The Constructive Semantics

Logical correctness is not in accordance with the of the
language, ie with its and with the
of test statements.
Example:
IS , but the information that O is present flows

across the sequencing operator : contradicting the
basic intuition about sequential execution.

Aside from the explicit concurrency | | all Esterel statements are

Embedded Systems 2002/2003 (c) Daniel Kastner.

The Constructive Semantics

ldea: about signal statuses, but
about control flow and signal statuses. Self-
justification is replaced by fact-to-fact propagation.

Accounts for programmer's natural way of thinking:
Three-valued logic for signals: :

In each instant the statuses of the input signals are given by the
environment and the statuses of the other signals are

Embedded Systems 2002/2003 (c) Daniel Kastner.

The Constructive Semantics

e Three equivalent presentations:

— Constructive operational semantics
e Based on term rewriting rules defining microstep sequences
e Simplest way of defining an efficient interpreter
— Circuit semantics
e Translation of program into constructive circuits
e Core of the Esterel v5 compiler.

Embedded Systems 2002/2003 (c) Daniel Kastner.

Constructive Behavioral Semantics

Logical coherence semantics augmented by reasoning about
what a program or do, both predicates being
disjoint and defined in a constructive way.

The predicate determines which signals are present and
which statements are executed.
The predicate determines when signals are absent and

It serves in pruning out false execution paths.

A program is accepted as if and only if fact
propagation using the must and cannot predicates suffices in
establishing presence or absence of all signals.

Embedded Systems 2002/2003 (c) Daniel Kastner.

Constructive Behavioral Semantics

— Asignal S'is In an instant iff an statement is
executed in this instant.

— Asignal Sis Iff an statement must be executed.
— Asignal Sis Iff an statement cannot be executed.

Embedded Systems 2002/2003 (c) Daniel Kastner.

Constructive Behavioral Semantics

e« Assignal can have three statuses:
: known to be present
: known to be absent
. yet unknown

and predicates are defined by on
statements.
(resp.) execute g if p (resp.) terminate

— S known to be present -> Test behaves as p
— S known to be absent -> Test behaves as g

— S yet unknown -> Test do whatever p or g can do; there is nothing
the test do.

Embedded Systems 2002/2003 (c) Daniel Kastner.

Example 1

e |If I is present:

— il take its branch,

module P1: and terminate - S1 present
input 1; ~ 2 take its (empty) branch
output O; and take its branch
signal S1, S2 in -

present 1 then emit S1 end (il) : be executed, S2

1 be emitted -~ S2 absent

present S1 else emit S2 end (i12) — i3 take its branch - O

| _ _ be emitted and is absent.
present S2 then emit 0 end (i3)

end signal

end module e |Iflis absent:
-1 take its branch -
be executed - S1 absent
- 12 take its branch -
be executed - S2 present.
- i3 take its branch -

be executed - O present.

Embedded Systems 2002/2003 (c) Daniel Kastner.

module P2:
output O;
signal S 1In
emit S;
present O then
present S then
pause
end;
emit O
end
end signal

Example 2 — Part 1

e Analyze what

do with status L] for O.
Analyze body with status [] for O and S.

S must be emitted.

Thus: redo the analysis with status [for O and + for S.

Status of O is unknown: there is nothing that the
statement do. Progress can only be made by
analyzing what we do in the branches of the test.

The then branch contains a test. Since S is

known to be present, we take the implicit else

branch. Since the then branch is a statement it
terminate. Therefore the statement

be executed and O be emitted.

As a consequence O be set absent and the analysis
must be redone with status — for O.

Embedded Systems 2002/2003 (c) Daniel Kastner.

Example 2 — Part 2

module P2:
output O; e Analyze what do with status — for O.
signal S 1In
emit S;
present O then — The implicit else branch of the present O test that
present S then terminates execution be taken.
pause
end;
emit O — The program is since we have fully
end determined the signal statuses.

end signal

Embedded Systems 2002/2003 (c) Daniel Kastner.

Constructive Behavioral Semantics

. recursively analyze p with status [for S

e Assume we already know that we must execute the declaration in
some signal context £

e Must compute final status of S to determine signal context of p

e First analyze p in E augmented by setting the unknown status [for S
e IfS be emitted:

— propagate this information by reanalyzing p in E with S present

— This may generate more information about the other signals
e IfS be emitted:

— reanalyze pin E with S absent

Embedded Systems 2002/2003 (c) Daniel Kastner. 10

Constructive Behavioral Semantics —
Formal Definition

Let S be a set of signals.
An E is amapping E: S - B= {+, —, LI} which assigns a
status from Bg to all signals in S.

Notation:
CE(S) =+
cE(S) =-
— E E':s*inEO s*inE"’

event {s *}:
{s*}(s)=+and {s*}(s)=—-foralls' £ s

Let an event £ for a set S be given, a signal s possibly not in Sand a
status b in B. Then IS an event for the set S [I{s } where
E*s?(s)=b and E*s?(s)=E(s") Os'#s.

Embedded Systems 2002/2003 (c) Daniel Kastner. 11

Constructive Behavioral Semantics —

Formal Definition

The statements : and are represented
by k>=0:
IS encoded by 0
IS encoded by 1

Is encoded by 2, if the directly enclosing trap declaration is
that of T and n +2 if n trap declarations have to be traversed
before reaching that of T.

To handle we define two operators
[0, If k=0ork=2
Lk=rl, ifk=1
Hk -1, if k>2

Tk_DK If k=0ork=2
T+ if k>1

Embedded Systems 2002/2003 (c) Daniel Kastner.

12

Constructive Behavioral Semantics —
Formal Definition

Given a program P with body p and an input event /. A of
the program is given by a of the form
P D_?i; P

where O is an output event and the resulting program P ' is the new
state reached by P after the reaction. P ' is called the derivative of P
by the reaction.

The has the form
pOES p
where

— Eis an event that defines the status of all signals in the scope of p

— E'is an event composed of all signals emitted by p in the reaction, k is
the completion code returned.

The statement p ' is called the

Embedded Systems 2002/2003 (c) Daniel Kastner. 13

Constructive Behavioral Semantics —
Formal Definition

PE@ PP - pO% p for some k

100

1] if K=0O or L=0O
Max(K,L) =
n{max{k,1}}, for kOK,IOL

Embedded Systems 2002/2003 (c) Daniel Kastner.

14

Constructive Behavioral Semantics —

Formal Definition

The function determines what must be done in a reaction
POIZ P

where

— E is an event,

— S is the set of signals that p emit

— K is the set of completion codes that p return.

We write

Must(p, E) = L[5, K U=: [BMust,(p,E), Must,(p,E)L

Embedded Systems 2002/2003 (c) Daniel Kastner.

15

Constructive Behavioral Semantics —
Formal Definition

The function M(p,E) is used to prune out false paths.

— S Is the set of signals that p emit

— K is the set of completion codes that p exit with when the input
event is E.

m O {+, [} indicates whether it is known that the statement p must
be executed in the event E. The case m = — will never occur since
will only be called for potentially executable statements.

In the following, we will use since it is easier to be defined
formally; from this, Cannot™(p,E) can be determined by
componentwise complementation.

Embedded Systems 2002/2003 (c) Daniel Kastner. 16

Constructive Behavioral Semantics —
Formal Definition

and are defined by structural induction over the kernel
statements.

Must(k, E) = Can™(k, E) = (0 {K}!
Must(emit S,E) =CanM(emit S,E) =({g.{Q})
Must(p,E), if s*OE
Must(present sthen p elsegend, E) = fMust(qg, E), if s~ OE
0,0y, if sHOE
“Can™(p,E), if stOE
Can™(present sthen p elseqend, E) = iCan™(q, E), if sTOE
ECanD(p,E)DCanD(q,E), if SHOE

Must(suspend p when s, E) = Must(p, E)
Can™M(suspend p when s, E) =Can™(p, E)

Embedded Systems 2002/2003 (c) Daniel Kastner. 17

Constructive Behavioral Semantics —
Formal Definition

[(Must(p, E), If Mustk(p, E) #{0

M .9, E) =0 '
ust(pia, E) §<Musts(p, E) 0 Must(q, E), Must, (g, E)>, if Must, (p.E)={0}

We analyze g only if p must terminate in which
case the completion code 0 of p is discarded.

Embedded Systems 2002/2003 (c) Daniel Kastner. 18

Constructive Behavioral Semantics —
Formal Definition

=

7 Can'"(p, E),
7 it o0Can;"(p, E)
] 7 1
Can{'(p,E) 0 Can_ (g, E),Can(p,E)\{0} O Can "' (q, E)
M _ S S K Kk
Can (p,q, E) — [m
S if ODCank (p,E) with m'=+ if m=+
E and O[] Mustk(p, E)
0
% or if ODCaan(p, E) with m'=0 otherwise

We analyze q with argument m' =+ if m=+ andif pmust
terminate, with argument m' =[] otherwise.

Embedded Systems 2002/2003 (c) Daniel Kastner.

19

Constructive Behavioral Semantics —
Formal Definition

Must(loop pend, E) = Must(p, E)
CanM(loop pend, E) =Can™(p,E)
Must(pl| g, E) =(Mustg(p,E) 0 Must(q, E), Max(Must, (p, E),Must, (d.E)}

CanM(p||g,E) = <Cangn(n,E) 0 Can;n(q, E), Max(Canlr(n(D, E),Canlr(n(q, E)>

e The Max operation e.g. ensures that || cannot
terminate if one of its branches cannot do so.

Embedded Systems 2002/2003 (c) Daniel Kastner. 20

Constructive Behavioral Semantics —
Formal Definition

Must(trapTin pend,E) =Must({t p})
Must({c} ,E) :<Musts(q, E),+ Must, (0, E)>

Must(t q, E):<Musts(q,), Must, (c E)>
CanM(trapTin pend,E) =CanM({1 p})

CanM({q} ,E) = <Can'sn(q, E),! Canlr(n(q, E)>

Can™M(1 q,E) = <Cang‘(q, E), 1 Canlr(n(q, E)>

Embedded Systems 2002/2003 (c) Daniel Kastner. 21

Constructive Behavioral Semantics —
Formal Definition

IMust(p,EsT)\(S, if sOMust (p,ECs™)
Must(signal sin p,E) = %\/Iust(p ECs)\{s, If sDCan;’(p,EDsD)
EI\/Iust(p,EDSD)\{S} otherwise

Can*(p.ECS")\(§, if m=+ and sOMust(p.ECs")
CanM(signal sin p,E) = @Can (p,EOs)\{s, if sDCan;(p,EDsD)

éCan (p,ECsT)\{$, otherwise

e We first analyze the body p with status [J for s with the same m argument.
e If m=+ and we find that the signal must be emitted we reanalyze p with status + for s.

e For both m=+ and m= 0 if the signal cannot be emitted we reanalyze p with status — and with
the same m.

e Otherwise we return the result of the analysis of p with status [J for s.
e Note that the signal status can be set to + only if m=+. This is necessary to avoid speculative
computations.

Embedded Systems 2002/2003 (c) Daniel Kastner. 22

Constructive Behavioral Semantics

The constructiveness analysis involves

Once a signal status has been set, the body of its declaratlon
(the whole program for an output) has to be reanalyzed, this
way re-establishing many facts that are already known.

The goal of the operational and circuit semantics is to
known facts.

Embedded Systems 2002/2003 (c) Daniel Kastner.

23

Example

module P4:
input 1I;
output O;
signal S1, S2 in
present 1 then emit S1 end

I
present S1 then emit S2 end

M
present S2 then emit O end
end module

module P3:
input 1I;
output 01,02;
present 1 then
present 02 then emit 01 end
else
present 01 then emit 02 end
end present
end module

accepted by constructiveness

rejected by acyclicity test
reactive and deterministic

accepted by constructiveness

Embedded Systems 2002/2003 (c) Daniel Kastner.

24

Examples

modulle P1:
output O;
present O -)
clse emit O rejected by constructiveness
end present
end module

modulle P2:
output O;

present O - .
then emit O rejected by constructiveness
end present

end module

Embedded Systems 2002/2003 (c) Daniel Kastner.

25

module Px:
output O;

present O then emit O else emit O

end module

Examples

logically correct by self
justification
rejected by constructiveness

Embedded Systems 2002/2003 (c) Daniel Kastner.

26

Advanced Constructiveness

e Preemption statements behave as tests for the guard
In each instant where the guard is active. Their
constructiveness test is straightforward.

module Py: .] _ _

output 0; non-constructive in the first instant

abort non-constructive (non reactive) in later instants
sustain O

when O

Embedded Systems 2002/2003 (c) Daniel Kastner.

27

Advanced Constructiveness

Preemption statements () behave as tests for the guard in
each instant where the guard is active. Their constructiveness
test is straightforward.

Signal expressions:
. straightforward

- evaluates to true as soon as one of el or e2 evaluates to
true, even if the other one is still unknown.

. analogous

The computation of values of
since the value is known only when all emitters are either
executed or discarded (due to signal combination).
A statement such as Is handled as
by the constructiveness test.

Embedded Systems 2002/2003 (c) Daniel Kastner. 28

Advanced Constructiveness

e Signal expressions:
. straightforward
. evaluates to true as soon as one of el or e2

evaluates to true, even if the other one is still unknown.

. analogous

e The computation of values of
since the value is known only when all
emitters are either executed or discarded (due to
signal combination).
A statement such as IS handled as
by the constructiveness test.

Embedded Systems 2002/2003 (c) Daniel Kastner.

29

Example

signal S1, S2 in
present 1 then emit S1 else emit S2

1
present S1 then

call PLOQO:;
emit S2

| Iend present constructive
present S2 then
call P20 0O;
emit S1
end present
end signal

Embedded Systems 2002/2003 (c) Daniel Kastner.

30

Compiler Structure

Frontend

Backend

Input
program

—>

Intermediate
representation

L »

Syntactic and

semantic analysis

void mai n(void) {

int a, b, c;

c=a+b;

Assembly or machine
code

Code generation
Code optimization

ril=dm(i 7, nv)
r2=pm(i 8, nB)
r3=rl+r2

Embedded Systems 2002/2003 (c) Daniel Kastner.

31

Detalled Compiler Structure

A

Lexical Analysis > Gigh-Level Optimizatio@

I

A

Syntax Analysis >

I

C Semantic Analysis >

Embedded Systems 2002/2003 (c) Daniel Kastner.

32

