
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

Synchroneous Programming

• Two simple ways of implementing reactive systems:
– Event-driven approach

– Sampling

<Initialize Memory>
Foreach input_event do

<Compute Outputs>
<Update Memory>

End

<Initialize Memory>
Foreach period do

<Read Inputs>
<Compute Outputs>
<Update Memory>

End

Event-driven Sampling

Embedded Systems 2002/2003 (c) Daniel Kästner. 2

Synchroneous Programming

• Program typically implements an automaton:
– state: valuations of memory
– transition: reaction, possibly involving many computations

• Synchroneous paradigm: reactions are considered atomic, ie
they take no time. (Computational steps execute like
combinatorial circuits.)

• Synchroneous broadcast: instantaneous communication, ie
each automaton in the system considers the outputs of others
as being part of its own inputs.

• Atomic reactions are called instants.

Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Overview

• StateCharts:
– First, and probably most popular formal language for the design

of reactive systems.
– Focus on specification and design, not designed as a

programming language.
– Determinism is not ensured.
– No standardized semantics.

• Programming languages for designing reactive systems:
– ESTEREL [Berry]: imperative language.
– LUSTRE [Caspi, Halbwachs], SIGNAL [Le Guernic, Beneviste]:

data-flow languages.
• ARGOS: purely synchroneous variant of StateCharts.

Embedded Systems 2002/2003 (c) Daniel Kästner. 4

LUSTRE

• Based on synchroneous data-flow model:
– Each variable takes a value at every cycle of the program.

• Programs are structured into nodes:
– Node: subprogram defining its output parameters as functions of

its input parameters.
– Definition given by unordered set of equations.

• Variables are defined via equations, e.g. X=E with variable X
and expression E.

• Expressions:
– identifiers,
– constants,
– arithmetic, boolean and conditional operators,
– 'previous' operator pre,
– 'followed by' operator ->.

Embedded Systems 2002/2003 (c) Daniel Kästner. 5

LUSTRE

• Specific Operators:
– (pre(E))0 = nil (undefined)
– (pre(E))n = En-1

– (E->F)0 = E0

– (E->F)n = Fn

– Example: x = 0->(pre(x)+y)

x

y

2
s At any cycle n:

sn = 2*(xn+yn)

Embedded Systems 2002/2003 (c) Daniel Kästner. 6

LUSTRE – Example Program

node Counter (init, incr: int; reset: bool)
returns (count:int);

let
count = init -> if reset then init

else pre(count)+incr;
tel

Embedded Systems 2002/2003 (c) Daniel Kästner. 7

ESTEREL - Principles

• Imperative language.

• Tailored for programming hardware or software
synchroneous controllers domintated by control-
handling aspects.

• Most ESTEREL statements are conceptually
instananeous, ie are executed in the same reaction
than other statements that sequentially precede or
follow them in the program.

Embedded Systems 2002/2003 (c) Daniel Kästner. 8

ESTEREL – Example Program
module Speedometer:

input Second, Meter;

output Speed: integer in

loop

var Distance:=0: integer in

do

every Meter do

Distance:=Distance+1

end every

upto Second;

emit Speed(Distance)

end var

end loop

end module

module SpeedSupervisor:

input Second, Meter;

output TooFast in

signal Speed: integer in

[run Speedometer

||

every Speed do

if ?Speed > MaxSpeed

then emit TooFast

end if

end every

]

end signal

end module

Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Compilation of Synchroneous
Languages

• Causality Analysis
– Causality problem: the presence of a signal seems to depend

on itself (problem of combinatorial loops in synchroneous
circuits).

– Goal: have one (reactivity) and only one (determinism)
consistent solution for each configuration of input signals.

– Example situations:

module P1:
output O;
present O
else emit O

end present
end module

module P2:
output O;
present O
then emit O

end present
end module

inconsistent non-deterministic

module P3:
input I;
output O;
signal S in
present I then emit S end
||
present S then emit O end

end signal
end module

correct

Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Compilation of Synchroneous
Languages

module P4:
output O1,O2;
present O1 then emit O1 end
||
present O1 then
present O2 else emit O2 end

end present
end module

Logically correct, but rejected by Constructive Causality:
no constructive explanation for solution.

Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Compilation of Synchroneous
Languages

• Sequential code generation
– LUSTRE:

• Generating single loop, after sorting the equations according to
their dependences.

– ESTEREL:
• Compilation of control part into explicit automaton

(ESTEREL -V2 and –V3 compilers).
– efficient, but
– possibly exponential expansion of code size.

• Single loop code generation
(ESTEREL-V4, and –V5 compilers).

Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Now: Esterel in more Depth

• Syntax and intuitive semantics

• Causality

• Documentation and Esterel-Distribution can be
downloaded from
www.cs.uni-sb.de/~kaestner/ES0203.html

Embedded Systems 2002/2003 (c) Daniel Kästner. 13

Esterel: General Structure

module M:

input names;

output names;

statement

end module

Interface declaration

! Interface declaration specifies which objects a module exports or
imports:
– Data objects, which are declared abstractly in Esterel. Their actual value is

given in the host language.
– Signals and sensors. Host objects implementing them depend on the host

language.

! Body is an executable statement.

Embedded Systems 2002/2003 (c) Daniel Kästner. 14

Interface Declaration

module WATCH:

input UL,UR,LL,LR;

type Time;

constant Noon:Time;

constant WordLength = 16: integer;

function CompareTime (Time,Time): boolean;

procedure IncrementTime (Time) (integer);

type Beep;

output Beeper: Beep;

output CurrentTime := Noon : Time;

Possibly modified (Call by
reference)

Not modified (Call by
value)

Signal declaration

Data declarations

Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Signals and Sensors

• Interface signals or local signals, declared by the signal
statement (see later).

• Instantaneously broadcast throughout the program.
• Pure signals: status is present or absent.
• In addition to their status, valued signals carry a value of

arbitrary type.
• One predefined signal tick:

– pure signal
– represents activation clock of the reactive program
– Status is present in each instant.

• Sensors have a value but no status;
Example: sensor temperature : integer;

Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Statements

• A statement starts in some instant t, remains active for a while,
and may terminate in some instant t >= t'.
– t=t': statement is instantaneous
– t'>t: statement takes time

Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Kernel Statements

• Selection of basic statements, most other statements can be
programmed with:
– nothing

– pause

– emit S

– p ; q

– p || q

– present S then p else q end

– suspend p when S

– loop p end

– trap T in p end

– exit T

– signal S in p end

Embedded Systems 2002/2003 (c) Daniel Kästner. 18

Informal Semantics

• Basic pure control statements:
– nothing: does nothing, ie terminates instantaneously when

started.
– pause: pauses when started and terminates in the next

instant.

• Signal emission:
– emit S: emits signal S (ie sets its status to present) and

terminates instantaneously.
– emit S(e): evaluates the data expression e, emits S with that

value and terminates instantaneously.
– Valid for the current instant only; happens only once.

Embedded Systems 2002/2003 (c) Daniel Kästner. 19

Informal Semantics

• Sequencing (p ; q):
– p is instantaneously started when p ; q is started and is

executed up to completion or trap exit.
– If p terminates, q is immediately started and the sequence

behaves as q from then on.
– If p exists via traps, the exits are immediately propagated

and q is never started.

– Example: emit S1; emit S2

Embedded Systems 2002/2003 (c) Daniel Kästner. 20

Informal Semantics

• Parallel Statement (p || q):
– Denotes explicit concurrency
– Any signals emitted are instantaneously broadcast to all

branches in each instant.
– The sequencing operator ; binds tighter than ||.
– Upon start both branches p and q are instantaneously

started.
– It terminates in the precise instant where both branches are

terminated (branch synchronization).

– Example: p;q||r vs [p;q]||r vs p;[q||r]

Embedded Systems 2002/2003 (c) Daniel Kästner. 21

Informal Semantics

• present S then p else q end
– immediately starts p if the signal S is present, otherwise q is

immediately started.

• suspend p when s
– s is a signal expression (see later)
– When the suspend statement starts, p is immediately started.
– s has no effect in the initial instant in which the statement becomes

active.
– If the signal expression s is true, p remains in its current state and

the suspend statement pauses for the instant.
– If s is false, p is executed for the instant. If p pauses, terminates or

exits a trap, so does suspend.

Embedded Systems 2002/2003 (c) Daniel Kästner. 22

Informal Semantics

• loop p end loop:
– p is instantaneously restarted anew upon termination.
– p must never be able to terminate instantaneously when

started. Note: the condition check is static!
– If p exists some enclosing trap, the loop is exited.

trap T
loop p end loop || present S then exit T

end trap

– Example: loop emit S end loop (not allowed)

Embedded Systems 2002/2003 (c) Daniel Kästner. 23

Static Termination Check

loop

present I then

present J else

p

end present

else

q

end present;

end loop

Program is rejected!

Embedded Systems 2002/2003 (c) Daniel Kästner. 24

Informal Semantics
• trap T in p end

– A trap defines a lexically scoped exit for p.
– p is immediately started when the trap statement starts.
– If p terminates so does the trap statement.
– exit T (occurring inside of p) causes T to terminate immediately.
– When traps are nested, the outer one takes priority.

trap U in
trap T in

p
end trap;
q

end trap;
r

• p exits T : q is immediately started
• p exits U : r is immediately started
• p exits T and U simultaneously: U

takes priority.

Embedded Systems 2002/2003 (c) Daniel Kästner. 25

Informal Semantics

• Local signal declaration: signal S in p end signal
– Signal S is local to p.
– Scoping is lexical, ie any redeclaration of a signal hides the outer

declaration.
– A local signal placed within a loop can be executed several times in

the same instant. Then each execution declares a new copy /
incarnation of the signal.

– Example:

signal Alarm,
Distance : integer,

in
p

end signal

Embedded Systems 2002/2003 (c) Daniel Kästner. 26

Further Statements
• Third basic control statement:

halt: pauses forever and never terminates.
• sustain S / sustain S(e): continuous emission of signal
• Assignment (instantaneous):

X := e where X is a variable and e is a data expression
• Procedure call (instantaneous): call P (X,Y) (e1,e2)
• repeat e times

p
end repeat

• Local variable declaration:

var X : double,
Count := ?Distance : integer

in
p

end var

Embedded Systems 2002/2003 (c) Daniel Kästner. 27

Further Statements

• if Data Test: if e then p else q end if
– e is a data expression: The conditions are evaluated in sequence.

• await d
– d is a delay expression
– The delay is started when await is started. The statement pauses

until the delay elapses and terminates in that instant.
• abort p when d / weak abort p when d

– p is run until termination or until the delay d elapses.
– If p terminates before the delay elapses, so does the abort

statement. Otherwise, p is preempted when the delay elapses.
– strong abort vs. weak abort:

• strong abort: If the delay elapses before termination of p, p is
preempted and not executed.

• weak abort: If the delay elapses before termination, p is preempted
and executed for a last time.

Embedded Systems 2002/2003 (c) Daniel Kästner. 28

Valued Signals vs. Variables

A variable is local to a thread in case the thread writes
it. If the thread forks on ||, only two cases are legal:
The variable is accessed in read-only mode in each
subthread, or if the variable is written by some thread,
then it can neither be read nor be written by
concurrent threads.

A signal is shared throughout its scope (whole
program for interface signal and the scope of its
declaration for a local signal)

Unlike a signal a variable can take several successive
values in an instant. The order in which the values are
taken is the internal control flow iof the program, the
so-called constructive order.

A valued signal has exactly one status and exactly one
value at a time. Both the status and the value are
broadcast.

The value of a variable is written by an instantaneous
assignment statement.

The value can be changed only if the status is
present.
Unlike the status, the value is permanent: if it is
unchanged in an instant, its value is that of the
previous instant.

Embedded Systems 2002/2003 (c) Daniel Kästner. 29

Valued Signals vs Variables

• Forbidden:
X:=0;
X:=X+1 || X:=1

• Forbidden:
emit S(?S+1)

! Allowed:
emit S(1) || emit S(2)

! Allowed:
X:=X+1

