Compiler Structure

Frontend

Backend

Input
program

—>

Intermediate
representation

L »

Syntactic and

semantic analysis

void mai n(void) {

int a, b, c;

c=a+b;

Assembly or machine
code

Code generation
Code optimization

ril=dm(i 7, nv)
r2=pm(i 8, nB)
r3=rl+r2

Embedded Systems 2002/2003 (c) Daniel Kastner.

Detalled Compiler Structure

A

Lexical Analysis > Gigh-Level Optimizatio@

I

A

Syntax Analysis >

I

C Semantic Analysis >

Embedded Systems 2002/2003 (c) Daniel Kastner.

Lexical Analysis (Scanning &
Screeing)

Input: Program text as sequence of :
Output: Program text as sequence of ().

Read Input file.

Report errors about symbols illegal in the programming
language.

subtask:
e |dentify language and standard
e Elimininate " ", e.g. consecutive blanks and newlines.

e Count line numbers.

Embedded Systems 2002/2003 (c) Daniel Kastner.

Lexical Analysis (Scanning)

\Nzaivany =

ML |a

Embedded Systems 2002/2003 (c) Daniel Kéastner.

Syntax Analysis (Parsing)

e Input: Sequence of (tokens).
Output: of the program:
— concrete syntax tree,
— abstract syntax tree, or
— parse (derivation).

e Syntax
— report (as many as possible) syntax errors,
— diagnose syntax errors,
— correct syntax errors.

Embedded Systems 2002/2003 (c) Daniel Kastner.

Syntax Analysis (Parsing)

FROGREAM

BECLIST .‘-T.'I'.-'u.'i'lJ!-TI' ETAT

I . - 3
[-~

I

IIJI I*-I |) T T
! I | |
DL I‘-'I |I 'ITI II|I F F F F
I I I I

|d.l'|| l.'vi m |I '.'\li| I|1I. LT il bec int"'I) =em i) Bec ddily mwal sHlr add innttLT)
I I I 1 I I

i wor posep ||I.- “roam i h I oo I el amTh sem sep.-dl &' p bec innlTXTy mems sep wl0TUhh bec el UCEThommal el a7 b add ULy sem sep

ﬁ“ / f "" / |/ f‘l/ et
I 'llf | |I -"ﬁ e
‘-.I | | |;, / | ."J,.ff”I x’;’}?a

||||II o -II-IIIIIIIIIM ANREENNNNNTCERRE AR RN AR AR AR

Embedded Systems 2002/2003 (c) Daniel Kastner.

Semantic Analysis

Input: Abstract tree.
Output: Abstract syntax tree decorated with
, €.9. types of subexpressions.

Report semantic errors, e.g.
Resolve usage of variables: identify applied

occurrences of variables with their declarations.
Compute type of every (sub-)expression.

Embedded Systems 2002/2003 (c) Daniel Kastner.

Semantic Analysis

FROGR AN

_,—'-"'-'-'_F'_'_.

i
i
e

DECLIET

Yar w1y e uli 25 el 1Y

D fii LA varimeyh

duliXidvarialih

D i L var s,)

{2 A varine)

—
I

STATLIST
I
STAT
I

Anhllh

\

STATIAST

—

—_—

LT A]

.'-'"'"--'-F
T
|
F
=2} b ulil)

Embedded Systems 2002/2003 (c) Daniel Kastner.

S5TAT
|
ASSIGN
_— |
in
.—'—'_'_'_'_'_'_'_'_.

Code Selection, Register Allocation, and
Instruction Scheduling

Code selection Register allocation

» | oad adr (a) a1
| oad adr (b) bisr 2
» add
A CH—r3
» Store adr(c) @ G

~_

rl=l oad adr(a) || r2=load adr(b)
Instruction scheduling r3=add rl, r2

store adr(c), r3

Embedded Systems 2002/2003 (c) Daniel Kastner.

Phase Coupling Problem

dl=s1*s1;
d2=s1+s2;
r3=rl*rl r3=r1*rl, ré4=rl+r2
store r3 store r3
r3=rl1+r?2 store r4
store r3
Optimize number of Optimize code
used registers speed and size

Embedded Systems 2002/2003 (c) Daniel Kastner. 10

Main Tasks of Code Generation (1)

: Map the intermediate representation to a
sequence of machine operations that is

: Map the values of the intermediate
representation to physical registers in order to

during program execution.

: Decide and
expressions of the IR are mapped to registers and which ones are
kept in memory.

: Determine the that are
used to store the values that have been previously selected to
reside in registers.

Embedded Systems 2002/2003 (c) Daniel Kastner.

11

Main Tasks of Code Generation (2)

Reorder the produced operation stream in order
to minimize pipeline stalls and exploit the
available instruction-level parallelism.

Bind operations to machine resources, e.g.
functional units or buses.

Embedded Systems 2002/2003 (c) Daniel Kastner.

12

The Code Generation Problem

Instruction scheduling, register allocation and code
selection are problems.

In classical approaches they are addressed by
In :
Unfortunately, all the code generation phases are

, 1.e. decisions made in one phase
may impose restrictions to the other phases.

Thus: often of

Moreover: specific/irregular hardware features not
well covered by standard code generation methods.

Embedded Systems 2002/2003 (c) Daniel Kastner. 13

The DSPStone Study

e Evaluation of the performance of and joint
compiler/processor systems. Evaluated compilers:

— Analog Devices ADSP2101,
— AT&T DSP1610,

— Motorola DSP56001,

— NEC mPD77016,

— TI1 TMS320C51.

e Hand-crafted assembly code is compared to the compiler-
generated code.

e Result: overhead between and of compiler-
generated code is typical !

Embedded Systems 2002/2003 (c) Daniel Kastner.

Compiling for DSPs

e (Code quality of traditional high-level language compilers is
not satisfactory.

e Thus: Assembly programming.

Increasing size of DSP
applications and time
to market pressure

Urgent demand
for the use of

Deficiencies of assembly high-level languages
programming:
e time consuming

e EIror prone
e Bad portability
e Bad maintainability

Embedded Systems 2002/2003 (c) Daniel Kastner.

Case Study: Infineon TriCore

C code (FIR Filter):

int i,j,sum

Compiler-generated code (gcc):

for (i=0:i<N-Mi++) {

sun¥oO;

for (j=0;j<Mj++) {
sumt=arrayl[i +j]*coeff[j];

}

output[i]=sunr>15;

}

add %15, %3, %1
addsc. a %al5, %a4, %15, 1
addsc. a %@2, %a5, %1, 1
nov %4, 49

| d. h %0, [%a15] 0

| d. h %15, [%a2] 0

madd %62, %62, %60, %615
add %1, %1, 1

| ge %4, %1, . L21

Hand-written code (inner loop):

_8:

| d16. w d5, [a2+]

| d16. w d4, [a3+]

madd. h e8, e8, d5, d4ul , #0
| oop a7, _8

Zero-Overhead Loops
SIMD Instructions

Auto-modify
addressing

6 times faster!
(execution in SRAM)

Embedded Systems 2002/2003 (c) Daniel Kastner.

16

Classification of Microprocessors

General Purpose Proces
(GPP)

GPP proper: general
purpose applications

DSP (Digital Signal Processor):
programmable microprocessor
for extensive numerical
real-time computations

Requirem
e hi
e lo
elo

c

ASIP (Application Specific Instruction
Set Processor): programmable micro-
processor where hardware and
instruction set are designed together
for one special application

Specialization

Embedded Systems 2002/2003 (c) Daniel Kastner.

17

Architectural Valuation

e [Campbell, Northrop Grumman Corporation, 1998]
architectures will use to

complete the same task on the same generation
CMOS solid state technology

- Power consumption P =CV ?fAN
— C : Capacitance
— 'V : CPU Core Voltage
— f 1 CPU clock frequency
— AN : Number of gates changing state

Embedded Systems 2002/2003 (c) Daniel Kastner.

18

Architectural Valuation

e Observations:

— Higher performance by increasing the clock frequency
does not change the performance per power ratio

O _Cycle

Performance _ cyae Time Of O

Power CVZfAN CVZ?fAN CV?AN
— A voltage decrease improves performance per power

non-linearly

Performance . O
Power CV*fAN

Embedded Systems 2002/2003 (c) Daniel Kastner.

19

Architectural Valuation

as a measure for
how well the architecture fits a given target
application.

e Estimation of architectural specialization:

Embedded Systems 2002/2003 (c) Daniel Kastner.

20

Comparion of Performace Per

Power Ratios

80
70
60
50
40
30
20
10

FFT MFLOPS/WATT

A
A A —A &
QD3332 - 58 ~18 .
3.14 new &
QRISCM :109 :23
—-Ra— 48—
— | I77”’****I——wﬁ,,,’iwiw
e e Ly PR S | E—

64 128 256 512 1024 2048 4096 8192 16384 32768
Complex FFT Length (Points)

+ Alpha 21064A, 275 MHz, 275 MFLOP Peak, 3.3 Volts, 33+8 Watts
= Alpha 21164, 333 MHz, 666 MFLOP Peak, 2.2 Volt, 25.4+6 Watts
4 SHARC 21060, 40 MHz, 120 MFLOP Peak, 3.3 Volt, 1.75 Watts

Embedded Systems 2002/2003 (c) Daniel Kastner.

21

