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Organizatorics

• Alternative Lecture Dates:
– Monday, 14-16  Monday 11-13 in HS001 ?
– Thursday, 9-11 to 

• Wednesday, 14-16; [room available?] ?
• Friday, 14-16, HS002 ?

• Tutorial dates:
– No feedback on available rooms yet.
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Embedded Systems: Definition

• Embedded systems are embedded in a physical 
environment and interact with it, usually for measuring or 
controlling purposes.

• Typical characteristics of embedded applications:
– complex interaction with environment (non-deterministic, 

contineous behavior; signals arrive at enormeous rates; signal 
processing and information filtering become key issues)

– high dependability requirements
– often real-time processing required
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Special Case: Real-Time Systems

• In a real-time system, the correctness not only depends on the 
logical results but also on the timing of the applications.

• Definition (Oxford Dictionary of Computing):
Any system in which the time at which output is produced is 
significant. 

This is usually because the input corresponds to some 
movement in the physical world, and the output has to relate to 
that same movement. The lag from input time to output time 
must be sufficiently small for acceptable timeliness.
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Today

• Finite Automata

• Timed Automata
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Finite Automata
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Finite Automata

• Non-deterministic finite automaton (NFA):
M = (Σ, Q, ∆, q0, F) where
– Σ: finite alphabet
– Q: finite set of states
– q0 ∈ Q: initial state
– F ⊆ Q: final states
–

• M is called a deterministic finite automaton, if ∆ is a 
partial function 

QQ ×∪Σ×⊆∆ }){( ε

QQ →Σ×:δ
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Simple State Transition Diagram

• Used to represent a finite automaton
• Nodes: states
• q0 has special entry mark
• Final states are doubly circled
• An edge from p to q is labelled by a if 
• Example: integer and real constants:

∆∈),,( qap
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Language Accepted by an 
Automaton

• M = (Σ, Q, ∆, q0, F)
• For q ∈ Q, w ∈ Σ *: (q,w) is a configuration.
• Step binary relation on configurations:

• Reflexive transitive closure of       is denoted by 
• Language accepted by M:

QQpaqwpawq M →Σ×∆∈− :),,( iff ),(|),(

M−| *| M−

)},(|),(:||{)( *
0

* εfMf qwqFqwwML −∈∃Σ∈=
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Regular Languages / Expressions
• Let Σ be an alphabet. The regular languages are defined inductively 

over Σ by:
– ∅ , {ε} are regular languages over Σ
– Forall a ∈ Σ , {a} is a regular language
– If R1 and R2 are regular languages over Σ, then so are R1∪ R2, R1R2 and 

R1
*.

• Regular expressions over Σ are defined by:
– ∅ is a regular expression and describes the language ∅
– ε is a regular expression and describes the language {ε}
– a (for a ∈ Σ ) is a regular expression and describes the regular language 

{a}
– (r1|r2) is a regular expression over Σ and describes the regular language 

R1∪ R2

– (r1r2) is a regular expression over Σ and describes the regular language 
R1R2

– (r1)* is a regular expression over Σ and describes the regular language R1
*.
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Regular Expressions and FA

• For every regular language R, there exists an NFA M, such that 
L(M)=R.

• Constructive Proof (Subset Construction):
– A regular language is defined by a regular expression r
– Construct an NFA with one final state, qf and the transition

– Decompose r and 
develop the NFA 
according to the 
following rules        ->
until only transitions 
under single characters 
and ε remain.
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Example: a(a|0)*

q1 q2 q3 q4 q5 pa

a

0

εε

ε εε
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Nondeterminism

• Sources of nondeterminism:

1|}),,(|{| ≤∆∈′′ qaqq

– many transitions may be possible under the same 
character in a given state

– ε-moves (next character is not read) may compete with 
non- ε-moves

! DFA:
– No ε-transition
– At most one transition from every state under a given 

character, ie for every q ∈ Q, a ∈ Σ :
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NFA -> DFA

• Let M=(Σ, Q, ∆, q0, F) be an NFA and let q ∈ Q. The 
set of ε successor states of q, ε-SS, is

or the set of all states p, including q, for which there 
exists an ε path from q to p in the transition diagram 
for M. 
We extend ε-SS to sets of states S ⊆ Q:

)},(|),(|{)( * εεε pqpqSS M−=−

U
Sq

qSSSSS
∈

−=− )()( εε
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NFA -> DFA
• If a language L is accepted by a NFA then there is also a 

DFA accepting L.
• Let M=(Σ, Q, ∆, q0, F) be an NFA. The DFA associated with 

M, M'=(Σ, Q', δ, q0', F') is defined by:
– Q' ⊆ P(Q)
– q0' = ε-SS(q0)
–
–

• Thus, the successor state S under a character a in M' is 
obtained by combining the sucessor states of all states q ∈
S under a and adding the ε sucessor states.

}|{' ∅≠∩⊆= QSQSF
Σ∈∈∆∈−= aSqpaqpSSaS for  })for  ),,(|({),( εδ
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Algorithm NFA->DFA
q'0:= ε-SSQ(q0); Q':={q0'}; 

marked(q'0):=false; δ :=∅ ;

while ∃ S∈ Q' and marked(S)=false do
marked(S):=true;

foreach a∈Σ do

T:= ε-SSQ({p∈ Q| (q,a,p) ∈ ∆ and q ∈ S});
if  T∉ Q

Q':=Q' ∪ {T}; // new state
marked(T):=false

δ := δ ∪ {(S,a)->T}; // new transition
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Example: a(a|0)*

q1 q2 q3 q4 pa

a

0

εε

εε

0' 1' 2'a

a

0

a

0

∅
a

0

0
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DFA Minimization

• After NFA->DFA the DFA need not have minimal size, 
ie minimal number of states and transitions.

• p and q are undistinguishable, iff for all words w 
(q,w) and (p,w) lead by      into either F' or Q'-F'.

• Undistinguishable states can be merged.

*| M−
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DFA Minimization

• Input: DFA M=(Σ, Q, δ, q0, F)
• Output: DFA Mmin=(Σ, Qmin, δmin, q0min, Fmin) with L(M)=L(Mmin) 

and Qmin minimal.
• Iteratively refine a partition of the set of states where each set 

S in the partition consists of states so far undistinguishable
• Start with the partition Π={F, Q-F}
• Refine the current Π by splitting sets S∈Π into S1, S2 if there 

exist q1, q2 ∈ S such that
– δ(q1,a) ∈ S1

– δ(q2,a) ∈ S2

– S1 ≠ S2

• Merge sets of undistinguishable states into a single state.
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Algorithm minDFA
Π := {F, Q-F}
do changed := false

Π':= Π;
foreach K in Π do

if n > 1 then changed := true fi
Π':= Π;

until not changed;
Qmin= Π - (Dead ∪ Unreachable);

q0min Class of Π containing q0
Fmin Classes containing an element of F
δmin(K,a)=K' if δ(q,a)=p with a∈Σ and p∈ K' for one (ie for all) q∈ K
K∈ Dead if K is not final state and contains only transitions to itself
K Unreachable if there is no path from the initial state to K

''
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1
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Example: a(a|0)*

0' 1' 2'a

a

0

a

0

∅
a

0

0

{0'} {1',2'}a

a

0
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Mealy Automata

• Mealy automata are finite-state machines that act as 
transducers, or translators, taking a string on an input alphabet 
and producing a string of equal length on an output alphabet.

• A machine in state qj, after reading symbol sigmaσk writes 
symbol λk; the output symbol depends on the state just reached 
and the corresponding input symbol. 

• A Mealy automaton is a six-tuple 
ME=(Q, Σ, Γ, δ, λ, q0) where
– Q is a finite set of states
– Σ is a finite input alphabet
– Γ is a finite output alphabet
– δ: Q × Σ -> Q is the transition function
– λ: Q × Σ -> Γ is the output function
– q0 is the initial state
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Moore Automata

• Moore automata are finite-state machines that act as 
transducers, or translators, taking a string on an input alphabet 
and producing a string of equal length on an output alphabet.

• Symbols are output after the transition to a new state is 
completed; output symbol depends only on the state just 
reached.

• A Moore automaton is a six-tuple 
MO=(Q, Σ, Γ, δ, λ, q0) where
– Q is a finite set of states
– Σ is a finite input alphabet
– Γ is a finite output alphabet
– δ: Q × Σ -> Q is the transition function
– λ: Q -> Γ is the output function
– q0 is the initial state
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Timed Automata

• Modelling goal: reasoning about systems that must interact with 
physical processes and that are subject to real-time constraints. 
Important issue: Verification.

• Modelling basics: executions are infinite sequences of events 
paired with times, where the ith element of the time sequence 
gives the time of occurrence of the ith event.

• Finite automata: effective constructions and decision procedures 
for automatically manipulating and analyzing system behavior.

• Question: Can timed sequences be represented by some formal 
language and can the behavior be described by some formal 
automaton?
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Time Models

• Linear time model: 
– Execution is only modelled as a sequence of states or events, 

called an execution trace.
– The behavior of the system is a set of execution traces. 
– Can be modeled by finite automata.
– No reasoning about the timing of events.

• Discrete time model: 
– Time sequence is monotonically increasing sequence of integers. 
– Can be modelled by finite automata after inserting silent events 

such that the times increase by exactly one at each step and, 
hence, the time sequence can be discarded.

– Appropriate for synchronous digital systems, but accuracy with 
which physical systems can be modeled is limited (continuous time 
is approximated by discrete time).
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Time Models

• Dense-time model: 
– Times of events are real numbers increasing monotonically

without bound.
– Problem: How to transform set of dense-time traces into 

ordinary formal language?
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Timed Automata...

• ...accept timed words, ie infinite sequences in which a real-
valued time of occurrence is associated with each symbol.

• ...are finite automata with a finite set of real-valued clocks:
– Clocks can be independently reset to 0 with the transitions of the 

automaton.
– Clocks keep track of time elapsed since last reset.
– Transitions can put constraints on clock values: a transition may be 

taken only if the current values of the clocks satisfy the associated 
constraints.
Example: channel delivers each message within 3-5 time units of 
its receipt.
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ω-Automata

• Problem: timed sequences can be inifinite.
• Regular language: finite words over some finite alphabet.

• An ω-regular language over a finite alphabet Σ is a subset of Σω, 
ie the set of all infinite words over Σ.

• ω-automaton: corresponds to NFA, but with acceptance 
condition modified to handle infinite input words.
– Büchi automata
– Muller automata
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ω-Automata

• A transition table AAAA is a tuple (Σ, Q, Q0, E) where Σ is an input 
alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of start 
states and E ⊆ Q×Σ×Q is a set of edges. If (s,a,s') ∈ E then the 
automaton can change its state from s to s' reading the input 
symbol a.

• For a word σ=σ1σ2... over Σ, 

is a run of A over σ for s0∈ Q0 and (si-1, σi , si) ∈ E for all i≥1.

• The set inf(r) for a run r consists of the states s ∈ Q such that 
s=si for infinitely many i ≥ 0.

...: 321
210 →→→ σσσ sssr
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Büchi Automata

• A Büchi automaton A is a transition table (Σ, Q, Q0, E) with an 
additional set F ⊆ Q of accepting states. A run r of A over a 
word σ∈ Σ ω is an accepting run iff inf(r)∩F ≠ ∅ .

• The language L(A) accepted by A consists of the words σ∈ Σ ω

such that A has an accepting run over σ.

• Example:

s1s0

a,b a

a

The automaton accepts 
all words with only a 
finite number of b's: 
L0=(a|b)*aω
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ω-Regular Languages

• An ω-language is called ω-regular, iff it is accepted 
by some Büchi automaton.

• Properties of ω-regular languages:
– Closed under all Boolean operations
– Intersection, complement decidable
– Inclusion problem is decidable:

• Testing for emptiness simple.
• Complementing involves exponential blow-up in the states of 

the Büchi automaton: PSPACE-complete.
• For deterministic automata inclusion problem can be solved in 

polynomial time.



Embedded Systems 2002/2003 (c) Daniel Kästner. 31

Deterministic Büchi Automata

• A transition table A is deterministic, iff
– there is a single initial state
– the number of a-labeled edges starting at s is at most one 

for all s∈ S and for all a∈Σ .

! The class of languages accepted by deterministic Büchi 
automata is strictly smaller than the class of ω-regular 
languages
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Muller Automata

• A Muller automaton A is a transition table (Σ, Q, Q0, E) with 
an acceptance family F ⊆ 2Q. A run r of A over a word σ∈ Σ ω is 
an accepting run iff inf(r)∈ F.

• The class of languages accepted by Muller automata is the same 
as that accepted by Büchi automata, and also equals that 
accepted by deterministic Muller automata.

• The complement can be computed in polynomial time.
• Example:

The automaton accepts all 
words with only a finite number 
of b's: 
L0=(a|b)*aω

s1s0

b a

a

bF={{s1}}
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Timed Languages

• A time sequence τ=τ1τ2... is an infinite sequence of time values 
τi∈ R with τ i>0, satisfying the following constraints:
– Monotonicity: τ increases strictly monotonically so that τi< τi+1 for 

all i≥1.
– Progress: For every t∈ R, there is some i≥1 such that τi>t.

• A timed word over an alphabet Σ is a pair (σ,τ) where σ=σ1σ2... 
is an infinite word over Σ and τ is a time sequence. A timed 
language over Σ is a set of timed words over Σ.

• Viewed as an input to an automaton a timed word (σ,τ) 
presents the symbol σ at time τ.
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Examples of Timed Languages

• Language consists of all timed words (σ,τ) such that there is no 
b after time 5.6.

))}()6.5.((|),)|{((1 aibaL ii =→>∀= σττω

))}().((|),){(( 1222)1222 ++− −<−∀= iiiiiabL τττττω

! Language consists of all timed words  (σ,τ) in which a and 
b alternate and for successive pairs of a and b the time 
difference between a and b keeps increasing.


