.8 Volt !)
• Multiply-accumulate units
• Multiple access memory architecture
• Specialized addressing modes: auto-modify addressing,

circular addressing, bit-reverse addressing
• Fast interrupts
• Predicated execution in one cycle
• Hardware loops / zero-overhead loops
• Fast link busses for multiprocessing
• Restricted interconnectivity between registers and functional units

29

DSP SHARC

The ADSP-2106x SHARC (Super Harvard Architecture Computer)
has extensive numerical power for signal processing applications.

All instructions are executed in one cycle. With the dual-ported on
chip SRAM and the integrated I/O peripherals, as SSI interface,
4 Bit-Link interface, direct-memory-access and fas interrupt logic, it is a
powerfull single chip processor. Four independant busses and a high
speed crossbar switch are integrated.

• 120 Mflops / 80 Mips
• 2 MBit Dual-Port-RAM (intern)
• 6 parallel Link-Ports (40 MByte/s)
• 2 Serielle Schnittstellen (40 MBit/s)
• Host-Interface
• Interface for multiprocessing of up to 6 DSPs
• External Hardware-Interrupts
• I/O Signals

30

31

DAQ 1

8*4*32

DAQ 2

8*4*24

Instruction
Cache

32*48-Bit

Timer

Bus
Connect

(PX)

JTAG

Test &
Emulation

Host Interface

Multiprocessor
Interface

IOP
RegistersBarrel

Shifter ALUMultiplier

Data
Register

File

16*40 Bit

I/O Processor

Core Processor

External Port

Program
Sequencer

Serial Ports
(2)

Link Ports
(6)

Addr
Bus
Mux

Data
Bus
Mux

DMA

PMA
EPA

DMD
EPD
PMD

IOA
17

IOD
48

7

32

48

36

4

6

6

24

32

48

32/42

PM Address Bus (PMA)

PM Data Bus (DMA)

PM Data Bus (PMD)

DM Address Bus (DMA)

Dual-Ported SRAM

Two Independent,
Dual-Ported Blocks

Processor Port
DATAADDR DATA ADDR

I/O Port

PMD

D
M

D

IO
D

EPD

Control,
Status, &

Data Buffers

EPA
IO

A DMA
Controller

SHARC Core Processor

32

Register Rx: 32 Bit Integer
Register Fx: 32 Bit Floating Point
Shadow register for fast context
switching

Example:

F3 = F3 * F2, F8 = F10 + F12;

33

Instruction Set Reference

• Compute and Move or Modify Instructions, which specify a compute operation
in parallel with one or two data moves or an index register

• Program Flow Control instructions, which specify vaious types of branches, calls
returns and loops. Some of these instructions may also specify a compute
operation and/or a data move

• Immediate Data Move instructions, which use immediate instruction fields as
operands, or use immediate instruction fields for addressing.

• Miscellaneous instructions, such as bit modify and test, no operation and idle

34

Instruction Set Notation

• ; Semicolon terminates the instruction
• , Comma separates parallel operations in an instruction
• |option1| List of options in vertical bars; one is a possible choice
• compute ALU, MUL, SHIFTER or multifuntion opoeration
• shiftimm Shifter immediate operatio
• condition Status conditio
• termination Termination condition of a loop
• ureg universal register
• sreg system register
• dreg Data registerin register file (R0-R15, F0-F15)
• Ia DAG1 index register (I0-I7)
• Mb DAG1 modify register (M0-M7)
• Ic DAG2 index register (I8-I15)
• Md DAG2 modify register (M8-M15)
• <datak> k-bit immediate data value
• <addrk> k-bit immediate address value
• <reladdrk> k-bit immediate PC-relative address value
• (DB) Delayed branch
• (LA) Loop abort (pop loop and PC stacks on branch)
• (CI) Clear interrupt

35

Nr. Instruction Addressing mode
1 compute , |DM(Ia,Mb)=dreg1|

|dreg1=DM(Ia,Mb)|
, |PM(Ic,Md)=dreg2|

|dreg2=PM(Ic,Md)|
; Indirect addressing ‚post-modify‘

2 If condition compute ;
3a If condition compute , |DM(Ia,Mb)=ureg|

|PM(Ic,Md)=ureg|
; Indirect addressing ‚post-modify‘

3b If condition compute , |DM(Ma,Ib)=ureg|
|PM(Mc,Id)=ureg|

; Indirect addressing ‚pre-modify‘

3c If condition compute , |ureg=DM(Ia,Mb)|
|ureg=PM(Ic,Md)|

; Indirect addressing ‚post-modify‘

3d If condition compute , |ureg=DM(Ma,Ib)|
|ureg=PM(Mc,Id)|

; Indirect addressing ‚pre-modify‘

4a If condition compute , |DM(<data6>)=dreg|
|PM(<data6>)=dreg|

; Immediate addressing mode

4b If condition compute , |DM(<data6>,Ia)=dreg|
|PM(<data6>,Ic)=dreg|

; Immediate addressing mode
‚pre-modify‘

4c If condition compute , |dreg=DM(<Ia,<data6>)|
|dreg=PM(Ic,<data6>)|

; Immediate addressing mode
‚pre-modify‘

4d If condition compute , |dreg=DM(<data6>,Ia)|
|dreg=PM(<data6>,Ic)|

; Addressing mode: ‚Immediate-pre-
modifier‘

5 If condition compute , ureg1=ureg2 ; Register transfer
6a If condition shiftimm , |DM(Ia,Mb)=dreg|

|PM(Ic,Md)=dreg|
; Indirect addressing ‚post-modify‘

6b If condition shiftimm , |dreg=DM(Ia,Mb)|
|dreg=PM(Ic,Md)|

; Indirect addressing ‚post-modify‘

7 If condition shiftimm , |Modify(Ia,Mb)|
|Modify(Ic,Md)|

; Modify address (Ia=Ia+Mb)
 (Ic=Ic+Md)

Compute & Move or Modify Instructions

36

Nr. Addressing Mode
8a If condition JUMP |<addr24>|

|(PC,<reladdr24>)|
|(DB)|
|(LA)|
|(CI)|
(|DB,LA)|
|(DB,CI)|

; Direct addressing
Relative addressing

8b If condition CALL |<addr24>|
|(PC,<reladdr24>)|

|(DB)| ; Direct addressing
Relative addressing

9a If condition JUMP (Md,Ic)
(PC,<reladdr6>)

|(DB)|
|(LA)|
|(CI)|
(|DB,LA)|
|(DB,CI)|

, |compute|
|ELSE compute|

; Indirect ‚pre-modify‘
Relative addressing

9b If condition CALL (Md,Ic)
(PC,<reladdr6>)

|(DB)| , |compute|;
|ELSE compute|;

Indirect ‚pre-modify‘
Relative addressing

10 If condition JUMP (Md,Ic),
(PC,<reladdr6>),

, ELSE |compute, DM(Ia,Mb)=dreg|
|compute, dreg=DM(Ia,Mb)|

; Indirect ‚pre-modify‘
Relative addressing

11a If condition RTS |(DB)|,
|(LR)|,
|(DB,LR)|,

, |compute|
|ELSE compute|

; Direct addressing
Relative addressing

11b If condition RTI (DB), , |compute|;
|ELSE compute|

; Direct addressing

12 LCNTRL= |<data16>|
|ureg|

, DO |<addr24|
 |(PC,<reladdr24>)|

UNTIL LCE ; Direct addressing
Relative addressing

13 DO |<addr24>|
|(PC,<reladdr24>)|

UNTIL termination ; Direct addressing
Relative addressing

Program Flow Control Instructions

37

Nr. Addressing Mode
14a |DM(<addr32>)| = ureg

|PM(<addr24>)|
; Direct addressing

14b ureg=|DM(<addr32>)|
 |PM(<addr24>)|

; Direct addressing

15a |DM(<data32>)| = ureg
|PM(<data24>)|

; Direct addressing

15b ureg=|DM(<data32>)|
 |PM(<data24>)|

; Direct addressing

16 |DM(Ia,Mb)| = <data32>
|PM(Ic,Md)|

; Direct addressing

17 ureg = <data32> ; Direct addressing

Immediate Move Instructions

38

Nr. Instruction
18 BIT |SET|

|CLEAR|
|TGL|
|TST|
|XOR|

sreg <data32> ;

19a MODIFY |(Ia,<data32>|
|(Ic,<data24>|

;

19b BITREV |(Ia,<data32>|
|(Ic,<data24>|

; ;

20 |PUSH|
|POP|

LOOP , |PUSH| STS
|POP|

, |PUSH| PCSTK
|POP|

, FLUSH
CACHE

;

21 NOP ;
22 IDLE ;
23 CJUMP |function|

|(PC,<reladdr24>|
(DB) ;

24 RFRAME ;

Miscellaneous Instructions

39

Data Addressing
Overview

•2 data address generators (DAG1 and DAG2)
• indirect address access, address indirect by the content of a DAG
• DAG1 addresses 32-bit on data bus DM
• DAG2 addresses 24-bit on program bus PM
• Additional alternate (secondary) register for fast context switching

• Special support for signal processing applications
• Circular data buffers
• Bit-reversing

• Each has 4 types of special registers:
• Index (I) = pointer to memory [DAG1: I0-I7]

[DAG2: I8-I15]
• Modify (M) = increment/decrement value [M0-M7]

[M8-M15]
• Base (B) = base address of a circular buffer [B0-B7]

[B8-B15]
• Length (L) = length of a circular buffer [L0-L7]

[L8-L15]

DAG operation

• address output (pre-modufy or post-modify)
• modulo addressing (circular buffers)
• addressing in bit-reverse order

40

I

Pre-Modify versus Post-Modify

Pre-Modify: No update of I-register

PM(Mk,Ik)
DM(Mk,Ik)

Post-Modify: Update of I-register

PM(Ik,Mk)
DM(Ik,Mk)

I I

M M

I + M I + M

1. output address

+ +

output address

2. I is now updated

41

Modifier Instructions

• R6 = PM(I12,M11); Indirect addressing PM-memory with post-modify

• R6 = content of I12
• I12 = I12 + M11

• R6 = PM(M11,I12); Indirect addressing PM-memory with pre-modify

• R6 = content of (I12 + M11)
• I12 is not changed

• DM(M1,I2) = TCOUNT; Indirect addressing DM-memory

• Store TCOUNT in DM address (I2+M1)

• R2 = DM(0x40000012, I1); Immediate 32-bit modify: address = I1 + 0x40000012

• R6 = F1 + F3, PM(I8,0x0A)=ASTAT; Immediate 6-bit modify: address=I8, I8=I8+0x0A

42

Step 1:
DESCRIBE ARCHITECTURE

Step 4:
DEBUG IN TARGET SYSTEM

Step 3:
DEBUG SOFTWARE

Step 2:
GENERATE CODE

Step 5:
MANUFACTURE FINAL SYSTEM

C Source
File

Assembler
Source File

System
Architecture

File

LinkerAssemblerANSI C
Compiler

Executable
File

Software
Simulator

EZ-LAB EVALUATION BOARD
or

3rd -PARTY PC PLUG-IN CARD

EZ-ICE EMULATOR Target Board

Test &
Debug

DSP System
PROM SPLITTER

= User File or Hardware = Software Development Tools = Hardware Development Tools

Development Environment

43

