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Characteristics of DSPs

• Multiply-accumulate units: multiplication and 
accumulation in a single clock cycle (vector products, 
digital filters, correlation, fourier transforms, etc)

• Multiple-access memory architectures for high 
bandwidth between processor and memory
– Goal: throughput of one operation per clock cycle.
– Required: several memory accesses per clock cycle.
– Separate data and program memory space: harvard 

architecture.
– Multiple memory banks
– Arithmetic operations in parallel to memory accesses. But 

often irregular restrictions.
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Characteristics of DSPs

• Specialized addressing modes:
– linear addressing mode: addition/subtraction of offset 

to/from base address, often with auto-modify (pre-/post 
increment/decrement)

– circular addressing: address results from incrementing an 
address register and taking the remainder of the division of 
this value by a constant.

– bit-reverse addressing: carry bits are propagated in bit-
reverse order (-> FFT)
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Characteristics of DSPs

• Branches depending on control bits: early branch 
detection allowing for small interlock penalties in 
combination with typically short pipelines

• Residual control: execution behavior depends on 
specific control bits set by a preceding instruction.

• Predicated/guarded execution: instruction execution 
depends on the value of explicitly specified bit values 
or registers.

• Increasingly: SIMD instructions for packed arithmetic 
(multimedia applications).



Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Characteristics of DSPs

• Hardware loops / zero overhead loops: no explicit loop counter 
increment/decrement, no loop condition check, no branch back 
to top of loop

• Restricted interconnectivity between registers and functional 
units -> more severe phase coupling problems.

• Strongly encoded instruction formats: a throughput of one 
instruction per clock cycle requires one instruction to be fetched 
per cycle. Thus each instruction has to fit in one memory word -
> reduction of bit width of the instruction. 
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Characteristics of DSPs

Techniques for reducing the instruction width:
– Reducing the number of addressing modes. Example: 

immediate memory accesses restricted to a small set of 
instructions.

– Restricting the set of source and destination operands: short 
addressing modes for elements of certain register groups, 
implied operands.

– Mode bits, for example a single shift instruction that 
performs arithmetic or logical shifts depending on a control 
bit in a mode register.

– Consequence: Increased irregularity of the instruction set –
but reduction of processor and system cost and increased 
individual instruction performance.
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Characteristics of DSPs

• Overall consequence:

– Irregularity

– Severe phase coupling problems during code generation

– Need for specialized algorithms
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Next Lectures

Compiler Construction and Code Generation
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Repetition: Compiler Structure

Source (Text)

Syntax Analysis

Tokenized Program

Syntax Tree

Decorated Syntax Tree

Intermediate Representation

Lexical Analysis

Semantic Analysis

High-Level Optimizations

Code Generation

Machine Program
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Middle End: High-Level 
Optimizations

• High-level optimizations are usually termed  machine-
independent optimizations. They comprise e.g. dead code 
elimination, constant propagation, constant folding, 
common subexpression elimination, loop unrolling, loop 
fusion, software pipelining,...

• BUT: Many machine-independent optimizitations are not 
machine-independent at all. For example:
– constant folding may lead to large immediate constants resulting in 

code growth or preventing instruction-level parallelism
– common subexpression elimination may increase the register 

pressure and cause problems if few registers are available
– loop unrolling may cause the instruction cache to overflow
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Back End: Code Selection, Register Allocation, 
and Instruction Scheduling

c=a+b;
r1aa
r2ba
r3ca

load adr(a)

add

load adr(b)

store adr(c)

Code selection

Instruction scheduling
r1=load adr(a)

r3=add r1, r2

r2=load adr(b)

store adr(c), r3

r1=load adr(a) || r2=load adr(b)

store adr(c), r3

r3=add r1, r2

Register allocation

a

cb
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Main Tasks of Code Generation (1)

• Code selection: Map the intermediate representation to a 
semantically equivalent sequence of machine operations that is 
as efficient as possible.

• Register allocation: Map the values of the intermediate 
representation to physical registers in order to minimize the 
number of memory references during program execution.
– Register allocation proper: Decide which variables and 

expressions of the IR are mapped to registers and which ones are
kept in memory.

– Register assignment: Determine the physical registers that are 
used to store the values that have been previously selected to 
reside in registers.
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Main Tasks of Code Generation (2)

• Instruction scheduling: 
Reorder the produced operation stream in order to 
minimize pipeline stalls and exploit the available 
instruction-level parallelism.

• Resource allocation / functional unit binding: 
Bind operations to machine resources, e.g. functional 
units or buses.
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The Code Generation Problem

• Instruction scheduling, register allocation and code 
selection are NP complete problems.

• In classical approaches they are addressed by
heuristic methods in separate phases.

• Unfortunately, all the code generation phases are 
interdependent, i.e. decisions made in one phase 
may impose restrictions to the other phases.

• Thus: often suboptimal combination of suboptimal 
partial results.

• Moreover: specific/irregular hardware features not 
well covered by standard code generation methods.
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Calling Conventions
• Calling conventions specify how the procedure stack is built and how to 

pass parameters between functions and procedures.

• Calling conventions have to be respected during code transformations. 
Optimization opportunities can only be exploited based on 
interprocedural analyses of the complete ICFG.

• Calling conventions of the GHS TriCore C compiler (excerpt):
– Up to 4 32-bit data arguments are passed in registers D4-D7.
– Up to 2 64-bit data arguments are passed in register pairs E4 and E6.
– Up to 4 32-bit address arguments are passed in registers A4-A7.
– Arguments that cannot be passed in registers are passed on the stack.
– 32-bit data (address) return values are returned in D2 (A2); 64-bit data 

values in E2 (D2/D3).
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Calling Conventions (c'ed)

– Caller-saved registers: caller is responsible for saving these registers 
on the stac and for restoring them after the callee has returned. 

– Callee-saved registers: callee is responsible for saving these registers 
upon procedure entry and for restoring them before returning.
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Typical Stack Frame Layout

• Static link: fp of the static predecessor 
(variable accesses)

• Dynamic link: fp of dynamic 
predecessor, i.e. the fp-value that has 
to be restored when returning from 
the current function.

• Return address: address of the next 
instruction to be executed after return 
from the current function.

• Usually stack frames are arranged in 
memory so that the beginning is at a 
higher address than the end of it. This 
way offsets from the stack pointer are 
always non-negative.

Static Link

Dynamic Link (old fp)

Return Address

Parameters

Local variables

Local stack for intermediate
results, caller-saved

registers, etc

Callee-saved registers

fp-4

fp-8

fp-12
fp-16

fp-P

fp-C-4

fp-L

sp+R

sp

fp-P-4

fp-C

Function return valuefp
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Program Representations

• Abstract Syntax Tree (AST)

• Static Single Assignment (SSA)

• Control Flow Graph (CFG), Call Graph (CG) and 
Interprocedural Control Flow Graph (ICFG)

• Data Dependence Graph (DDG)

• Low-Level Intermediate Representation: 
Abstract Machine Code / Register Transfer Languages
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High-Level and Low-Level IRs

• High-level intermediate representation: close to source level. 
Typically centered around source language constructs. 
Constructs: implicit memory addressing, expression trees, 
for- while-, switch-statements, etc.

• Low-level intermediate representation: close to machine 
level. Typically centered around basic entities that specify 
properties of machine operations. 

• Most program representations can be defined at high-level 
and at low-level.
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IR Levels

t1 = a[i][j+3]; t1 = addr(a);
t2 = i*20;
t3 = j+3;
t4 = t2+t3;
t5 = 4*t4;
t6 = t1+t5;
t7 = *t6;

Assumption: Input language C, a declared as int a[10][20];

High-Level Medium-Level Low-Level

v1 = fp-216;
v2 = [fp-4];
v3 = v2*20;
v4 = [fp-8];
v5 = v4+3;
v6 = v3+v5;
v7 = 4*v6;
v8 = [v1+v7];
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IR Levels

• High-level IRs:
– abstract syntax tree
! control flow graph and data dependence graph used for array 

dependence analysis and high-level code transformations

• Low-level IRs:
– abstract machine code (medium-level)
– direct representation of target machine instructions
– register transfer language (machine-independent 

representation for machine-specific instructions)
! control flow graph and data dependence graph used for 

machine-level dependence analysis and low-level code 
transformations
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Decorated Abstract Syntax Tree

id iconst id id iconst id iconst

plus            assign   assign

grt

if

abstract syntax tree

E

T

F

iconst

E

T

F

id

E

T

F

id + then id := iconst else id := iconstcmp

Stat

Ass

E

T

F

Stat

Ass

E

T

F

ifstat

if

Cond

concrete syntax tree
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Call Graph

• There is a node for the main procedure – being the entry 
node of the program – and a node for each procedure or 
function declared in the program. 

• The nodes are marked with the procedure names. 

• There is an edge between the node for a procedure p to 
the node of procedure q, if there is a call to q inside of p.
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Control Flow Graph
• The control flow graph of a procedure is a directed graph 

GC=(NC,EC,nA,nΩ) with node and edge labels. For each instruction i of 
the procedure there is a node ni that is marked by i. The edges (n,m,λ)
denote the control flow of the procedure: λ ∈ {T,F,ε} is the edge label. 
The nodes for composed statements are shown on the next slide. 
Edges belonging to unconditional branches lead from the node of the 
branch to the branch destination. The node nA is the uniquely 
determined entry point in the procedure; it belongs to the first 
instruction to be executed. nΩ denotes the end node that is reached by 
any path through the control flow graph. 

• Nodes with more than one predecessor are called joins and nodes with 
more than one successor are called forks.
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Control Flow Graph – Composed 
Statements

cfg (while B do S od) = 

cfg (S)

B F

T

cfg (if B then S  else S  fi) =1 2

BT F

cfg (S )1 cfg (S )2

cfg (S )1

cfg (S )2

cfg (S ;S ) =1 2
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Basic Block Graph

• A basic block in a control flow graph is a path of maximal length 
which has no joins except at the beginning and no forks except 
possibly at the end.

• The basic block graph GB=(NB,EB,bA,bΩ) of a control flow graph 
GC=(NC,EC,nA,nΩ) is formed from GC by combining each basic 
block into a node. Edges of GC leading into the first node of a 
basic block lead to the node of that basic block in GB. Edges of 
GC leaving the last node of a basic block lead out of the node of 
that basic block in GB. The node bA denotes the uniquely 
determined entry block of the procedure; bΩ denotes the exit 
block that is reached at the end of any path through the 
procedure.
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Interprocedural Control Flow 
Graph

The interprocedural control flow graph consists of three parts:

1. Call graph whose nodes are meta-nodes containing basic 
block graphs.

2. Basic block graph for each procedure in the program.

3. Ordered list of instructions for each block in the basic block 
graph of each procedure.

The ICFG describes the control flow of a program completely.



Embedded Systems 2002/2003 (c) Daniel Kästner. 27

Control Dependence Graph

• Operation i dominates an operation j, if i appears on every 
path from the entry node of the procedure to j. Each operation 
dominates itself.

• Operation j postdominates i, if j appears on every path from i 
to the exit node of the procedure.

• Given a control flow graph GC=(NC,EC,nA,nΩ) . Node m ∈ NC is 
control dependent on n ∈ NC if
– (n,a) is an edge of the control flow graph
– m does not postdominate n
– there is a path from n, a, ..., m so that m postdominates all nodes 

between n and m.
• The dominance frontier of a node x of the CFG (or BBG) is the 

set of all nodes y so that x dominates an immediate 
predecessor of y, but not y itself.
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Control Dependence

D

F G A

E

Dominator Tree Postdominator Tree

Control Dependence Graph

{D} is dominance frontier of B, C, F, G

Control Flow Graph

A

B C

D

E

F G

A

B C D

EGF B C

A

C F GB

D

E
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Data Dependence Graph
Low Level View

• Let GC be a control flow graph. It data dependence graph is a directed 
graph GD=(ND,ED) with node and edge labels whose nodes are labeled 
by the operations of the procedure. An edge runs from the node of an 
operation i to the node of an operation j, if i has to be executed before 
j, i.e. if there is a path from i to j in the control flow graph and if
– i defines a resource r, j uses it and the path from i to j does not contain 

other definitions of r (true dependence, RAW): (i,j,r,t) ∈ ED
– i uses a resource, j defines it and the path from i to j does not contain any 

definitions of r (anti dependence, WAR): (i,j,r,a) ∈ ED
– i and j define the same resource and the path from i to j does not contain 

any uses nor definitions of r (output dependence, WAW): (i,j,r,o) ∈ ED.

(1) r1 = r2*r3;

(2) r5 = r1+r1;
(1, 2, r1, t)
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Data Dependence Graph
High Level View

• Iteration distance: Number of loop iterations between two dependent 
instruction instances (0 for intra-iteration dependences).

• Delay: Minimal number of clock cycles between the issuing of two 
dependent operation instances.

• Edges of the DDG are labeled with (itDist, delay,type).
• The delay for a dependence a → b depends on the latencies of a and b

and the type of the dependence:
– true dependence (def-use): latency(a)
– anti dependence (use-def): 1 - latency(b)
– output dependence (def-def): 1 + latency(a) - latency(b)

for (i=2; i<100; i++) {
(a) A[i]=B[i]+C[i];

(b) D[i]=A[i-2];
}

(a, b, 2, 1, t)


