
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

Expressions

• Data expressions:
– references to constants or variables
– ?S yields the current value of signal S
– pre(?S) yields the value of signal S at the previous instant

• Signal expressions:
– S: current status of signal S
– pre(S): status of signal S at previous instant
– Boolean expressions over signal statuses (using the logical and, or,

not operators, the pre operator and the predefined tick signal).
present is considered true, absent false.

– First instant of a signal S:
• interface signal: first instant of program execution
• local signal: any instant where the corresponding local signal

declaration is entered.

Embedded Systems 2002/2003 (c) Daniel Kästner. 2

Expressions

• Delay expressions:
– Used in temporal statements like await or abort.
– Standard delays:

• Defined by a signal expression.
• Never elapse instantaneously.
• Example: meter and not second

– Immediate delays
• Defined as immediate s, where s is a signal expression
• Can elapse instantaneously.
• Example: immediate [meter and not second]

Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Expressions

– Count delays
• Defined by an integer count expression e followed by a signal

expression s.
• The expression is evaluated only once when the delay is

initiated. If the value is 0 or less, it is set to 1. Thus a count
delay never elapses instantaneously.

• There is no immediate count delay, and counts cannot be
combined with Boolean signal operators.

• Example: 3 [second and not meter]

Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Example (1)

module System1:
input A, B, R;
output O;
loop
[await A || await B]
emit O

each R
end module

Embedded Systems 2002/2003 (c) Daniel Kästner. 5

Example (2)

• every S do p end awaits the first
future occurence (ie not at
initialization time) of S to start p.

• every immediate S do p end
immediately starts p if I is
present at the first instant.

module Count1:
input I;
output COUNT:=0:integer;
every I do

emit COUNT(pre(?COUNT)+1);
end every
end module

module Count2:
input I;
output COUNT;
var Count:=0:integer in

every I do
Count:=Count+1;
emit(COUNT(Count)

end every
end var
end module

Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Abortion
• Behavior of abort p when S:

– In the starting instant, p is immediately
started, the initial presence or absence of
S being ignored (delayed abort).

– If p terminates before S occurs, then the
whole abort statement terminates.

– If S occurs while p is not yet terminated,
the abort statement immediately
terminates and p does not receive
control in the current instant (strong
abort).

• To make abort sensitive to S in the first
instant:

abort p when immediate S
• To give p control a last time when S

occurs:
weak abort p when S

module Speedometer:

input Second, Meter;

output Speed: integer in

loop

var Distance:=0: integer in

abort

every Meter do

Distance:=Distance+1

end every

when Second do

emit Speed(Distance)

end abort

end var

end loop

end module

Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Generic Behaviors and Modules
• Each data object used by a

module must be declared in that
module.

• A data object defined in different
submodules must be identically
declared.

• Calling modules: run statement.
Explicit renaming by '/'.

• Renaming arguments are passed
by name and not by position!

• If a name is kept unchanged in a
substitution, it need not be passed
as a parameter.

module TWO_STATES:
input On, Off;
output IsOn, IsOff;
loop
abort
sustain IsOff

when On
abort
sustain IsOn

when Off
end loop
end module

...
signal IsOff in

run TWO_STATES [signal RadioOn / On,
RadioOff / Off,
Playing / IsOn]

end

Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Correctness Issues

• Easy to write syntactically correct but semantically
nonsensical programs.

• Esterel programs are required to be reactive and
deterministic.

• Reactive:
– A well-defined output for each input

• Deterministic:
– Only one output for each input.

• Logically correct: reactive and deterministic

Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Logical Correctness

• Logical coherence law: A signal S is present in an instant if and
only if an emit S statement is executed in this instant.

• Logical correctness requires: there exists exactly one status for
each signal that respects the coherence law.

• Let a program P and an input I be given:
– P is logically reactive wrt I: at least one logically coherent global

status.
– P is logically deterministic wrt I: at most one logically coherent

global status.
– P is logically correct wrt I: logically reactive and deterministic.
– P is logically correct: logically correct wrt all possible input events.

Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Logical Correctness

• Pure Esterel programs can be analyzed for logical correctness by
exhaustive case analysis.

• Given the status of each input signal, one can make all possible
assumptions about the global status and checke them
individually.

• Logical correctness is decidable ☺ – but NP complete "

• Logical correctness can be counter-intuitive – other basis for
language semantics needed.

Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Logical Correctness
module P1:
input I;
output O;
signal S1, S2 in
present I then emit S1 end
||
present S1 else emit S2 end
||
present S2 then emit O end

end signal
end module

logically correct

• I present: Assumption S1 present, S2 not present, O not present
– Justification: The emit S1 statement is executed justifying the assumption S1 present, no emit

S2 and emit O statements are executed, justifying the assumption S2 absent and O absent.
• I absent: Assumption S1 absent, S2 present, O present.

– Justification: The emit S1 statement is not executed justifying the assumption S1 absent, the
emit S2 statement is executed justifying the assumption S2 present and the emit O statement is
executed justifying the assumption O present.

• All other assumptions can be shown to be logically incoherent.

Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Logical Correctness

module P2:
output O;
present O
else emit O

end present
end module

non-reactive

module P3:
output O;
present O
then emit O

end present
end module

reactive,
but non-deterministic

Embedded Systems 2002/2003 (c) Daniel Kästner. 13

Logical Correctness

module P4:
present O1 then emit O1 end
||
present O1 then
present O2 else emit O2 end

end

logically correct

Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Acyclicity and Constructiveness

• Esterel programs can be required to be acyclic:
– No dependency cycles
– Can be defined precisely and checked at compile time.
– BUT: good programs will be rejected.

• Weaker property called constructiveness:
– Cyclic programs can be constructive
– Can be checked at compile time
– More programs will be accepted, but constructiveness is

harder to check than acyclicity.

Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Examples
module P5:
output O;
present O
else emit O

end present
end module

non-reactive

module P6:
output O;
present O
then emit O

end present
end module

reactive, but non-deterministic

Both are rejected by cyclicity test.

Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Examples
module P7:
input I;
output O1,O2;
present I then
present O2 then emit O1 end

else
present O1 then emit O2 end

end present
end module

rejected by acyclicity test
reactive and deterministic

module P8:
output O1,O2;
present O1 then emit O1 end
||
present [O1 and not O2] then emit O2 end
end module

Logically correct by self
justification:
unique behavior
O1 and O2 absent

Problem: self justification does not fit with the standard
intuition of imperative languages

Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Which Semantics to Adopt?

• Esterel has been designed as an imperative
language.

• Thus, e.g., in present S then p end
the status of S should not depend on what p might
do.

• In other words: things may happen in the same
instant, but have to happen in order.
The ordering implicit in then is not that of time but
that of sequential causality.

Embedded Systems 2002/2003 (c) Daniel Kästner. 18

The Constructive Semantics

• Idea: do not check assumptions about signal
statuses, but propagate facts about control flow and
signal statuses. Self-justification is replaced by fact-
to-fact propagation.

• Three-valued logic for signals: present, absent,
unknown.

• In each instant the statuses of the input signals are
given by the environment and the statuses of the
other signals are initially set to unknown.

Embedded Systems 2002/2003 (c) Daniel Kästner. 19

The Constructive Semantics

• Three equivalent presentations:
– Constructive behavioral semantics

• Derived from the logical behavioral semantics
• Constructive restrictions are added to the logical coherence rule

– Constructive operational semantics
• Based on term rewriting rules defining microstep sequences
• Simplest way of defining an efficient interpreter

– Circuit semantics
• Translation of program into constructive circuits
• Core of the Esterel v5 compiler.

Embedded Systems 2002/2003 (c) Daniel Kästner. 20

Constructive Behavioral Semantics

• Logical coherence semantics augmented by reasoning about
what a program must or cannot do, both predicates being
disjoint and defined in a constructive way.

• The must predicate determines which signals are present and
which statements are executed.

• The cannot predicate determines when signals are absent and
it serves in pruning out false execution paths.

• A program is accepted as constructive if and only if fact
propagation using the must and cannot predicates suffices in
establishing presence or absence of all signals.

Embedded Systems 2002/2003 (c) Daniel Kästner. 21

Constructive Behavioral Semantics

• Logical Coherence Law:
– A signal S is present in an instant iff an emit S statement is

executed in this instant.

• Constructive Coherence Law:
– A signal S is present iff an emit S statement must be executed.
– A signal S is absent iff an emit S statement cannot be executed.

Embedded Systems 2002/2003 (c) Daniel Kästner. 22

Constructive Behavioral Semantics
• A signal can have three statuses:

– +: known to be present
– –: known to be absent
– ⊥ : yet unknown

• must and cannot predicates are defined by structural induction on
statements.

• p ; q
– Must (resp. can) execute q if p must (resp. can) terminate

• present S then p else q end
– S known to be present -> Test behaves as p
– S known to be absent -> Test behaves as q
– S yet unknown -> Test can do whatever p or q can do; there is nothing

the test must do.

Embedded Systems 2002/2003 (c) Daniel Kästner. 23

Example

module P1:
input I;
output O;
signal S1, S2 in
present I then emit S1 end (i1)
||
present S1 else emit S2 end (i2)
||
present S2 then emit O end (i3)

end signal
end module

• If I is present:
– i1 must take its then branch, emit S1

and terminate → S1 present
– i2 must take its (empty) then branch

and cannot take its else branch →
emit S2 cannot be executed, S2
cannot be emitted → S2 absent

– i3 cannot take its then branch → O
cannot be emitted and is absent.

• If I is absent:
– i1 cannot take its then branch → emit

S1 cannot be executed → S1 absent
– i2 must take its then branch → emit

S2 must be executed → S2 present.
– i3 must take its then branch → emit O

must be executed → O present.

Embedded Systems 2002/2003 (c) Daniel Kästner. 24

Constructive Behavioral Semantics

• signal S in p end
– Can: recursively analyze p with status ⊥ for S
– Must:

• Assume we already know that we must execute the declaration in
some signal context E

• Must compute final status of S to determine signal context of p
• First analyze p in E augmented by setting the unknown status ⊥ for S
• If S must be emitted:

– propagate this information by reanalyzing p in E with S present
– This may generate more information about the other signals

• If S cannot be emitted:
– reanalyze p in E with S absent

Embedded Systems 2002/2003 (c) Daniel Kästner. 25

Constructive Behavioral Semantics –
Formal Definition

• Let S be a set of signals.
An event E is a mapping E : S → B⊥ = {+, –, ⊥ } which assigns a
status from B⊥ to all signals in S.

• Notation:
– s + : E (s) = +
– s - : E (s) = –
– E ⊆ E ': s + in E ⇒ s + in E '

• Singleton event {s +}:
{s +}(s) = + and {s +}(s ')= – forall s ' ≠ s

• Let an event E for a set S be given, a signal s possibly not in S and a
status b in B⊥ . Then E * s b is an event for the set S ∪ {s } where

E*s b (s) = b and E*s b (s ') = E (s ') ∀ s ' ≠ s.

Embedded Systems 2002/2003 (c) Daniel Kästner. 26

Constructive Behavioral Semantics –
Formal Definition

• The statements nothing, pause and exit are represented
by completion codes k ≥ 0:
– nothing is encoded by 0
– pause is encoded by 1
– exit T is encoded by 2, if the directly enclosing trap declaration is

that of T and n +2 if n trap declarations have to be traversed
before reaching that of T.

• Each control thread returns a completion code k≥0 when
it has completed its execution in that instant. The
completion code is generated by executing a k statement,
ie a nothing, pause or exit T kernel statement.

Embedded Systems 2002/2003 (c) Daniel Kästner. 27

Constructive Behavioral Semantics –
Formal Definition

• To handle trap propagation we define two operators





>+
==

=↑







>−
=

==
=↓

 1 if ,1
1or 0 if ,

 2 if ,1
 1 if ,1

 2or 0 if ,0

kk
kkk

k

kk
k

kk
k

Embedded Systems 2002/2003 (c) Daniel Kästner. 28

Constructive Behavioral Semantics –
Formal Definition

• Given a program P with body p and an input event I. A reaction of
the program is given by a behavioral transition of the form

where O is an output event and the resulting program P ' is the new
state reached by P after the reaction. P ' is called the derivative of P
by the reaction.

• The statement transition relation has the form

where
– E is an event that defines the status of all signals in the scope of p
– E ' is an event composed of all signals emitted by p in the reaction, k is

the completion code returned.

The statement p ' is called the derivative of p by the reaction.

'PP O→
I

',' pp kE→ E

Embedded Systems 2002/2003 (c) Daniel Kästner. 29

Constructive Behavioral Semantics –
Formal Definition

k somefor ' ' , ppPP kOO →⇔→
I I ∪ O





∈∈
∅=∅=∅

=
 ,for }},,{max{

 or if
),(

LlKklk
LK

LKMax

Embedded Systems 2002/2003 (c) Daniel Kästner. 30

Constructive Behavioral Semantics –
Formal Definition

• The Must function determines what must be done in a reaction
.

Must(p, E) = 〈S, K 〉

where
– E is an event,
– S is the set of signals that p must emit
– K is the set of completion codes that p must return.

• We write
Must(p, E) = 〈S, K 〉 =: 〈Musts(p,E), Mustk(p,E)〉.

'PP O→
I

Embedded Systems 2002/2003 (c) Daniel Kästner. 31

Constructive Behavioral Semantics –
Formal Definition

• The function Cannotm(p,E) is used to prune out false paths.

Cannotm(p,E) = 〈Cannots
m(p,E), Cannotk

m(p,E)〉 = 〈S,K 〉
– S is the set of signals that p cannot emit
– K is the set of completion codes that p cannot exit with when the input

event is E.

• m ∈ {+, ⊥ } indicates whether it is known that the statement p must
be executed in the event E. The case m = – will never occur since
Cannot will only be called for potentially executable statements.

• In the following, we will use Canm(p,E) since it is easier to be defined
formally; from this, Cannotm(p,E) can be determined by
componentwise complementation.

