
Embedded Systems 2002/2003 (c) Daniel Kästner. 1

Organizatorics

• Alternative Lecture Dates:
– Monday, 14-16 Monday 11-13 in HS001 ?
– Thursday, 9-11 to

• Wednesday, 14-16; [room available?] ?
• Friday, 14-16, HS002 ?

• Tutorial dates:
– No feedback on available rooms yet.

Embedded Systems 2002/2003 (c) Daniel Kästner. 2

Embedded Systems: Definition

• Embedded systems are embedded in a physical
environment and interact with it, usually for measuring or
controlling purposes.

• Typical characteristics of embedded applications:
– complex interaction with environment (non-deterministic,

contineous behavior; signals arrive at enormeous rates; signal
processing and information filtering become key issues)

– high dependability requirements
– often real-time processing required

Embedded Systems 2002/2003 (c) Daniel Kästner. 3

Special Case: Real-Time Systems

• In a real-time system, the correctness not only depends on the
logical results but also on the timing of the applications.

• Definition (Oxford Dictionary of Computing):
Any system in which the time at which output is produced is
significant.

This is usually because the input corresponds to some
movement in the physical world, and the output has to relate to
that same movement. The lag from input time to output time
must be sufficiently small for acceptable timeliness.

Embedded Systems 2002/2003 (c) Daniel Kästner. 4

Today

• Finite Automata

• Timed Automata

Embedded Systems 2002/2003 (c) Daniel Kästner. 5

Finite Automata

Embedded Systems 2002/2003 (c) Daniel Kästner. 6

Finite Automata

• Non-deterministic finite automaton (NFA):
M = (Σ, Q, ∆, q0, F) where
– Σ: finite alphabet
– Q: finite set of states
– q0 ∈ Q: initial state
– F ⊆ Q: final states
–

• M is called a deterministic finite automaton, if ∆ is a
partial function

QQ ×∪Σ×⊆∆ }){(ε

QQ →Σ×:δ

Embedded Systems 2002/2003 (c) Daniel Kästner. 7

Simple State Transition Diagram

• Used to represent a finite automaton
• Nodes: states
• q0 has special entry mark
• Final states are doubly circled
• An edge from p to q is labelled by a if
• Example: integer and real constants:

∆∈),,(qap

Embedded Systems 2002/2003 (c) Daniel Kästner. 8

Language Accepted by an
Automaton

• M = (Σ, Q, ∆, q0, F)
• For q ∈ Q, w ∈ Σ *: (q,w) is a configuration.
• Step binary relation on configurations:

• Reflexive transitive closure of is denoted by
• Language accepted by M:

QQpaqwpawq M →Σ×∆∈− :),,(iff),(|),(

M−| *| M−

)},(|),(:||{)(*
0

* εfMf qwqFqwwML −∈∃Σ∈=

Embedded Systems 2002/2003 (c) Daniel Kästner. 9

Regular Languages / Expressions
• Let Σ be an alphabet. The regular languages are defined inductively

over Σ by:
– ∅ , {ε} are regular languages over Σ
– Forall a ∈ Σ , {a} is a regular language
– If R1 and R2 are regular languages over Σ, then so are R1∪ R2, R1R2 and

R1
*.

• Regular expressions over Σ are defined by:
– ∅ is a regular expression and describes the language ∅
– ε is a regular expression and describes the language {ε}
– a (for a ∈ Σ) is a regular expression and describes the regular language

{a}
– (r1|r2) is a regular expression over Σ and describes the regular language

R1∪ R2

– (r1r2) is a regular expression over Σ and describes the regular language
R1R2

– (r1)* is a regular expression over Σ and describes the regular language R1
*.

Embedded Systems 2002/2003 (c) Daniel Kästner. 10

Regular Expressions and FA

• For every regular language R, there exists an NFA M, such that
L(M)=R.

• Constructive Proof (Subset Construction):
– A regular language is defined by a regular expression r
– Construct an NFA with one final state, qf and the transition

– Decompose r and
develop the NFA
according to the
following rules ->
until only transitions
under single characters
and ε remain.

Embedded Systems 2002/2003 (c) Daniel Kästner. 11

Example: a(a|0)*

q1 q2 q3 q4 q5 pa

a

0

εε

ε εε

Embedded Systems 2002/2003 (c) Daniel Kästner. 12

Nondeterminism

• Sources of nondeterminism:

1|}),,(|{| ≤∆∈′′ qaqq

– many transitions may be possible under the same
character in a given state

– ε-moves (next character is not read) may compete with
non- ε-moves

! DFA:
– No ε-transition
– At most one transition from every state under a given

character, ie for every q ∈ Q, a ∈ Σ :

Embedded Systems 2002/2003 (c) Daniel Kästner. 13

NFA -> DFA

• Let M=(Σ, Q, ∆, q0, F) be an NFA and let q ∈ Q. The
set of ε successor states of q, ε-SS, is

or the set of all states p, including q, for which there
exists an ε path from q to p in the transition diagram
for M.
We extend ε-SS to sets of states S ⊆ Q:

)},(|),(|{)(* εεε pqpqSS M−=−

U
Sq

qSSSSS
∈

−=−)()(εε

Embedded Systems 2002/2003 (c) Daniel Kästner. 14

NFA -> DFA
• If a language L is accepted by a NFA then there is also a

DFA accepting L.
• Let M=(Σ, Q, ∆, q0, F) be an NFA. The DFA associated with

M, M'=(Σ, Q', δ, q0', F') is defined by:
– Q' ⊆ P(Q)
– q0' = ε-SS(q0)
–
–

• Thus, the successor state S under a character a in M' is
obtained by combining the sucessor states of all states q ∈
S under a and adding the ε sucessor states.

}|{' ∅≠∩⊆= QSQSF
Σ∈∈∆∈−= aSqpaqpSSaS for })for),,(|({),(εδ

Embedded Systems 2002/2003 (c) Daniel Kästner. 15

Algorithm NFA->DFA
q'0:= ε-SSQ(q0); Q':={q0'};

marked(q'0):=false; δ :=∅ ;

while ∃ S∈ Q' and marked(S)=false do
marked(S):=true;

foreach a∈Σ do

T:= ε-SSQ({p∈ Q| (q,a,p) ∈ ∆ and q ∈ S});
if T∉ Q

Q':=Q' ∪ {T}; // new state
marked(T):=false

δ := δ ∪ {(S,a)->T}; // new transition

Embedded Systems 2002/2003 (c) Daniel Kästner. 16

Example: a(a|0)*

q1 q2 q3 q4 pa

a

0

εε

εε

0' 1' 2'a

a

0

a

0

∅
a

0

0

Embedded Systems 2002/2003 (c) Daniel Kästner. 17

DFA Minimization

• After NFA->DFA the DFA need not have minimal size,
ie minimal number of states and transitions.

• p and q are undistinguishable, iff for all words w
(q,w) and (p,w) lead by into either F' or Q'-F'.

• Undistinguishable states can be merged.

*| M−

Embedded Systems 2002/2003 (c) Daniel Kästner. 18

DFA Minimization

• Input: DFA M=(Σ, Q, δ, q0, F)
• Output: DFA Mmin=(Σ, Qmin, δmin, q0min, Fmin) with L(M)=L(Mmin)

and Qmin minimal.
• Iteratively refine a partition of the set of states where each set

S in the partition consists of states so far undistinguishable
• Start with the partition Π={F, Q-F}
• Refine the current Π by splitting sets S∈Π into S1, S2 if there

exist q1, q2 ∈ S such that
– δ(q1,a) ∈ S1

– δ(q2,a) ∈ S2

– S1 ≠ S2

• Merge sets of undistinguishable states into a single state.

Embedded Systems 2002/2003 (c) Daniel Kästner. 19

Algorithm minDFA
Π := {F, Q-F}
do changed := false

Π':= Π;
foreach K in Π do

if n > 1 then changed := true fi
Π':= Π;

until not changed;
Qmin= Π - (Dead ∪ Unreachable);

q0min Class of Π containing q0
Fmin Classes containing an element of F
δmin(K,a)=K' if δ(q,a)=p with a∈Σ and p∈ K' for one (ie for all) q∈ K
K∈ Dead if K is not final state and contains only transitions to itself
K Unreachable if there is no path from the initial state to K

''

1

1

),(: and

such that maximal with }}{{}){'(:'

iii
ni

i

inii

KaqKKqaKK
KKK

∈Π∈∃∈∀Σ∈∀=

∪−Π=Π

≤≤

≤≤

δU

Embedded Systems 2002/2003 (c) Daniel Kästner. 20

Example: a(a|0)*

0' 1' 2'a

a

0

a

0

∅
a

0

0

{0'} {1',2'}a

a

0

Embedded Systems 2002/2003 (c) Daniel Kästner. 21

Mealy Automata

• Mealy automata are finite-state machines that act as
transducers, or translators, taking a string on an input alphabet
and producing a string of equal length on an output alphabet.

• A machine in state qj, after reading symbol sigmaσk writes
symbol λk; the output symbol depends on the state just reached
and the corresponding input symbol.

• A Mealy automaton is a six-tuple
ME=(Q, Σ, Γ, δ, λ, q0) where
– Q is a finite set of states
– Σ is a finite input alphabet
– Γ is a finite output alphabet
– δ: Q × Σ -> Q is the transition function
– λ: Q × Σ -> Γ is the output function
– q0 is the initial state

Embedded Systems 2002/2003 (c) Daniel Kästner. 22

Moore Automata

• Moore automata are finite-state machines that act as
transducers, or translators, taking a string on an input alphabet
and producing a string of equal length on an output alphabet.

• Symbols are output after the transition to a new state is
completed; output symbol depends only on the state just
reached.

• A Moore automaton is a six-tuple
MO=(Q, Σ, Γ, δ, λ, q0) where
– Q is a finite set of states
– Σ is a finite input alphabet
– Γ is a finite output alphabet
– δ: Q × Σ -> Q is the transition function
– λ: Q -> Γ is the output function
– q0 is the initial state

Embedded Systems 2002/2003 (c) Daniel Kästner. 23

Timed Automata

• Modelling goal: reasoning about systems that must interact with
physical processes and that are subject to real-time constraints.
Important issue: Verification.

• Modelling basics: executions are infinite sequences of events
paired with times, where the ith element of the time sequence
gives the time of occurrence of the ith event.

• Finite automata: effective constructions and decision procedures
for automatically manipulating and analyzing system behavior.

• Question: Can timed sequences be represented by some formal
language and can the behavior be described by some formal
automaton?

Embedded Systems 2002/2003 (c) Daniel Kästner. 24

Time Models

• Linear time model:
– Execution is only modelled as a sequence of states or events,

called an execution trace.
– The behavior of the system is a set of execution traces.
– Can be modeled by finite automata.
– No reasoning about the timing of events.

• Discrete time model:
– Time sequence is monotonically increasing sequence of integers.
– Can be modelled by finite automata after inserting silent events

such that the times increase by exactly one at each step and,
hence, the time sequence can be discarded.

– Appropriate for synchronous digital systems, but accuracy with
which physical systems can be modeled is limited (continuous time
is approximated by discrete time).

Embedded Systems 2002/2003 (c) Daniel Kästner. 25

Time Models

• Dense-time model:
– Times of events are real numbers increasing monotonically

without bound.
– Problem: How to transform set of dense-time traces into

ordinary formal language?

Embedded Systems 2002/2003 (c) Daniel Kästner. 26

Timed Automata...

• ...accept timed words, ie infinite sequences in which a real-
valued time of occurrence is associated with each symbol.

• ...are finite automata with a finite set of real-valued clocks:
– Clocks can be independently reset to 0 with the transitions of the

automaton.
– Clocks keep track of time elapsed since last reset.
– Transitions can put constraints on clock values: a transition may be

taken only if the current values of the clocks satisfy the associated
constraints.
Example: channel delivers each message within 3-5 time units of
its receipt.

Embedded Systems 2002/2003 (c) Daniel Kästner. 27

ω-Automata

• Problem: timed sequences can be inifinite.
• Regular language: finite words over some finite alphabet.

• An ω-regular language over a finite alphabet Σ is a subset of Σω,
ie the set of all infinite words over Σ.

• ω-automaton: corresponds to NFA, but with acceptance
condition modified to handle infinite input words.
– Büchi automata
– Muller automata

Embedded Systems 2002/2003 (c) Daniel Kästner. 28

ω-Automata

• A transition table AAAA is a tuple (Σ, Q, Q0, E) where Σ is an input
alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of start
states and E ⊆ Q×Σ×Q is a set of edges. If (s,a,s') ∈ E then the
automaton can change its state from s to s' reading the input
symbol a.

• For a word σ=σ1σ2... over Σ,

is a run of A over σ for s0∈ Q0 and (si-1, σi , si) ∈ E for all i≥1.

• The set inf(r) for a run r consists of the states s ∈ Q such that
s=si for infinitely many i ≥ 0.

...: 321
210 →→→ σσσ sssr

Embedded Systems 2002/2003 (c) Daniel Kästner. 29

Büchi Automata

• A Büchi automaton A is a transition table (Σ, Q, Q0, E) with an
additional set F ⊆ Q of accepting states. A run r of A over a
word σ∈ Σ ω is an accepting run iff inf(r)∩F ≠ ∅ .

• The language L(A) accepted by A consists of the words σ∈ Σ ω

such that A has an accepting run over σ.

• Example:

s1s0

a,b a

a

The automaton accepts
all words with only a
finite number of b's:
L0=(a|b)*aω

Embedded Systems 2002/2003 (c) Daniel Kästner. 30

ω-Regular Languages

• An ω-language is called ω-regular, iff it is accepted
by some Büchi automaton.

• Properties of ω-regular languages:
– Closed under all Boolean operations
– Intersection, complement decidable
– Inclusion problem is decidable:

• Testing for emptiness simple.
• Complementing involves exponential blow-up in the states of

the Büchi automaton: PSPACE-complete.
• For deterministic automata inclusion problem can be solved in

polynomial time.

Embedded Systems 2002/2003 (c) Daniel Kästner. 31

Deterministic Büchi Automata

• A transition table A is deterministic, iff
– there is a single initial state
– the number of a-labeled edges starting at s is at most one

for all s∈ S and for all a∈Σ .

! The class of languages accepted by deterministic Büchi
automata is strictly smaller than the class of ω-regular
languages

Embedded Systems 2002/2003 (c) Daniel Kästner. 32

Muller Automata

• A Muller automaton A is a transition table (Σ, Q, Q0, E) with
an acceptance family F ⊆ 2Q. A run r of A over a word σ∈ Σ ω is
an accepting run iff inf(r)∈ F.

• The class of languages accepted by Muller automata is the same
as that accepted by Büchi automata, and also equals that
accepted by deterministic Muller automata.

• The complement can be computed in polynomial time.
• Example:

The automaton accepts all
words with only a finite number
of b's:
L0=(a|b)*aω

s1s0

b a

a

bF={{s1}}

Embedded Systems 2002/2003 (c) Daniel Kästner. 33

Timed Languages

• A time sequence τ=τ1τ2... is an infinite sequence of time values
τi∈ R with τ i>0, satisfying the following constraints:
– Monotonicity: τ increases strictly monotonically so that τi< τi+1 for

all i≥1.
– Progress: For every t∈ R, there is some i≥1 such that τi>t.

• A timed word over an alphabet Σ is a pair (σ,τ) where σ=σ1σ2...
is an infinite word over Σ and τ is a time sequence. A timed
language over Σ is a set of timed words over Σ.

• Viewed as an input to an automaton a timed word (σ,τ)
presents the symbol σ at time τ.

Embedded Systems 2002/2003 (c) Daniel Kästner. 34

Examples of Timed Languages

• Language consists of all timed words (σ,τ) such that there is no
b after time 5.6.

))}()6.5.((|),)|{((1 aibaL ii =→>∀= σττω

))}().((|),){((1222)1222 ++− −<−∀= iiiiiabL τττττω

! Language consists of all timed words (σ,τ) in which a and
b alternate and for successive pairs of a and b the time
difference between a and b keeps increasing.

