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Timed Languages

• A time sequence τ=τ1τ2... is an infinite sequence of time values 
τi∈ R with τ i>0, satisfying the following constraints:
– Monotonicity: τ increases strictly monotonically so that τi< τi+1 for 

all i≥1.
– Progress: For every t∈ R, there is some i≥1 such that τi>t.

• A timed word over an alphabet Σ is a pair (σ,τ) where σ=σ1σ2... 
is an infinite word over Σ and τ is a time sequence. A timed 
language over Σ is a set of timed words over Σ.

• Viewed as an input to an automaton a timed word (σ,τ) 
presents the symbol σ at time τ.
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Examples of Timed Languages

• Language consists of all timed words (σ,τ) such that there is no 
b after time 5.6.
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! Language consists of all timed words  (σ,τ) in which a and 
b alternate and for successive pairs of a and b the time 
difference between a and b keeps increasing.
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Timed Transition Tables
• The choice of the next state depends on the input symbol read and on the 

time of the input symbol relative the the times of the previously read symbols.
• Thus, real-valued clocks are associated with the transition table:

– Clocks can be independently reset to 0 with any transition. 
– Clocks keep track of time elapsed since last reset.
– Transitions can put constraints on clock values: a transition may be taken only if the 

current values of the clocks satisfy the associated constraints.
– All clocks increase at a uniform rate, counting time with respect to a fixed global 

time frame; they do not correspond to locals clocks of different components in a 
distributed system.

s1s0

a,x:=0

b,(x<2)?
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Timed Transition Tables
• For a set X of clock variables, the set Φ(X) of clock constraints δ is 

defined inductively by
δ:= x≤c | c≤x | ¬δ | δ1∧δ 2
where x is a clock in X and c is a constant in Q, the set of nonnegative 
rationals.

• A clock interpretation ν for a set X of clocks assigns a real value to 
each clock, ie a mapping from X to R.

• A timed transition table A is a tuple (Σ,Q,Q0,C,E) where Σ is a finite 
alphabet, Q is a finite set of states, Q0⊆ Q is a set of start states, C is a 
finite set of clocks, and E ⊆ Q×Σ ×Q ×2C×Φ(C) gives the set of 
transitions. An edge (s,a,s',λ,δ) represents a transition from state s to 
state s' on input symbol a. The set λ⊆ C gives the clocks to be reset
with this transition and δ is a clock constraint over C.
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Timed Runs

• A run r, denoted by (s,ν), of a timed transition table 
(Σ,Q,Q0,C,E) over a timed word (σ,τ) is an infinite sequence of 
the form

with si∈ S and νi∈ [C→R], for all i≥0, satisfying the following 
requirements:
– Initiation: s0 ∈ Q0, and ν0=0 for all x∈ C.
– Consecution: for all i≥0, there is an edge in E of the form 

(si-1,σ,si,λ,δ) such that (νi-1+τi-τi-1) satisfies δi and νi equals 
[λ i→0] (νi-1+τi-τi-1)

The set inf(r) consists of those states s∈ Q such that s=si for 
infinitely many i≥0.
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Timed Run: Example

• Consider a timed word (a,2) →(b,2.7) →(c,2.8)→ (d,5) given as 
input to the following timed transition table:
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c
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Timed Regular Languages

• A timed Büchi automaton TBA is a tuple (Σ,Q,Q0,C,E,F) where 
(Σ,Q,Q0,C,E) is a timed transition table and F ⊆ S is a set of 
accepting states. A run r=(s,ν) of TBA over a timed word (σ,τ)
is called an accepting run iff inf(r)∩F ≠ ∅ .

• For a TBA A the language L(A) of timed words it accepts is 
defined as the set 
L(A) = {(σ,τ) | A has an accepting run over σ,τ)}.

• A timed language L is a timed regular language iff L=L(A) for 
some TBA A.

• The class of timed regular languages is closed under (finite) 
union and intersection.



Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Timed Muller Automata

• A timed Muller automaton TMA is a tuple (Σ,Q,Q0,C,E,F) where 
(Σ,Q,Q0,C,E) is a timed transition table and F ⊆ 2Q specifies an 
acceptance familiy. A run r=(s,ν) of TMA over a timed word 
(σ,τ) is called an accepting run iff inf(r)∈ F.

• For a TMA A the language L(A) of timed words it accepts is 
defined as the set 
L(A) = {(σ,τ) | A has an accepting run over σ,τ)}.

• A timed language is accepted by some timed Büchi automaton 
iff it is accepted by some timed Muller automaton.
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State Transition Diagrams

• State transition: When event γ occurs in state A, if Condition P is 
true at the time, the system executes action a and transfers to 
state C.

• State diagrams are directed graphs with nodes denoting states, 
and arrows (labelled with the triggering event,  guarding 
conditions and action to be executed) denoting transitions.

• Example:

• Problem: all combinations of states have to be represented 
explicitly, leading to exponential blow-up.

A 

C 

B
γ(P)

δ

β

α

β
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State Transition Diagrams

• Disadvantages: 
– No structure (no strategy for bottom-up of top-down 

development)
– State-transition diagrams are flat, ie without hierarchy
– Uneconomical wrt transitions (eg interrupt): exponential 

blow-up
– Uneconomical wrt states: exponential blow-up
– Uneconomical wrt parallel composition: exponential blow-up
– Inherently sequential; parallelism cannot be expressed in a 

natural way
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Statecharts

• Visual formalism for describing states and transitions of a 
system in a modular fashion

• Extension of state-transition diagrams:
– hierarchy
– concurrency / orthogonality: AND/OR decomposition of states 

together with inter-level transitions
– communication, including broadcast for communication between 

concurrent components
• Can be used as stand-alone behavioral description or as part of 

a more general design methodology
• statecharts = state diagrams + depth + orthogonality + 

broadcast communication
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State Levels: Clustering and Refinement

• Rounded rectangles (called boxes): states
• Encapsulation of boxes: hierarchy relation / clustering
• Arrow: transition
• Arrow labels: <event>(<condition>)/<action>

– All components are optional
– Syntax for events and conditions is closed under boolean 

operations or, and and not
• Three types of states: basic states, OR-states, AND-

states.
A 

C 

B
γ(P)

δ

αD

β
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State Levels: Clustering and 
Refinement

• Semantics of OR-State (D in example): XOR of A and C. To be 
in state D the system must be either in A or in C, and not in 
both. D is abstraction of A and C.

• β is a common property of A and C: β leads from them to B.
• Default state: denotes state that is entered when abstraction of 

set of states is entered.

D
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History

• Enter-by-history: enter the state most recently 
visited.
– H: history is applied only on the level in which it appears.
– H*: history is applied down to the lowest level of states.

Source [1]
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Orthogonality
• AND decomposition: being in a state the system must be in all 

of its AND components.
• Example: state Y consiting of AND components A and D. Y is 

orthogonal product of A and D.

! If Y is entered, the system enters 
the combination (B,F) by the
default arrows. If event α occurs, 
it transfers B to C and F to G
simultaneously, resulting in the
new combined state (C,G).
-> Synchronization.

! If µ occurs, it affects only the D components: independence.
! Due to 'in G' conditions the AND decomposition is not necessarily a 

disjoint product of states since some dependence between components 
can be introduced.

Source [1]
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Conditions and Selection 
Entrances

• Circled connectives for abbreviating more complex entrances to 
substates:
– C: conditional.
– S: selection. Event is selection of one of a number of clearly 

defined options chosen to modelled as states.

Source [1]
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Delays and Timeouts

• Event expression timeout(event, number): represents event that 
occurs precisely when the specified number of time units have 
elapsed from the occurrence of the specified event event.

• Graphical notation for special case 
timeout (entered state, bound)

timeout

∆ t1 < ∆ t2
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Unclustering

• Laying out parts of the startchart not within but 
outside of their natural naborhood. Useful for 
manuals and computerized use.

• Example:

Source [1]
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Actions and Activities

• Pure statecharts represents the control part of a system 
responsible for making time-dependent decisions that influence 
the system's entire behavior.

• Ability of statecharts to generate events and to change the 
value of conditions provided by attaching /S to the label of a 
transition where S is an action carried out by the system.

• Actions: instantaneous occurrences that take ideally zero time. 
Output in automata-theretic terms.

• Activities: are durable, ie take nonzero amount of time.
• Associated with each activity X:

– two special kinds of actions to start and stop activities: start(X), 
stop(X)

– special condition: active(X)
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Actions and Activities

• Actions can be associated with 
– the entrance in and the exit from a state
– transitions

• Activity X is carried throughout a state A: action start(X) is 
carried out upon entering A and stop(X) upon leaving A.

• Example:

Source [1]
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Static Reactions

• Each state can be associated with static reactions (SRs) to be 
carried out (whenever) enabled as long as the system is in (and 
not exiting) the state in question.

• Syntax: e[c]/a
• Semantically: each SR in state S can be regarded as transition in 

a virtual substate of S that is orthogonal to its ordinary 
substates and to the other SRs of S.

• Example:

Source [1]
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Special Events, Conditions and Actions

D:=exp
made_true(C)
make_false(C)

D=exp
D<exp
D>exp
...

read(D)
written(D)
true(C)
false(C)

information items

schedule(Ac,n)/sc!(Ac,d)timeout(E,n)time

start(A) / st!(A)
stop(A)
suspend(A)
resume(A)

active(A)
hangig(A)

started(A)
stopped(A)

connecting 
statecharts to 
activities

clear-history(state)
clear-history(state*)

in(S)entered(S)/en(S)
exited(S)/ex(S)

in statechart

ACTIONSCONDITIONSEVENTS
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The STATEMATE System
• Graphical working environment for the specification, analysis, design 

and documentation of large and complex reactive systems.

• Three points of views, each covered by own visual formalism:
– structure: module charts
– functionality: activity charts
– behavior: statecharts

• Statecharts used to depict reactive behavior over time.

• Each visual formalism admits a formal semantics that provides each 
feature, graphical and non-graphical alike with a precise and 
unambiguous meaning.

• Goal: enabling user to specify a system, and to run, debug and analyze 
the specifications and designs that result from the graphical languages.
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The three Views of a SUD
FUNCTIONALITY

Functional Decomposition &
Information Flow between 

Activities

BEHAVIOR
Control 

&
Temporal Relations

STRUCTURE
Physical Decomposition &
Information Flow between 

Modules

System 
Under

Development
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Structural View

• Provides hierarchical decomposition of SUD into its 
physical components, called modules (e.g. piece of 
hardware, or subroutines or blocks of software).

• Identifies information that flows between modules 
(data and control signals).

• Visual specification language: module-charts
– Modules: rectilinear shapes

• Storage modules: dashed sides
• Envionment modules: dashed-line rectangles external to that of 

the SUD itself
– Sub-module relationship: encapsulation
– Information flow: arrows / hyperarrows
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Module-Charts Example (EWS)
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Functional View

• Identifies a hierarchy of activities with the details of the data 
items and control signals that flow between them: functional 
decomposition of the SUD.

• Non-committing semantics, ie. it only asserts that something 
can happen. No specification of dynamics, eg when activities 
will be activated, whether/when they terminate, etc.

• Visual specification language: activity-charts:
– Activities: rectilinear shapes
– flow of data items: solid lines
– flow of control items: dashed lines
– Data-stores: represent databases, buffers, etc.
– Control activities: behavioral view of the system; appear as empty 

boxes in the activity-chart (with rounded edges). Their contents are 
specified by statecharts.
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Activity-Charts Example (EWS)
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Module and Activity Charts

MAIN

SIGNAL HANDLER

MMI                                                    
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Behavioral View

• Specifies control, ie when, how and why things 
happen as the SUD reacts over time.

• Visual specification language: statecharts



Embedded Systems 2002/2003 (c) Daniel Kästner. 31

Statecharts Example (EWS)
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Structure of STATEMATE

STATEMATE
Database

Graphics &
Form Editors

TestsReport and
Plot Generators

Management
Functions

Code
Generator

Simulation
Package

external
Behavior

Simulation
Reports Working

Reports
Analysis
Reports

Code

Additional
User Code

Project Manager
Instructions

Statecharts
Activitiy-Charts
Module-Charts
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Advanced Features (1)

• Consistency and completeness tests, static logic tests. 
Examples:
– module hierarchy consistent with activity hierarchy?
– cyclic definitions?

• Object List Generator (OLG): querying the model of the SUD as 
described by the modelling languages.

• Single step execution: 
– Step: one unit of dynamic behavior
– At the beginning and end of a step, the SUD is in a legal status.
– Status: currently active states and activities, current values of 

variables and conditions, etc.
– During a step, the environment activities can generate external 

events, change the truth values of conditions, and update variables 
and other data items.
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Advanced Features (2)

• Batch simulation: carry out many steps in order, controlled by a 
simulation control program (SCP) written in SCL (Simulation 
Control Language).

• Breakpoints, simulation reports.
• Dynamic tests, mostly by carrying out exhaustive sets of 

execution: 
– reachability
– non-determinism
– deadlock
– usage of transitions

• Code generation: specification (parts) can be automatically 
translated into C, Ada, VHDL, Verilog.


