Digital Signal Processing
1 Applications

e Input: in most cases sensory data from a physical environment:
seismic vibrations, visual images, sound waves, etc.

Example Applications:
e Telecommunications

— Multiplexing. Example: telephone standard T-Carrier Sys-
tem for simultaneous transmission of 24 voice signals. Each
voice signal is represented as 64 KBit/sec, all 24 channels
being contained in 1.544 MBit/sec (8000 samples/sec, 8bit
DAC).

— Compression of digitized voice signals.

— Echo control. Telephone, anti noise.
e Audio Processing

— Music. Typically a musical piece is recorded on multiple
channels or tracks to allow greater flexibility in creating
the final product. The process of combining the individual
tracks into a final product is called mix down. DSP pro-
vides important functions during mix down including filter-
ing, signal addition and subtraction. Examples: artificial
reverberation, artificial echoes, etc.

— Speech generation: digital recording vs. vocal tract simu-
lation.



e Ficho Location

— Radar (RAdio Detection And Ranging) and sonar: impulse
generation, impulse compression, filtering.

— Reflection seismology
e Image Processing

— Computed Tomography (CT)
— Magnetic Resonance Imaging (MRI).

e Commercial imaging, especially image compression for digital
TV, video telephones, etc.

-Space photograph enhancement

—> Space -Data compression

-Intelligent sensory analysis by
remote space probes

-Diagnostic imaging (CT, MRI,
—> Medical ultrasound, and others)
-Electrocardiogram analysis
-Medical image storage/retrieval

-Image and sound compression
— Commercial for multimedia presentation
-Movie special effects

-Video conference calling

D SP — -Voice and data compression
—> Telephone -Echo reduction
-Signal multiplexing
-Filtering
. -Radar
—> Military -Sonar

-Ordnance guidance
-Secure communication

. -Oil and mineral prospecting
—> [ndustrial -Process monitoring & control
-Nondestructive testing
-CAD and design tools

i y -Earthquake recording & analysis
—> Scientific -Data acquisition

-Spectral analysis

-Simulation and modeling

Figure 1: Applications of Digital Signal Processing.



2 AD-Conversion and DA-Conversion
e Signal: function of one or more variables with information
about the behavior or the nature of physical processes.
e z-axis: independent variable; y-axis: dependent variable.

e A signal using time as independent variable is said to be in the
time domain.

e A signal using frequency as independent variable is said to be
in the frequency domain.
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Figure 2: Time and Frequency Domain.

e Digitization of continuous signals: AD-Conversion (Analog-to-
Digital Conversion, ADC).

e Inverse: DA-Conversion (Digital-to-Analog Conversion, DAC).
e Digitization:

1. Sampling (Sample-and-Hold, S/H): Input signal is mea-
sured (sampled) with a given rate (sampling rate). = Sam-
pling converts the independent variable from continuous to
discrete.
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Figure 3: Digitization.

. Quantization: the sampled value is converted to the nearest
integer number. =- Quantization converts the dependent
variable from continuous to discrete.
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Figure 5: Sampled Input Signal.
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3 Statistics

o Let N values xp,...,zy_1 be given. The mean is defined
1 \~N-1 : ]
as [t = 7 Y ;o Ti- In electronics, the mean is commonly
called the direct current (DC) value. Likewise, AC (alternating
current) refers to how the signal fluctuates around the mean
value.

: : N-1

e The variance o? is defined as o = 7= > (z; — p)% the
square root of the variance is called standard deviation. The
standard deviation is a measure of how far the signal fluctuates
from the mean.

e The above definition of o requires that all of the samples are
involved in each new calculation, ie if new samples are acquired
and added to the signal.

N-1 N-1
Thus: 0% = ﬁ(Zizo 7 — (%(Zz‘:o zi)°).
e The ratio SNR = £ is called signal-to-noise ratio.

e The histogram H displays for each possible value the number

of samples having this value. Let M be the number of possible
values, then N = S H;.
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4 AD-Conversion and DA-Conversion (c’ed)
Quantization Error

e Storing a variable with a given number representation = quan-
tization error.

e n-bit Unsigned Integers = Deviation between + — %2_”.

e Value of digitized signal: continuous input plus quantization
error.

e The bit width determines the precision.
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e Effects: Addition of random noise to the signal.

e Random noise: uniformly distributed between + — %LS B, with
a mean of 0 and a standard deviation of ﬁLS B.
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Figure 10: Random Noise.

Fourier Analysis

e Fourier Analysis: Description of a physical process depending
on the variation of a quantity h in time (h(¢)) by a sum of
trigonometric functions characterized by their amplitudes H ( f)
depending on the frequency.

e h(t) and H(f) are two representations of the same function.

e The fourier transform can be used to switch between these two

representations.

e If the frequency is depicted on the x-axis and the corresponding
amplitudes on the y-axis, the frequency spectrum results.
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Figure 11: Frequency Spectrum.

Proper Sampling

e Sampling is called proper if the analog signal can be exactly
reconstructed from the samples.

e Nyquist Sampling Theorem: If a function h(t) is measured at
time intervals At, there is a special frequency f,., the so-called

Nyquist frequency
1

f c — Z—At
which represents the upper bound of the frequencies that can
be represented by the fourier transform.

e A continuous signal can be properly sampled only if it does not
contain frequency components above one-half of the sampling
rate, ie above the Nyquist frequency.

e If a signal is transformed that contains frequencies above the
Nyquist frequency, those are mapped to frequencies below the
Nyquist frequency. This leads to aliasing corrupting the orig-
inal signal.
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e The amount of information carried in a digital signal is limited
in two ways:

— The number of bits per sample limits the resolution of the
dependent variable. Small changes in the signal’s amplitude
may be lost in the quantization noise.

— The sampling rate limits the resolution of the independent
variable, ie closely spaced events in the analog signal may
be lost between the samples.

e DAC: similar to ADC. Usually, DACs operate by holding the
last value until another sample is received (zeroth-order hold).
Subsequently: filter reconstructing the continuous signal from
the zeroth order hold.

antialias filter reconstruction filter

Analog Digital Analog
ADC =2 Processing > DAC Filter

Figure 13: Simple DSP System.

Simple DSP system:

e Before encountering the ADC the input signal is processed with
an electronic low-pass filter to remove all frequencies above the
Nyquist frequency. This is done to prevent aliasing during sam-
pling (antialias filter).
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e On the other end, the digitized signal is passed through a DAC
and another low-pass filter set to the Nyquist frequency (recon-
struction filter).

e Trend: Replacement of analog circuitry by digital algorithms.

e Reason: cost and performance. E.g. due to physical limita-
tions of analog circuits digital algorithms can yield significantly
higher precision.

5 Linear Systems

e Divide-and-Conquer Strategy called superposition:

— Signal being processed is broken into simple components
each of which is processed individually.

— Results are reunited.

— Presupposition: system is linear.

e Input-Output system .S: Process converting an input signal
into an output signal.

e Input and output signals continuous: continous system.
e Input and output signals discrete: discrete system.
e A system is called linear if it has the following properties:

— Homogeneity: An amplitude change in the input results
in an identical amplitude change in the output. That is,
if S(z) = y,2'[n] = kz[n] Vn, then S(z') = ¢, where
y'[m] = ky[m] Ym.

12



— Additivity: A system is called additive if added signals pass
through it without interacting. Formally: if S(z1) = y; and
S(ICQ) = yg,then S(£U1 + iUQ) = Y1 + Yo.

e Not a strict requirement for linearity, but a mandatory property
for most DSP techniques is the shift invariance: A system is
said to be shift invariant if a shift in the input signal causes an
identical shift in the output signal. If S(z) = y and '[n+s] =
z[n] Vn, then S(z’') = y' where y/[m + s] = y[m] Vm. Shift
invariance means that the characteristics of the system do not
change with time.

e Synthesis: Combining signals through scaling and addition.

e Decomposition: A single signal is broken into two or more ad-
ditive components.

Fundamental Concept of DSP

e Any signal x can be decomposed into a group of additive com-
ponents x1,xs,...,T;. Passing these components through a
linear system produces the signals ¥, yo, ..., yx. The synthe-
sis (addition) of these output signals forms y, the same signal
produced when z is passed directly through the system. In-
put and output signals are viewed as a superposition (sum) of
simpler waveforms.
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Decomposition Techniques

e Impulse decomposition. Impulse: signal composed of all zeros
except a single nonzero point. By knowing how a system re-
sponds to an impulse the system’s output can be calculated for
any given input. This technique is called convolution.

x[n]

Xo[n]

x,[n]

X,[n]

Xy,[n]

Figure 14: Impulse Decomposition.

e Interlaced decomposition. The signal is broken into two com-
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Decomposition
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ponent signals, the even sample signal and the odd sample sig-

nal. Interlaced decomposition is the basis for the Fast Fourier
Transformation.

X[n] 1

Interlaced
Decomposition

il A

Figure 15: Interlaced Decomposition.

e Fourier decomposition.

6 Convolution

e The unit impulse (delta function) d is a normalized impulse:
Sample number zero has a value of one, while all other samples

have a value of zero. Any impulse can be represented as a
shifted and scaled delta function.

e Impulse response h: The signal that exits a system when a
unit impulse is the input.
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Figure 16: Fourier Decomposition.
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Figure 17: Convolution.

Definition
Let z be an N-point input signal («[0], ..., z[N —1]) and h an M-
point signal (h[0], ..., A[M —1]). Then the convolution y of A and
z is the following N + M — 1-point signal (y[0], ..., y[IN + M —1]:
M-1
ylil = > hljleli = 7]

.
|
o

Short notation: y = h * x.

e Padding / End effect problems.

Properties of Convolution

e Commutativity: a xb=>b*a

e Associativity: (a * b) * ¢ =a * (b*c)
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e Distributivity: a *b+a*xc=a* (b+ ¢
e rx)=ywherey[j]=zj]Vj=0,...,N—1
o z x kd =y where y[j] = kz[j]Vj=0,...,N —1

e Bed'[j+s] =4[j],0'[z]=0forz=0,...,s—1,s € N. Then
xr*d =y whereylj +s]=z[j]Vj=0,...,N—1

7 Digital Filters
e Digital filters are created by designing an appropriate impulse
response. Examples: radar detection, echo suppression, etc.
e Low-pass and high-pass filters.

e Radar systems: Given a signal of some known shape, what is
the best way to determine where (or if) the signal occurs in
another signal?

Definition

Let t be the target signal that has to be recognized, a the input
signal; then the cross correlation of a and t is defined as

rlil = D algltli +

e Value of a sample in the cross correlation is a measure of how
much the received signal resembles the target signal at that
location.
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e The value of the cross correlation is maximized when the target
signal is aligned with the same features in the received signal.

e Correlation is the optimal technique for detecting a known
waveform in random noise. That is, the peak is higher above
the noise using correlation than can be produced by any other
linear system. Using correlation to detect a known waveform
is often called matched filtering.

e The cross correlation can be computed by convolution. This
requires preflipping one of the two signals being correlated.

Types of Digital Filters

e Finite Impulse Response Filter (FIR): Convolution of input
signal with the impulse response of the digital filter (scaling +
addition). In this context, the impulse response is also called
filter kernel.

e Recursive filter / Infinite Impulse Response Filter (IIR): Re-
cursive filters are an extension of FIR filters, using previously
calculated values from the output, besides points from the in-
put. Instead of using a filter kernel, recursive filters are defined
by a set of recursion coefficients. Typically the impulse re-
sponses of IIR filters are composed of sinusoids that exponen-
tially decay in amplitude. Since this impulse response is in-
finitely long, recursive filters are often called infinite impulse
response filters. In comparison, filters carried out by convolu-
tion have a finite impulse response.
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Definition of Recursive Filters
L L

ylnl = ) _aialn =i+ ) biyln — 1]

1=0 1=

e a,b: Coefficients

e z: Input signal

e y: Output signal

e [: Number of poles

Finite vs. Infinite Impulse Response Filters

e Advantage of recursive filters: They are an efficient way of
achieving a long impulse response without having to perform a
long convolutions. Fast computation.

e Disadvantage of recursive filters: Less performance and flexi-
bility (rounding errors e.g. due to number representation of
coefficients).

8 Implementation

e Simple algorithm is straightforward. Problem: large number
of additions and multiplications. Consequence: virtually all
Digital Signal Processors provide Multiply-Accumulate units
(MAC units) performing a multiplication and an addition of
the result to an accumulator in one clock cycle.
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e FF'T convolution produces exactly the same results as the stan-
dard convolution but the execution time can be reduced dras-
tically.

e Convolution is the method of choice if the DFT has less than
32 points; otherwise the FFT is used.

9 Discrete Fourier Transform

Given a piecewise continuous function f : IR — IR with period 2,
f(z +27) = f(x) Vo € R. f may have jump discontinuities; for
a point of discontinuity x, there exist the limits y; and y; with
yy = limy_o+ f(zg — k) and yg = limy_,o+ f(zo + h and they are
finite. Decompose [0, 27] in N subintervals with step h = 47 and

consider the points z; = h; = %, 7 =0,1,...,N. Define

N
2
al = NZf(:cj)cos(k:cj), k=0,1,...
j=1
9 N
by = NZf(ZEj)SiH(kxj)a k=1,2,...
j=1

and be n = % € IN. Then
gr(z) = 5% + (aj cos(kx) + by sin(kz)) + 5n cos(nx)
is the unique Fourier polynomial for the data points z; with values

f(x;),j=1,..., N (data points correspond to sampling times and
their values to the value of the input signal at the sampling times).
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Thus:

_ 2 gN 7] COS(Qij) k=01

a, = — €T = N[

g szl / N 7 Y
21k

[
= v

x[j] sin( ~ ), k=0,1,...,n

j=1

a; and b; are the n + 1 = % + 1 coeflicients that are required to
calculate g'. Define further

N *
ap = Eak
N *
bk = Ebk

DFT basis functions:
e cili] = cos(%E), i € {0,...,N — 1}
o si[i] =sin(%2),i € {0,...,N — 1}

k: Frequency of the basis functions, ie number of complete periods
over the N points of the signal (f = £).
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Figure 18: DFT Basis Functions.
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Discrete Fourier Transform

e transforms an N-point input signal into two N/2 4 1-point
output signals.

e Input signal: signal to be decomposed.

e Output signals: define the amplitudes of the DFT basis func-
tions.

e The input signal is in the time domain.

e The number and frequency of the DF'T basis functions is fixed:
The output signal is in the frequency domain (depends on the
frequency).

e Given the time domain signal, the forward DF'T calculates the
corresponding frequency domain.
ay: amplitudes of the cosine functions, b;: amplitudes of the

sinus functions.

e a; and by correspond to the real part resp. the imaginary part
of the frequency domain.

Inverse DFT (Synthesis Equation)

L1 L omkj. ~—. . 2mkj. 1
x[]]:§a0+;akcos( ~ )+kz_;bksm( N )+§cos(7rk:), k=0,...

Computing the DFT (Analysis)

e Solve a set of simultaneous equations where N values from
the time domain are given and the NV values of the frequency

24
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Figure 19: Time and Frequency Domain.
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domain have to be computed. This requires /N linearly inde-
pendent equations = inefficient.

e Correlation: detect a known waveform contained in another
signal. The a; and by are directly computed by multiplications
and additions. This way, the input signal is correlated with
each of the basis functions.

e Fast Fourier Transform: Decompose a DFT with N points in
N DFTs, containing one point each.

Frequency Response

e Frequency response of a system: Fourier Transform of its im-
pulse response.

e It describes how a system modifies amplitude and phase of
cosine waves passing through it.

e Characterizes the system completely.

Time Domain Frequency Domain
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Figure 20: Impulse and Frequency Response.
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Time and Frequency Domain

e Time domain: Convolution of the input signal with the impulse
response (z[n] * h[n] = y[n]).

e Frequency domain: Multiplication of the input signal with the
frequency response.

e DE'T and IDFT relate the signals in the two domains.

x[n] —>{ h[n] |——> Yyin]

TIME

=

X[f] —> —

Figure 21: DCT und IDCT.

Alternative Computation
e Given: Input signal and impulse response.
e Transformation in the frequency domain.
e Multiplication
e Retransformation in the time domain.

e No gain in execution speed if standard convolution is performed
— only when FFT is used.
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10 FFT — Fast Fourier Transformation

e The FFT is an algorithm for calculating the complex DFT.
Thus: DFT data have to be converted into complex format.

e If an V point signal is given, all its points are moved into the
real part of the complex DFT’s time domain, and all samples

of the imaginary part are set to 0.

e Calculation of the complex DFT results in a real and an in-
aginary signal in the frequency domain, each composed of N
points. Samples 0 through % of the real part and the imaginary
part of this signal correspond to the real DFT’s spectrum (ie

to the values aj und by,).

Time Domain

Time Domain Signal
3% %Y Vet 6% %Y Ve o% V. vt s

Time Domain

Real Part

Real DFT
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Complex DFT
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Figure 23: Real and complex DFT.
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e The discrete complex Fourier transform is defined as follows:

N-1

XK =+ > aln (008(27;\];n) - isin(27§\];n)>

n=0

FFT

e Decompose the N-point time domain signal into N time do-
main signals each composed of a single point.

e Calculate the N frequency spectra corresponding to these N
time domain signals.

e The frequency spectrum of a 1 point signal is equal to itself.

e Synthesize the NV spectra into a single frequency spectrum.
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N /\
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Figure 24: FFT Decomposition.

Interlacing

e Fach stage of the FFT decomposition uses an interlace decom-
position, separating the even and odd numbered samples.
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e = Sort the samples in reverse bit order.

Sample numbers Sample numbers

in normal order after bit reversal

Decimal Binary Decimal Binary
0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 :(> 6 0100
7 or11 14 1110
8 1000 1 0001
9 1001 9 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

Figure 25: Bit-reverse Sorting.
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Time Domain Frequency Domain
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Figure 26: FFT Synthesis. Interlacing.
Synthesis

e Combine the N frequency spectra in the exact reverse order
that the time domain decomposition took place.

e Let two frequency spectra be given, each composed of 4 points
which are combined into a single frequency spectrum of 8 points.
The synthesis must undo the interlaced decomposition done in
the time domain.

e When a time domain signal is diluted with zeros, the frequency
domain is duplicated.

e If the time domain signal is also shifted by one sample during
the dilution, the spectrum will additionally be multiplied by a
sinusoid.

e Time domain shift is equivalent to convolving the signal with

32



a shifted delta function. This multiplies the signal’s spectrum
with the spectrum of the shifted delta function. The spectrum
of a shifted delta function is a sinusoid.

Odd- Four Point Even- Four Point
Frequency Spectrum Frequency Spectrum

Eight Point Frequency Spectrum

Figure 27: FF'T synthesis.

FFT Butterfly

e Input: two complex points.

e Conversion into two other complex points.

2 point input

2 point output

Figure 28: FFT Butterfly.
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Loop for Log,N stages

Time Domain Data

Bit Reversal
Data Sorting

Loop for Leach sub-DFT

/

Overhead I

HA

Y

Y

Overhead I

\

\ ]

Butterfly
Calculation

Loop for each Butterfly

\J

Frequency Domain Data

Time
Domain
Decomposition

Frequency
Domain
Synthesis

Figure 29: FFT Algorithm.
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Bit-Reverse Addressing

e The bit-reverse addressing mode has been developed especially
for the FFT and is implemented in most DSP.

e Example Infineon TriCore: Using two successive address regis-
ters, a circular buffer is implemented.

e Even numbered register: base address (beginning of buffer)
e Odd numbered register: element size and index.

e FExample: Let an array with 8 elements be given:
A=0,1,2,3,4,5,6,7, ie Ai] = . The access sequence inside
the FFT is 0,4,2,6,1,5,3, 7.

mov.a al0,#8 ; iteration count
movh.a a3,#16 ; size=16 (bit), index=0

lea a2, val ; base address = adr(val) = 0x00080000
_L: 1d.nh  dO,[a2/a3+r] ; a3 = 0x00000000, 0x00000008,
; 0x00000004, 0x0000000c,
; 0x00000002, ...
loop al0, _L
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