Timed Languages

« A T=T,T,... IS an infinite sequence of time values
T.LJR with 1>0, satisfying the following constraints:

. T increases strictly monotonically so that 1< 1, for

all i1.
: For every tUR, there is some i=1 such that t,>t.

e A over an alphabet % is a pair (0,1) where 0=0,0,...
Is an infinite word over < and T is a time sequence. A
over X is a set of timed words over .

e Viewed as an input to an automaton a timed word (o,1)
presents the symbol ¢ at time 1.

Embedded Systems 2002/2003 (c) Daniel Kastner.



Examples of Timed Languages

L, ={((alb)*,7)|Di.((r, >5.6) - (0, =a))}

e Language consists of all timed words (o,1) such that there is no
b after time 5.6.

L, ={((ab)®,7) [ 0i.((T, ~Tyipy) < (Tyio ~Tou0))}

e Language consists of all timed words (o,1) In which a and
b alternate and for successive pairs of a and b the time
difference between a and b keeps increasing.

Embedded Systems 2002/2003 (c) Daniel Kastner.



Timed Transition Tables

e The choice of the next state depends on the input read and on the

of the input symbol relative the the times of the previously read symbols.

e Thus, are associated with the transition table:

Clocks can be independently to 0 with any transition.
Clocks elapsed since last reset.

Transitions can put . a transition may be taken only if the
current values of the clocks satisfy the associated constraints.

All clocks increase at a , counting time with respect to a fixed global
time frame; they do not correspond to locals clocks of different components in a
distributed system.

a,x:=0

o o

b,(x<2)?

L={((ab)", 1) [Li.(T; <75, +2)}

Embedded Systems 2002/2003 (c) Daniel Kastner. 3



Timed Transition Tables

For a set X of clock variables, the set ®(X) of dis
defined inductively by

d:=xsc|csx| -0 | 9,18,

where x is a clock in X and c is a constant in Q, the set of nonnegative
rationals.

A V for a set X of clocks assigns a real value to
each clock, ie a mapping from X to R.

A A is a tuple (Z,Q,Q,,C,E) where X is a finite
alphabet, Q is a finite set of states, Q,LIQ Is a set of start states, C is a
finite , and E [ QxZ xQ x2tx®d(C) gives the set of

transitions. An edge (s,a,s',A,d) represents a transition from state s to
state s' on input symbol a. The set /IC gives the
with this transition and ¢ is a over C.

Embedded Systems 2002/2003 (c) Daniel Kastner.



Timed Runs

A r, denoted by (s,v), of a timed transition table
(2,Q,Q,,C,E) over a timed word (o,T) is an infinite sequence of
the form
r :(SO’VO)D% (Sl’vl)['% (SZ’VZ)[H:?‘gi
with s;,0JS and v,LJ[C - R], for all i=0, satisfying the following
requirements:
— Initiation: s, U Q,, and v,=0 for all xUC.
— Consecution: for all i=0, there is an edge in E of the form
(si.1,0,8;,A,0) such that (v, ,+T,-T, ;) satisfies o and v, equals
[A -0 (Vi +T-Tiy)
The set consists of those states stIQ such that s=s; for
infinitely many i=0.

Embedded Systems 2002/2003 (c) Daniel Kastner.



Timed Run: Example

e Consider a timed word (a,2) - (b,2.7) -(c,2.8) - (d,5) given as
iInput to the following timed transition table:

(s, [00]) I$  (s,[0.2]) M, (s,,[0.7,00) T
(s,[0.80.1) I3 (s,,[32.3])

S_l_

o)

Embedded Systems 2002/2003 (c) Daniel Kastner.



Timed Regular Languages

A TBA is a tuple (2,Q,Q,,C,E,F) where
(2,Q,Q,,C,E) is a timed transition table and F U1 S is a set of

. A run r=(s,v) of TBA over a timed word (0,1)
Is called an iff inf(r)nF # .

For a TBA A the language L(A) of timed words it accepts is

defined as the set
L(A) = {(o,1) | A has an accepting run over o,1)}.

A timed language L is a iff L=L(A) for
some TBA A.

The class of timed regular languages is closed under (finite)
union and intersection.

Embedded Systems 2002/2003 (c) Daniel Kastner.



Timed Muller Automata

e A TMA is a tuple (2,Q,Q,,C,E,F) where
(£,Q,Q,,C,E) is a timed transition table and F [0 29 specifies an
. A run r=(s,v) of TMA over a timed word

(o,1) is called an iff inf(r) LJF.

e For a TMA A the language L(A) of timed words it accepts is

defined as the set
L(A) = {(o,1) | A has an accepting run over o,1)}.

e A timed language is accepted by some timed Blchi automaton
Iff it is accepted by some timed Muller automaton.

Embedded Systems 2002/2003 (c) Daniel Kastner.



State Transition Diagrams

State : When event y occurs in state A, if Condition P is
true at the time, the system executes action a and transfers to
state C.

State diagrams are directed graphs with nodes denoting states,
and arrows (labelled with the triggering event, guarding
conditions and action to be executed) denoting transitions.

Example: B

a

y(P)

Problem: all combinations of states have to be represented
explicitly, leading to

Embedded Systems 2002/2003 (c) Daniel Kastner.



State Transition Diagrams

e Disadvantages:

— No (no strategy for bottom-up of top-down
development)
— State-transition diagrams are flal, ie without hierarchy
(eg interrupt): exponential
blow-up
. exponential blow-up
. exponential blow-up
; parallelism cannot be expressed in a
natural way

Embedded Systems 2002/2003 (c) Daniel Kastner.

10



Statecharts

Extension of state-transition diagrams:

/ orthogonality: AND/OR decomposition of states
together with inter-level transitions

, including broadcast for communication between
concurrent components

Can be used as stand-alone behavioral description or as part of
a more general design methodology

Embedded Systems 2002/2003 (c) Daniel Kastner.

11



State Levels: Clustering and Refinement

e Rounded rectangles (called boxes):

e Encapsulation of boxes: hierarchy relation /
e Arrow:

e Arrow labels:

— All components are

— Syntax for events and conditions is
or, and and not

e Three types of states: basic states, OR-states, AND-
states.

a

Kastner. 12

rn
3
o
D
o
o
D
o
W
<
()]
—+
@
3
()]
N
o
o
RO
N
N
o
O
w
~
(@)
N’
O
QD
=
@ |



State Levels: Clustering and
Refinement

e Semantics of OR-State (D in example): XOR of A and C. To be
In state D the system must be either in A or in C, and not in
both. D is abstraction of A and C.

 [is a common property of A and C: (3 leads from them to B.

- denotes state that is entered when abstraction of
set of states is entered.

Embedded Systems 2002/2003 (c) Daniel Kastner.



History

. enter the state most recently
visited.
. history is applied only on the level in which it appears.
. history is applied down to the lowest level of states.

.llf G l N |
(o B — 8 —— | [[(— & — |
)P i [] A D’D
um d Ej D D
I ) . —  J IR . - J
la} (&) fal Ty

Kastner. 14

m
3
o
9]
o
o
9]
o
)]

<
2]
—+
()
3
7]
N
o
o
N
SN
N
o
o
w

~
O
~—
)
QD
=
@ |



Orthogonality

. being in a state the system must be in all
of its AND components.
e Example: state Y consiting of AND components A and D. Y is

orthogonal product of A and D.

e IfY is entered, the system enters
the combination (B,F) by the
default arrows. If event a occurs,
it transfers Bto Cand Fto G
simultaneously, resulting in the
new combined state (C,G).

=2
.

o —— e S . e e

-— .
e If pu occurs, it affects only the D components:
e Due to 'in G' conditions the AND decomposition is not necessarily a

disjoint product of states since some between components

can be introduced.

Embedded Systems 2002/2003 (c) Daniel Kastner.

15



Conditions and Selection
Entrances

e Circled connectives for abbreviating more complex entrances to
substates:

— S: . Event is selection of one of a number of clearly
defined options chosen to modelled as states.

[Tl
ype F LIy o

' _.,1 seleched salwcind
l ', ulq;l::'hd Kw r #e lsckian
Q Fﬂdﬂ, ™ l "1 fupdating @J} h
(Ph
| iR} fype / |
\. J 3 I'k -J
. uptate upAnts
| ,' S I B X )
: ’ updale wpdote ol
{a} 1] -} e J LN J

Embedded Systems 2002/2003 (c) Daniel Kastner.



Delays and Timeouts

Event expression . represents event that
occurs precisely when the specified number of time units have
elapsed from the occurrence of the specified event event.

Graphical notation for special case
timeout ( , bound)

VW
Atl <At2

imeout }

Embedded Systems 2002/2003 (c) Daniel Kastner.

17



Unclustering

e Laying out parts of the startchart not within but
outside of their natural naborhood. Useful for
manuals and computerized use.

e Example:

e e S -

F--_-- a
f \
! .
i “‘\

Embedded Systems 2002/2003 (c) Daniel Kastner. 1



Actions and Activities

Pure statecharts represents the of a system
responsible for making that influence
the system's entire behavior.

Ability of statecharts to generate events and to change the
value of conditions provided by attaching /S to the label of a
transition where S is an action carried out by the system.

occurrences that take ideally zero time.
|n automata-theretic terms.
. are , le take amount of time.

Associated :
— two special kinds of actions to start and stop activities: ,

— special condition:

Embedded Systems 2002/2003 (c) Daniel Kastner.

19



Actions and Activities

can be associated with

— the

Activity X is carried

in and the exit from a state

a state A: action start(X) is

carried out upon entering A and stop(X) upon leaving A.

Example:

o | )
/TT"
l
o
r | i
f'n "q'/‘ I
entry 5 7] W |
exit 2,7 mrdry W I B
throwghaout X I -
I enfiry
‘[F: =
N o I
I
- 1 J

Embedded Systems 2002/2003 (c) Daniel Kastner.

20



Static Reactions

Each state can be associated with (SRs) to be
carried out (whenever) enabled as long as the system is in (and
not exiting) the state in question.
Syntax: e[c]/a

: each SR in state S can be regarded as transition in

a virtual substate of S that is orthogonal to its ordinary
substates and to the other SRs of S.

Example:

' -
W W

eviact

Embedded Systems 2002/2003 (c) Daniel Kastner. 21



Special Events, Conditions and Actions

EVENTS CONDITIONS ACTIONS
in statechart entered(S)/en(S) | in(S) clear-history(state)
exited(S)/ex(S) clear-history(state*)
connecting started(A) active(A) start(A) / st!(A)
statecharts to stopped(A) hangig(A) stop(A)
activities suspend(A)
resume(A)
information items | read(D) D=exp D:=exp
written(D) D<exp made_true(C)
true(C) D>exp make_false(C)
false(C)

time

timeout(E,n)

schedule(Ac,n)/sc!(Ac,d)

Embedded Systems 2002/2003 (c) Daniel Kastner.

22



The STATEMATE System

Graphical working environment for the specification, analysis, design
and documentation of large and complex reactive systems.

Three points of views, each covered by own visual formalism:
— structure:
— functionality:
— behavior:

used to depict reactive behavior over time.

Each visual formalism admits a that provides each
feature, graphical and non-graphical alike with a precise and
unambiguous meaning.

. enabling user to specify a system, and to run, debug and analyze
the specifications and designs that result from the graphical languages.

Embedded Systems 2002/2003 (c) Daniel Kastner. 23



The three Views of a SUD

FUNCTIONALITY BEHAVIOR
Functional Decomposition & Control
Information Flow between &

Activities Temporal Relations

STRUCTURE
Physical Decomposition &
Information Flow between

Modules




Structural View

e Provides of SUD into its
, called (e.g. piece of

hardware, or subroutines or blocks of software).
e |dentifies that flows between modules

(data and control signals).

e Visual specification language:

— Modules: rectilinear shapes
e Storage modules: dashed sides
e Envionment modules: dashed-line rectangles external to that of
the SUD itself

— Sub-module relationship: encapsulation
— Information flow: arrows / hyperarrows

Embedded Systems 2002/2003 (c) Daniel Kastner.

25



Module-Charts Example (EWS)

EWS - =1
r— m—— ey req-limita I aprabor l
I operator i I l.r'l:l:l:ill.ﬂJ |

terminal [ L fault-rms
L - ds MAIN 1l c e I
l TP frult-oec
- e fault-
connec fo-reapadss mnin -J
ot
e I
r——-—9 ) ait-nf- F r -_I
| —— signal rangs sed-up- | alarm
L _} ) i I J
- CICMAL-
HANDLER | lmita [ I
limits
limita
71
| Limer l clack !’_Elfa‘lﬂﬂn 1'
DATA

| I | I |

Embedded Systems 2002/2003 (c) Danlel Kastner 26



Functional View

Identifies a with the details of the
that flow between them: functional
decomposition of the SUD.

, le. it only asserts that something
can happen. specification of , €g when activities
will be activated, whether/when they terminate, etc.

Visual specification language: :
— Activities: rectilinear shapes
— flow of data items: solid lines
— flow of control items: dashed lines
— Data-stores: represent databases, buffers, etc.

— Control activities: behavioral view of the system; appear as empty
boxes in the activity-chart (with rounded edges). Their contents are
specified by statecharts.

Embedded Systems 2002/2003 (c) Daniel Kastner.

27



Activity-Charts Example (EWS)

EWEackivilles
I-FEH‘-'MWI:- N candnnds ) cal
| terminad | | T~ T T T —_——- EWS-cont o Errepooe [ o iy
I . ] - | Eperulo- ]
) mr.l.?ecrf_ o 5, j tetmiael |
- \ |
bimgia - { § [I——
i[ i
] T
sebaup et o Tault [Mrep fasii-
set-up-eottrol {rsnge -
|
'I -
bad-datn ¢ ' e F- mlsrm
s | isgre- '_,v/ ‘\"'l :
- k
I o famlt- [ |
Fl_ III.'HE
s.\‘j P - eand- 1
Einzila
feipd-arg
"-.__q_‘_‘__-_._._.___'__.. pasl-al-ranges
walue

gek-mensurements




Module and Activity Charts

B o
r____! raq Limada - rluf-lﬂl-:‘l
e,
| ierramad |
Lo e T o L
| T i bt os
— [y ::: j_
I_i mmipwi
e - 1
| ] :':: ~ rum I
o L———J
Lo——d SHIHAL-
mannizn |, Gesw R
P ; [Pt
ek | I e=ans
L lmerin _It__— ,El'limtl‘_
—_— L2
::::::: -
r===A s
S N 221
L PR - = ":;-:;l

L
> Z
FETI
i E"'
i
il
HE
Y
'
:




Behavioral View

e Specifies , le
as the SUD reacts over time.
e Visual specification language:

Embedded Systems 2002/2003 (c) Daniel Kastner.

30



Statecharts Example (EWS)

| EWScontral |

Embedded Systems 2002/2003 (c) Daniel Kastner.



Structure of STATEMATE

Statecharts
Activitiy-Charts
Module-Charts

Project Manager
Instructions

\

Additional

external User Cod

Behavior

Simulation
Reports

Working Analysis
Reports Reports

Embedded Systems 2002/2003 (c) Daniel Kastner. 32



Advanced Features (1)

Consistency and completeness , Static logic tests.
Examples:

— module hierarchy consistent with activity hierarchy?

— cyclic definitions?

Object List Generator (OLG): the model of the SUD as
described by the modelling languages.

— Step: one unit of dynamic behavior
— At the beginning and end of a step, the SUD is in a legal status.

— Status: currently active states and activities, current values of
variables and conditions, etc.

— During a step, the environment activities can generate external
events, change the truth values of conditions, and update variables
and other data items.

Embedded Systems 2002/2003 (c) Daniel Kastner.

33



Advanced Features (2)

. carry out many steps in order, controlled by a
simulation control program (SCP) written in SCL (Simulation
Control Language).

Breakpoints, simulation reports.

, mostly by carrying out exhaustive sets of
execution:
— reachability
— non-determinism
— deadlock
— usage of transitions

. specification (parts) can be automatically
translated into C, Ada, VHDL, Verilog.

Embedded Systems 2002/2003 (c) Daniel Kastner. 34



