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Compiler Structure

Input  
program

Intermediate 
representation

Assembly or machine 
code

void main(void) {

int a, b, c;

c=a+b;

}

r1=dm(i7, m7)

r2=pm(i8, m8)

r3=r1+r2

Frontend BackendFrontend

Syntactic and 
semantic analysis

Backend

Code generation  
Code optimization
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Detailed Compiler Structure

Source (Text)

Syntax Analysis

Tokenized Program

Syntax Tree

Decorated Syntax Tree

Intermediate Representation

Lexical Analysis

Semantic Analysis

High-Level Optimizations

Code Generation

Machine Program
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Lexical Analysis (Scanning & 
Screeing)

• Input: Program text as sequence of characters.
Output: Program text as sequence of symbols (tokens).

1. Read Input file.
2. Report errors about symbols illegal in the programming 

language.
3. Screening subtask:

• Identify language keywords and standard identifiers.
• Elimininate "white-spaces", e.g. consecutive blanks and newlines.
• Count line numbers.
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Lexical Analysis (Scanning)
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Syntax Analysis (Parsing)

• Input: Sequence of symbols (tokens).
Output: Structure of the program:
– concrete syntax tree,
– abstract syntax tree, or
– parse (derivation).

• Syntax errors:
– report (as many as possible) syntax errors,
– diagnose syntax errors,
– correct syntax errors.
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Syntax Analysis (Parsing)
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Semantic Analysis

• Input: Abstract syntax tree.
Output: Abstract syntax tree decorated with 
attributes, e.g. types of subexpressions.

• Report semantic errors, e.g. undeclared variables, 
type mismatches.

• Resolve usage of variables: identify applied 
occurrences of variables with their declarations.

• Compute type of every (sub-)expression.
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Semantic Analysis

1
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Code Selection, Register Allocation, and 
Instruction Scheduling

c=a+b;
r1aa
r2ba
r3ca

load adr(a)

add

load adr(b)

store adr(c)

Code selection

Instruction scheduling
r1=load adr(a)

r3=add r1, r2

r2=load adr(b)

store adr(c), r3

r1=load adr(a) || r2=load adr(b)

store adr(c), r3

r3=add r1, r2

Register allocation

a

cb
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Phase Coupling Problem

d1=s1*s1;

d2=s1+s2;

r3=r1*r1

store r3

r3=r1+r2

store r3

r3=r1*r1, r4=r1+r2

store r3

store r4

Optimize number of 
used registers 

Optimize code 
speed and size



Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Main Tasks of Code Generation (1)

• Code selection: Map the intermediate representation to a 
semantically equivalent sequence of machine operations that is 
as efficient as possible.

• Register allocation: Map the values of the intermediate 
representation to physical registers in order to minimize the 
number of memory references during program execution.
– Register allocation proper: Decide which variables and 

expressions of the IR are mapped to registers and which ones are
kept in memory.

– Register assignment: Determine the physical registers that are 
used to store the values that have been previously selected to 
reside in registers.
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Main Tasks of Code Generation (2)

• Instruction scheduling: 
Reorder the produced operation stream in order 
to minimize pipeline stalls and exploit the 
available instruction-level parallelism.

• Resource allocation / functional unit binding: 
Bind operations to machine resources, e.g. 
functional units or buses.
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The Code Generation Problem

• Instruction scheduling, register allocation and code 
selection are NP complete problems.

• In classical approaches they are addressed by
heuristic methods in separate phases.

• Unfortunately, all the code generation phases are 
interdependent, i.e. decisions made in one phase 
may impose restrictions to the other phases.

• Thus: often suboptimal combination of suboptimal 
partial results.

• Moreover: specific/irregular hardware features not 
well covered by standard code generation methods.
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The DSPStone Study

• Evaluation of the performance of DSP compilers and joint 
compiler/processor systems. Evaluated compilers: 
– Analog Devices ADSP2101, 
– AT&T DSP1610, 
– Motorola DSP56001, 
– NEC mPD77016, 
– TI TMS320C51.

• Hand-crafted assembly code is compared to the compiler-
generated code.

• Result: overhead between 100% and 1000% of compiler-
generated code is typical !
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Compiling for DSPs

• Code quality of traditional high-level language compilers is 
not satisfactory.

• Thus: Assembly programming.

Increasing size of DSP 
applications and time 
to market pressure

Deficiencies of assembly
programming:

time consuming
error prone
Bad portability
Bad maintainability

!

!

!

!

Urgent demand
for the use of
high-level languages
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Case Study: Infineon TriCore

! Zero-Overhead Loops 
! SIMD Instructions
! Auto-modify 

addressing
→ 6 times faster!

(execution in SRAM)

C code (FIR Filter):

int i,j,sum;
for (i=0;i<N-M;i++) {
sum=0;
for (j=0;j<M;j++) {
sum+=array1[i+j]*coeff[j];

}
output[i]=sum>>15;

}

Compiler-generated code (gcc):

.L21: add %d15,%d3,%d1
addsc.a %a15,%a4,%d15,1
addsc.a %a2,%a5,%d1,1
mov %d4,49
ld.h %d0,[%a15]0
ld.h %d15,[%a2]0
madd %d2,%d2,%d0,%d15
add %d1,%d1,1
jge %d4,%d1,.L21

Hand-written code (inner loop):

_8: ld16.w d5, [a2+]
ld16.w d4, [a3+]
madd.h e8,e8,d5,d4ul,#0
loop a7,_8
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Classification of Microprocessors
Microprocessors

Application Specific Processors
                 ( )ASP

GPP proper: general 
purpose applications

Microcontrollers: 
industrial applications

DSP (Digital Signal Processor):
programmable microprocessor 

for extensive numerical 
real-time computations

ASIP (Application Specific Instruction
Set Processor): programmable micro-

processor where hardware and 
instruction set are designed together 

for one special application

ASIC (Application Specific 
Integrated Circuit): 

algorithm completely 
implemented 
in  hardware

General Purpose Processors
              ( )GPP

Specialization

Requirements:
• high performance
• low cost
• low power 

consumption
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Architectural Valuation

• [Campbell, Northrop Grumman Corporation, 1998]

• More efficient architectures will use less energy to 
complete the same task on the same generation 
CMOS solid state technology

• Power consumption 
– C : Capacitance
– V : CPU Core Voltage
– f : CPU clock frequency
– ∆N : Number of gates changing state

NfCVP ∆= 2
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Architectural Valuation

• Observations:
– Higher performance by increasing the clock frequency 

does not change the performance per power ratio

– A voltage decrease improves performance per power 
non-linearly
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Architectural Valuation

• Architectural specialization as a measure for 
how well the architecture fits a given target 
application.

• Estimation of architectural specialization: 
Performance per power.



Embedded Systems 2002/2003 (c) Daniel Kästner. 21

Comparion of Performace Per 
Power Ratios

FFT MFLOPS/WATT
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Alpha 21064A, 275 MHz, 275 MFLOP Peak, 3.3 Volts, 33+8 Watts
Alpha 21164, 333 MHz, 666 MFLOP Peak, 2.2 Volt, 25.4+6 Watts
SHARC 21060, 40 MHz, 120 MFLOP Peak, 3.3 Volt, 1.75 Watts
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