
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

Compiler Structure

Input
program

Intermediate
representation

Assembly or machine
code

void main(void) {

int a, b, c;

c=a+b;

}

r1=dm(i7, m7)

r2=pm(i8, m8)

r3=r1+r2

Frontend BackendFrontend

Syntactic and
semantic analysis

Backend

Code generation
Code optimization

Embedded Systems 2002/2003 (c) Daniel Kästner. 2

Detailed Compiler Structure

Source (Text)

Syntax Analysis

Tokenized Program

Syntax Tree

Decorated Syntax Tree

Intermediate Representation

Lexical Analysis

Semantic Analysis

High-Level Optimizations

Code Generation

Machine Program

Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Lexical Analysis (Scanning &
Screeing)

• Input: Program text as sequence of characters.
Output: Program text as sequence of symbols (tokens).

1. Read Input file.
2. Report errors about symbols illegal in the programming

language.
3. Screening subtask:

• Identify language keywords and standard identifiers.
• Elimininate "white-spaces", e.g. consecutive blanks and newlines.
• Count line numbers.

Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Lexical Analysis (Scanning)

Embedded Systems 2002/2003 (c) Daniel Kästner. 5

Syntax Analysis (Parsing)

• Input: Sequence of symbols (tokens).
Output: Structure of the program:
– concrete syntax tree,
– abstract syntax tree, or
– parse (derivation).

• Syntax errors:
– report (as many as possible) syntax errors,
– diagnose syntax errors,
– correct syntax errors.

Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Syntax Analysis (Parsing)

Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Semantic Analysis

• Input: Abstract syntax tree.
Output: Abstract syntax tree decorated with
attributes, e.g. types of subexpressions.

• Report semantic errors, e.g. undeclared variables,
type mismatches.

• Resolve usage of variables: identify applied
occurrences of variables with their declarations.

• Compute type of every (sub-)expression.

Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Semantic Analysis

1

Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Code Selection, Register Allocation, and
Instruction Scheduling

c=a+b;
r1aa
r2ba
r3ca

load adr(a)

add

load adr(b)

store adr(c)

Code selection

Instruction scheduling
r1=load adr(a)

r3=add r1, r2

r2=load adr(b)

store adr(c), r3

r1=load adr(a) || r2=load adr(b)

store adr(c), r3

r3=add r1, r2

Register allocation

a

cb

Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Phase Coupling Problem

d1=s1*s1;

d2=s1+s2;

r3=r1*r1

store r3

r3=r1+r2

store r3

r3=r1*r1, r4=r1+r2

store r3

store r4

Optimize number of
used registers

Optimize code
speed and size

Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Main Tasks of Code Generation (1)

• Code selection: Map the intermediate representation to a
semantically equivalent sequence of machine operations that is
as efficient as possible.

• Register allocation: Map the values of the intermediate
representation to physical registers in order to minimize the
number of memory references during program execution.
– Register allocation proper: Decide which variables and

expressions of the IR are mapped to registers and which ones are
kept in memory.

– Register assignment: Determine the physical registers that are
used to store the values that have been previously selected to
reside in registers.

Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Main Tasks of Code Generation (2)

• Instruction scheduling:
Reorder the produced operation stream in order
to minimize pipeline stalls and exploit the
available instruction-level parallelism.

• Resource allocation / functional unit binding:
Bind operations to machine resources, e.g.
functional units or buses.

Embedded Systems 2002/2003 (c) Daniel Kästner. 13

The Code Generation Problem

• Instruction scheduling, register allocation and code
selection are NP complete problems.

• In classical approaches they are addressed by
heuristic methods in separate phases.

• Unfortunately, all the code generation phases are
interdependent, i.e. decisions made in one phase
may impose restrictions to the other phases.

• Thus: often suboptimal combination of suboptimal
partial results.

• Moreover: specific/irregular hardware features not
well covered by standard code generation methods.

Embedded Systems 2002/2003 (c) Daniel Kästner. 14

The DSPStone Study

• Evaluation of the performance of DSP compilers and joint
compiler/processor systems. Evaluated compilers:
– Analog Devices ADSP2101,
– AT&T DSP1610,
– Motorola DSP56001,
– NEC mPD77016,
– TI TMS320C51.

• Hand-crafted assembly code is compared to the compiler-
generated code.

• Result: overhead between 100% and 1000% of compiler-
generated code is typical !

Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Compiling for DSPs

• Code quality of traditional high-level language compilers is
not satisfactory.

• Thus: Assembly programming.

Increasing size of DSP
applications and time
to market pressure

Deficiencies of assembly
programming:

time consuming
error prone
Bad portability
Bad maintainability

!

!

!

!

Urgent demand
for the use of
high-level languages

Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Case Study: Infineon TriCore

! Zero-Overhead Loops
! SIMD Instructions
! Auto-modify

addressing
→ 6 times faster!

(execution in SRAM)

C code (FIR Filter):

int i,j,sum;
for (i=0;i<N-M;i++) {
sum=0;
for (j=0;j<M;j++) {
sum+=array1[i+j]*coeff[j];

}
output[i]=sum>>15;

}

Compiler-generated code (gcc):

.L21: add %d15,%d3,%d1
addsc.a %a15,%a4,%d15,1
addsc.a %a2,%a5,%d1,1
mov %d4,49
ld.h %d0,[%a15]0
ld.h %d15,[%a2]0
madd %d2,%d2,%d0,%d15
add %d1,%d1,1
jge %d4,%d1,.L21

Hand-written code (inner loop):

_8: ld16.w d5, [a2+]
ld16.w d4, [a3+]
madd.h e8,e8,d5,d4ul,#0
loop a7,_8

Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Classification of Microprocessors
Microprocessors

Application Specific Processors
 ()ASP

GPP proper: general
purpose applications

Microcontrollers:
industrial applications

DSP (Digital Signal Processor):
programmable microprocessor

for extensive numerical
real-time computations

ASIP (Application Specific Instruction
Set Processor): programmable micro-

processor where hardware and
instruction set are designed together

for one special application

ASIC (Application Specific
Integrated Circuit):

algorithm completely
implemented
in hardware

General Purpose Processors
 ()GPP

Specialization

Requirements:
• high performance
• low cost
• low power

consumption

Embedded Systems 2002/2003 (c) Daniel Kästner. 18

Architectural Valuation

• [Campbell, Northrop Grumman Corporation, 1998]

• More efficient architectures will use less energy to
complete the same task on the same generation
CMOS solid state technology

• Power consumption
– C : Capacitance
– V : CPU Core Voltage
– f : CPU clock frequency
– ∆N : Number of gates changing state

NfCVP ∆= 2

Embedded Systems 2002/2003 (c) Daniel Kästner. 19

Architectural Valuation

• Observations:
– Higher performance by increasing the clock frequency

does not change the performance per power ratio

– A voltage decrease improves performance per power
non-linearly

NCV
O

NfCV
Of

NfCVPower
ePerformanc Time

Cycle
Cycle

O

∆
=

∆
=

∆
=

∗

222

NfCV
O

Power
ePerformanc

∆
= 2

Embedded Systems 2002/2003 (c) Daniel Kästner. 20

Architectural Valuation

• Architectural specialization as a measure for
how well the architecture fits a given target
application.

• Estimation of architectural specialization:
Performance per power.

Embedded Systems 2002/2003 (c) Daniel Kästner. 21

Comparion of Performace Per
Power Ratios

FFT MFLOPS/WATT

0
10
20
30
40
50
60
70
80

64 128 256 512 1024 2048 4096 8192 16384 32768
Complex FFT Length (Points)

Alpha 21064A, 275 MHz, 275 MFLOP Peak, 3.3 Volts, 33+8 Watts
Alpha 21164, 333 MHz, 666 MFLOP Peak, 2.2 Volt, 25.4+6 Watts
SHARC 21060, 40 MHz, 120 MFLOP Peak, 3.3 Volt, 1.75 Watts

18
14.3

58

64

32 ≈=
RISC

DSP

Q
Q

3.2
8.4
9.10

64

64 ==old
RISC

new
RISC

Q
Q

