
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

Timed Languages

• A time sequence τ=τ1τ2... is an infinite sequence of time values
τi∈ R with τ i>0, satisfying the following constraints:
– Monotonicity: τ increases strictly monotonically so that τi< τi+1 for

all i≥1.
– Progress: For every t∈ R, there is some i≥1 such that τi>t.

• A timed word over an alphabet Σ is a pair (σ,τ) where σ=σ1σ2...
is an infinite word over Σ and τ is a time sequence. A timed
language over Σ is a set of timed words over Σ.

• Viewed as an input to an automaton a timed word (σ,τ)
presents the symbol σ at time τ.

Embedded Systems 2002/2003 (c) Daniel Kästner. 2

Examples of Timed Languages

• Language consists of all timed words (σ,τ) such that there is no
b after time 5.6.

))}()6.5.((|),)|{((1 aibaL ii =→>∀= σττω

))}().((|),){((1222)1222 ++− −<−∀= iiiiiabL τττττω

! Language consists of all timed words (σ,τ) in which a and
b alternate and for successive pairs of a and b the time
difference between a and b keeps increasing.

Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Timed Transition Tables
• The choice of the next state depends on the input symbol read and on the

time of the input symbol relative the the times of the previously read symbols.
• Thus, real-valued clocks are associated with the transition table:

– Clocks can be independently reset to 0 with any transition.
– Clocks keep track of time elapsed since last reset.
– Transitions can put constraints on clock values: a transition may be taken only if the

current values of the clocks satisfy the associated constraints.
– All clocks increase at a uniform rate, counting time with respect to a fixed global

time frame; they do not correspond to locals clocks of different components in a
distributed system.

s1s0

a,x:=0

b,(x<2)?

)}2.(|),){((122 +<∀≈ −iiiabL τττω

Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Timed Transition Tables
• For a set X of clock variables, the set Φ(X) of clock constraints δ is

defined inductively by
δ:= x≤c | c≤x | ¬δ | δ1∧δ 2
where x is a clock in X and c is a constant in Q, the set of nonnegative
rationals.

• A clock interpretation ν for a set X of clocks assigns a real value to
each clock, ie a mapping from X to R.

• A timed transition table A is a tuple (Σ,Q,Q0,C,E) where Σ is a finite
alphabet, Q is a finite set of states, Q0⊆ Q is a set of start states, C is a
finite set of clocks, and E ⊆ Q×Σ ×Q ×2C×Φ(C) gives the set of
transitions. An edge (s,a,s',λ,δ) represents a transition from state s to
state s' on input symbol a. The set λ⊆ C gives the clocks to be reset
with this transition and δ is a clock constraint over C.

Embedded Systems 2002/2003 (c) Daniel Kästner. 5

Timed Runs

• A run r, denoted by (s,ν), of a timed transition table
(Σ,Q,Q0,C,E) over a timed word (σ,τ) is an infinite sequence of
the form

with si∈ S and νi∈ [C→R], for all i≥0, satisfying the following
requirements:
– Initiation: s0 ∈ Q0, and ν0=0 for all x∈ C.
– Consecution: for all i≥0, there is an edge in E of the form

(si-1,σ,si,λ,δ) such that (νi-1+τi-τi-1) satisfies δi and νi equals
[λ i→0] (νi-1+τi-τi-1)

The set inf(r) consists of those states s∈ Q such that s=si for
infinitely many i≥0.

...),(),(),(: 321
221100 →→→ σσσ ννν sssr τ1 τ2 τ3

Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Timed Run: Example

• Consider a timed word (a,2) →(b,2.7) →(c,2.8)→ (d,5) given as
input to the following timed transition table:

s1s0
a s2

b s3
c

x:=0 y:=0 x<1?

d,(y>2)?

])......3.2,3[,(])1.0,8.0[,(

])0,7.0[,(])2,0[,(])0,0[,(:

03

210

ss
sssr

d

cba

→

→→→
2 2.7 2.8

5

Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Timed Regular Languages

• A timed Büchi automaton TBA is a tuple (Σ,Q,Q0,C,E,F) where
(Σ,Q,Q0,C,E) is a timed transition table and F ⊆ S is a set of
accepting states. A run r=(s,ν) of TBA over a timed word (σ,τ)
is called an accepting run iff inf(r)∩F ≠ ∅ .

• For a TBA A the language L(A) of timed words it accepts is
defined as the set
L(A) = {(σ,τ) | A has an accepting run over σ,τ)}.

• A timed language L is a timed regular language iff L=L(A) for
some TBA A.

• The class of timed regular languages is closed under (finite)
union and intersection.

Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Timed Muller Automata

• A timed Muller automaton TMA is a tuple (Σ,Q,Q0,C,E,F) where
(Σ,Q,Q0,C,E) is a timed transition table and F ⊆ 2Q specifies an
acceptance familiy. A run r=(s,ν) of TMA over a timed word
(σ,τ) is called an accepting run iff inf(r)∈ F.

• For a TMA A the language L(A) of timed words it accepts is
defined as the set
L(A) = {(σ,τ) | A has an accepting run over σ,τ)}.

• A timed language is accepted by some timed Büchi automaton
iff it is accepted by some timed Muller automaton.

Embedded Systems 2002/2003 (c) Daniel Kästner. 9

State Transition Diagrams

• State transition: When event γ occurs in state A, if Condition P is
true at the time, the system executes action a and transfers to
state C.

• State diagrams are directed graphs with nodes denoting states,
and arrows (labelled with the triggering event, guarding
conditions and action to be executed) denoting transitions.

• Example:

• Problem: all combinations of states have to be represented
explicitly, leading to exponential blow-up.

A

C

B
γ(P)

δ

β

α

β

Embedded Systems 2002/2003 (c) Daniel Kästner. 10

State Transition Diagrams

• Disadvantages:
– No structure (no strategy for bottom-up of top-down

development)
– State-transition diagrams are flat, ie without hierarchy
– Uneconomical wrt transitions (eg interrupt): exponential

blow-up
– Uneconomical wrt states: exponential blow-up
– Uneconomical wrt parallel composition: exponential blow-up
– Inherently sequential; parallelism cannot be expressed in a

natural way

Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Statecharts

• Visual formalism for describing states and transitions of a
system in a modular fashion

• Extension of state-transition diagrams:
– hierarchy
– concurrency / orthogonality: AND/OR decomposition of states

together with inter-level transitions
– communication, including broadcast for communication between

concurrent components
• Can be used as stand-alone behavioral description or as part of

a more general design methodology
• statecharts = state diagrams + depth + orthogonality +

broadcast communication

Embedded Systems 2002/2003 (c) Daniel Kästner. 12

State Levels: Clustering and Refinement

• Rounded rectangles (called boxes): states
• Encapsulation of boxes: hierarchy relation / clustering
• Arrow: transition
• Arrow labels: <event>(<condition>)/<action>

– All components are optional
– Syntax for events and conditions is closed under boolean

operations or, and and not
• Three types of states: basic states, OR-states, AND-

states.
A

C

B
γ(P)

δ

αD

β

Embedded Systems 2002/2003 (c) Daniel Kästner. 13

State Levels: Clustering and
Refinement

• Semantics of OR-State (D in example): XOR of A and C. To be
in state D the system must be either in A or in C, and not in
both. D is abstraction of A and C.

• β is a common property of A and C: β leads from them to B.
• Default state: denotes state that is entered when abstraction of

set of states is entered.

D

Embedded Systems 2002/2003 (c) Daniel Kästner. 14

History

• Enter-by-history: enter the state most recently
visited.
– H: history is applied only on the level in which it appears.
– H*: history is applied down to the lowest level of states.

Source [1]

Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Orthogonality
• AND decomposition: being in a state the system must be in all

of its AND components.
• Example: state Y consiting of AND components A and D. Y is

orthogonal product of A and D.

! If Y is entered, the system enters
the combination (B,F) by the
default arrows. If event α occurs,
it transfers B to C and F to G
simultaneously, resulting in the
new combined state (C,G).
-> Synchronization.

! If µ occurs, it affects only the D components: independence.
! Due to 'in G' conditions the AND decomposition is not necessarily a

disjoint product of states since some dependence between components
can be introduced.

Source [1]

Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Conditions and Selection
Entrances

• Circled connectives for abbreviating more complex entrances to
substates:
– C: conditional.
– S: selection. Event is selection of one of a number of clearly

defined options chosen to modelled as states.

Source [1]

Embedded Systems 2002/2003 (c) Daniel Kästner. 17

Delays and Timeouts

• Event expression timeout(event, number): represents event that
occurs precisely when the specified number of time units have
elapsed from the occurrence of the specified event event.

• Graphical notation for special case
timeout (entered state, bound)

timeout

∆ t1 < ∆ t2

Embedded Systems 2002/2003 (c) Daniel Kästner. 18

Unclustering

• Laying out parts of the startchart not within but
outside of their natural naborhood. Useful for
manuals and computerized use.

• Example:

Source [1]

Embedded Systems 2002/2003 (c) Daniel Kästner. 19

Actions and Activities

• Pure statecharts represents the control part of a system
responsible for making time-dependent decisions that influence
the system's entire behavior.

• Ability of statecharts to generate events and to change the
value of conditions provided by attaching /S to the label of a
transition where S is an action carried out by the system.

• Actions: instantaneous occurrences that take ideally zero time.
Output in automata-theretic terms.

• Activities: are durable, ie take nonzero amount of time.
• Associated with each activity X:

– two special kinds of actions to start and stop activities: start(X),
stop(X)

– special condition: active(X)

Embedded Systems 2002/2003 (c) Daniel Kästner. 20

Actions and Activities

• Actions can be associated with
– the entrance in and the exit from a state
– transitions

• Activity X is carried throughout a state A: action start(X) is
carried out upon entering A and stop(X) upon leaving A.

• Example:

Source [1]

Embedded Systems 2002/2003 (c) Daniel Kästner. 21

Static Reactions

• Each state can be associated with static reactions (SRs) to be
carried out (whenever) enabled as long as the system is in (and
not exiting) the state in question.

• Syntax: e[c]/a
• Semantically: each SR in state S can be regarded as transition in

a virtual substate of S that is orthogonal to its ordinary
substates and to the other SRs of S.

• Example:

Source [1]

Embedded Systems 2002/2003 (c) Daniel Kästner. 22

Special Events, Conditions and Actions

D:=exp
made_true(C)
make_false(C)

D=exp
D<exp
D>exp
...

read(D)
written(D)
true(C)
false(C)

information items

schedule(Ac,n)/sc!(Ac,d)timeout(E,n)time

start(A) / st!(A)
stop(A)
suspend(A)
resume(A)

active(A)
hangig(A)

started(A)
stopped(A)

connecting
statecharts to
activities

clear-history(state)
clear-history(state*)

in(S)entered(S)/en(S)
exited(S)/ex(S)

in statechart

ACTIONSCONDITIONSEVENTS

Embedded Systems 2002/2003 (c) Daniel Kästner. 23

The STATEMATE System
• Graphical working environment for the specification, analysis, design

and documentation of large and complex reactive systems.

• Three points of views, each covered by own visual formalism:
– structure: module charts
– functionality: activity charts
– behavior: statecharts

• Statecharts used to depict reactive behavior over time.

• Each visual formalism admits a formal semantics that provides each
feature, graphical and non-graphical alike with a precise and
unambiguous meaning.

• Goal: enabling user to specify a system, and to run, debug and analyze
the specifications and designs that result from the graphical languages.

Embedded Systems 2002/2003 (c) Daniel Kästner. 24

The three Views of a SUD
FUNCTIONALITY

Functional Decomposition &
Information Flow between

Activities

BEHAVIOR
Control

&
Temporal Relations

STRUCTURE
Physical Decomposition &
Information Flow between

Modules

System
Under

Development

Embedded Systems 2002/2003 (c) Daniel Kästner. 25

Structural View

• Provides hierarchical decomposition of SUD into its
physical components, called modules (e.g. piece of
hardware, or subroutines or blocks of software).

• Identifies information that flows between modules
(data and control signals).

• Visual specification language: module-charts
– Modules: rectilinear shapes

• Storage modules: dashed sides
• Envionment modules: dashed-line rectangles external to that of

the SUD itself
– Sub-module relationship: encapsulation
– Information flow: arrows / hyperarrows

Embedded Systems 2002/2003 (c) Daniel Kästner. 26

Module-Charts Example (EWS)

Embedded Systems 2002/2003 (c) Daniel Kästner. 27

Functional View

• Identifies a hierarchy of activities with the details of the data
items and control signals that flow between them: functional
decomposition of the SUD.

• Non-committing semantics, ie. it only asserts that something
can happen. No specification of dynamics, eg when activities
will be activated, whether/when they terminate, etc.

• Visual specification language: activity-charts:
– Activities: rectilinear shapes
– flow of data items: solid lines
– flow of control items: dashed lines
– Data-stores: represent databases, buffers, etc.
– Control activities: behavioral view of the system; appear as empty

boxes in the activity-chart (with rounded edges). Their contents are
specified by statecharts.

Embedded Systems 2002/2003 (c) Daniel Kästner. 28

Activity-Charts Example (EWS)

Embedded Systems 2002/2003 (c) Daniel Kästner. 29

Module and Activity Charts

MAIN

SIGNAL HANDLER

MMI

Embedded Systems 2002/2003 (c) Daniel Kästner. 30

Behavioral View

• Specifies control, ie when, how and why things
happen as the SUD reacts over time.

• Visual specification language: statecharts

Embedded Systems 2002/2003 (c) Daniel Kästner. 31

Statecharts Example (EWS)

Embedded Systems 2002/2003 (c) Daniel Kästner. 32

Structure of STATEMATE

STATEMATE
Database

Graphics &
Form Editors

TestsReport and
Plot Generators

Management
Functions

Code
Generator

Simulation
Package

external
Behavior

Simulation
Reports Working

Reports
Analysis
Reports

Code

Additional
User Code

Project Manager
Instructions

Statecharts
Activitiy-Charts
Module-Charts

Embedded Systems 2002/2003 (c) Daniel Kästner. 33

Advanced Features (1)

• Consistency and completeness tests, static logic tests.
Examples:
– module hierarchy consistent with activity hierarchy?
– cyclic definitions?

• Object List Generator (OLG): querying the model of the SUD as
described by the modelling languages.

• Single step execution:
– Step: one unit of dynamic behavior
– At the beginning and end of a step, the SUD is in a legal status.
– Status: currently active states and activities, current values of

variables and conditions, etc.
– During a step, the environment activities can generate external

events, change the truth values of conditions, and update variables
and other data items.

Embedded Systems 2002/2003 (c) Daniel Kästner. 34

Advanced Features (2)

• Batch simulation: carry out many steps in order, controlled by a
simulation control program (SCP) written in SCL (Simulation
Control Language).

• Breakpoints, simulation reports.
• Dynamic tests, mostly by carrying out exhaustive sets of

execution:
– reachability
– non-determinism
– deadlock
– usage of transitions

• Code generation: specification (parts) can be automatically
translated into C, Ada, VHDL, Verilog.

