
The Esterel v5 Language Primer

Version v5 91

Gérard Berry
Centre de Mathématiques Appliquées

Ecole des Mines and INRIA
2004 Route des Lucioles
06565 Sophia-Antipolis

berry@sophia.inria.fr

June 5, 2000

Contents

1 Introduction 1
1.1 Organization of the Primer 1
1.2 The Evolution of Esterel . 2
1.3 A Brief History of Esterel . 3
1.4 Other Synchronous Languages 6
1.5 Acknowledgements . 7

2 Deterministic Reactive Systems 9
2.1 Transformational, Interactive, and Reactive Systems 9
2.2 Control-Dominated Reactive Systems 10
2.3 Determinism Versus Non-Determinism 11
2.4 Programming Tools . 12

3 The Esterel Programming Style 15
3.1 Pure Signal Handling: the ABRO example 15

3.1.1 Execution Traces . 16
3.1.2 Mealy Machines . 17
3.1.3 ABRO in Esterel . 17

3.2 Write Things Once . 20
3.3 First Valued Example: Counting 21

3.3.1 First Solution, Using pre 22
3.3.2 Handling the Initial Instant 23
3.3.3 Second Solution, using a variable 23

3.4 Second Valued Example: Speed Measure 23
3.5 Valued Signals Versus Variables 25
3.6 Weak and Immediate Abortion 27
3.7 Using Submodules: the REGUL Specification 30
3.8 Suspension . 32
3.9 Generic Behaviors and Modules 33

i

ii CONTENTS

3.10 Multiform Time . 36
3.10.1 The RUNNER example 36

3.11 Traps and Exception Handling 38
3.12 Boolean Signal Expressions and the Present Test 39

4 A Tour of Esterel 43
4.1 Lexical Aspects . 43
4.2 Modules . 43
4.3 Data . 45

4.3.1 Types and Operators 46
4.3.2 Constants . 46
4.3.3 Functions . 47
4.3.4 Procedures . 47
4.3.5 Tasks . 47

4.4 Signals and Sensors . 48
4.4.1 Interface Signal Declarations 48
4.4.2 Single and Combined Valued Signals 49
4.4.3 Sensors . 49
4.4.4 Input Relations . 50
4.4.5 Local Signal Declaration 50

4.5 Variables . 51
4.6 Expressions . 52

4.6.1 Data Expressions . 52
4.6.2 Signal Expressions . 53
4.6.3 Delay Expressions . 54

4.7 Statements . 55
4.7.1 Basic Control Statements 56
4.7.2 Assignment and Procedure Call 56
4.7.3 Signal Emission . 57
4.7.4 Sequencing . 57
4.7.5 Looping . 58
4.7.6 Repeat Loops . 59
4.7.7 The present Signal Test 60
4.7.8 The if Data Test . 61
4.7.9 The await Statement 61
4.7.10 The abort Statements 62
4.7.11 Temporal Loops . 64
4.7.12 The suspend Statement 65
4.7.13 Local Signal Declaration 66
4.7.14 Traps . 70

CONTENTS iii

4.7.15 The Parallel Statement 73
4.7.16 The run Module Instantiation Statement 73
4.7.17 The exec Task Execution Statement 75

5 Constructive Causality 83
5.1 Cyclic and Acyclic Programs 83

5.1.1 Non-Reactive and Non-Deterministic Programs 83
5.1.2 Signal Dependency Cycles 84
5.1.3 Acyclic Programs . 85
5.1.4 Correct Cyclic Programs 85

5.2 Constructiveness in Esterel 86
5.2.1 Logical Correctness . 86
5.2.2 Constructiveness . 87
5.2.3 Constructiveness and Preemption 89
5.2.4 Constructiveness of Signal Expressions 90
5.2.5 Constructiveness for Valued Signals 90
5.2.6 Constructiveness and Side-Effects 91
5.2.7 Constructiveness vs. Acyclicity 92

6 Reflection on Perfect Synchrony 97
6.1 Reactive Programming Models 97

6.1.1 The Qualities of a Model 97
6.1.2 The Models of Esterel 98
6.1.3 Inter-Model Consistency 99
6.1.4 High-Level vs. Low-Level Programming Models 99

6.2 Logical Time vs. real Time 100
6.3 Implementation by Sequential Circuits 102

6.3.1 The Logical View of Circuits 102
6.3.2 The Electrical View of Circuits 103
6.3.3 Connecting the Logical and Electrical Views 104

6.4 Software Implementation . 105

7 The Esterel Grammar 107
7.1 Syntax Notation . 107
7.2 Modules . 108
7.3 Interface Declaration . 109

7.3.1 Type Declarations . 109
7.3.2 Constant Declarations 109
7.3.3 Function Declarations 110
7.3.4 Procedure Declarations 110

iv CONTENTS

7.3.5 Task Declarations . 111
7.3.6 Signal Declarations . 111
7.3.7 Sensor Declarations 112
7.3.8 Input Relation Declarations 112

7.4 Expressions . 113
7.4.1 Data Expressions . 113
7.4.2 Signal Expressions . 115
7.4.3 Delay Expressions . 115

7.5 Statements . 116
7.5.1 Signal Emission . 117
7.5.2 Assignment and Procedure Call 117
7.5.3 The present Signal Test 118
7.5.4 The if Data Test . 119
7.5.5 Looping . 119
7.5.6 Repeat Loops . 119
7.5.7 The abort Statements 119
7.5.8 The await Statement 120
7.5.9 Temporal Loops . 120
7.5.10 The suspend Statement 120
7.5.11 Traps . 121
7.5.12 The exec Task Execution Statement 122
7.5.13 Local Signal Declaration 122
7.5.14 Local Variable Declaration 122
7.5.15 The run Module Instantiation Statement 123

7.6 Old Syntax . 125

Bibliography 126

Chapter 1

Introduction

This document is the primer for the Esterel
TM synchronous programming

language, which is devoted to programming control-dominated software or
hardware reactive systems. The language version is that of the Esterel

v5 system, version v5 91. This new language version extends the previous
version v5 21 by the addition of new pre operators, which makes it possible
to access the previous status and value of a signal. This has always been
possible in data-flow languages such as Lustre [33] and Signal [31], but has
long been missing in Esterel. This addition should simplify programming
and reduce causality problems. The rest of the language is left unmodified.

The reader familiar with previous versions of this document should sim-
ply read Section 3.3, Section 3.5, Section 4.6.1, Section 4.6.2, Section 4.6.3,
Section 4.7.12, Section 4.7.13, and Chapter 5.

We tried to write the primer in a precise but informal way that should
make most users happy in their use of the language and system. However,
the primer is not meant to be the reference document for the language and
semantics. The language reference manual will be appended to the primer
in a subsequent release and the formal semantics is given in the companion
book “The Constructive Semantics of Pure Esterel” [9], which discusses all
mathematical semantics issues in depth. The use of the Esterel v5 system
is presented in the documentation delivered with the system.

1.1 Organization of the Primer

Chapter 2, Deterministic Reactive Systems, describes the systems to which
Esterel is dedicated. Chapter 3, The Esterel Programming Style, illus-
trates Esterel programming by examples. Chapter 4, A Tour of Esterel,

1

2 CHAPTER 1. INTRODUCTION

presents all the Esterel constructs. Chapter 5, Constructive Causality,
studies semantical issues related to program correctness. Chapter 6, Reflec-
tions on Perfect Synchrony, reflects on the semantical model of Esterel

and on its practical meaning. Chapter 7 presents the Esterel grammar
and some old syntax that can still be used for backwards compatibility rea-
sons.

1.2 The Evolution of Esterel

The Esterel language is both stable and in constant evolution. In its
development, we always tried to conciliate two objectives:

• Keeping the language stable, to guarantee that already written pro-
grams compile without modification and that the compiled code can
also be used without modification in its original execution environ-
ment.

• Making the language evolve, to follow the progress in the scientific
knowledge on which it is grounded, to make it more more powerful,
and, above all, to make it more user-friendly

To us, it is right to ask users to recompile their programs to benefit of
new compiler versions that correct bugs or produce better code. It is much
more questionable to ask them to rewrite or even adapt existing programs
that have been extensively and carefully tested and verified, especially in
the context of critical applications. All programs that have been written
since 1985 (i.e. for the Esterel v2, v3, and v4 systems) still compile in a
compatible way, but much more efficiently.

As far as evolution is concerned, new statements have been added over
the years, such as the exec external task execution statement, and the
syntax has been improved. For example, we now suggest to replace the
“do...watching” statement by “abort...when” that is clearer and extends
more naturally into “weak abort...when” that has been long missing. This
document will always use the new syntax and it will mention the old syntax
only for compatibility with the past.

The semantics has never “changed” in the sense that all programs that
used to compile still do and keep the same semantics. However, the intro-
duction of the constructive semantics has made the ground very firm and
has solved many of the annoying problems encountered by users of previous
versions that sometimes unduly rejected correct programs. The constructive
semantics is informally presented here, see [9] for the formal presentation.

1.3. A BRIEF HISTORY OF ESTEREL 3

Our conservative politics has two obvious drawbacks: evolution is slowed
down, and design mistakes must be faithfully carried over from a version
to the next one. To reduce the number of mistakes, we introduced new
constructs only when we thought we really understood all the transitive
consequences of our choices and all the interactions between them. We were
reasonably successful as far as executable statements are concerned, but
much less for the module structure that will require a deep revision to be
really usable for big programs1.

Every language is a compromise; the best a language can do is to be
transparent, i.e. to let the user reflect its way of thinking in the most di-
rect and elegant way. Since this goal is highly unreachable, users usually
complain about languages, even if they like them. Complaints about Es-

terel should be addressed to esterel-users@cma.inria.fr. Complaints about
Esterel v5 system bugs should be addressed to esterel-bugs@cma.inria.fr.

1.3 A Brief History of Esterel

In 1982, Jean-Paul Marmorat and Jean-Paul Rigault, two researchers in
Control Theory and Computer Science at CMA 2, were designing a robot
car for a race organized by an early microcomputer journal. They rapidly
understood that the tools they had for programming the car were very far
from being satisfactory. Classical languages did not let them express control
algorithms in the way they were thinking about them. They recognized the
need for specific statements to deal with time, namely delays and preemp-
tion, and they made the point that the repetition of any signal should count
as an autonomous time unit. They drafted a little language using intuitive
keywords. At that time, the author was working on theoretical aspects of λ-
calculus and denotational semantics. He found the application area and the
new ideas interesting and challenging, and he tried to make mathematical
sense out of the language proposal.

With Sabine Moisan — who found the name Esterel
3 — and Jacques

Camerini, we sorted out the primitives and we tried to use the newly devel-
oped SCCS and Meije synchronous process calculi to give their semantics

1At the times where Esterel was designed, modules were not very well understood
altogether, and we could not figure out what was the right choice. Then, causality issues
attracted our attention and energy much more than a redesign of modules.

2Centre de Mathématiques Appliquées, Ecole des Mines de Paris, Sophia-Antipolis
3The Estérel is a small but beautiful mountain range of red rocks culminating at 619 m,

between Cannes and St Raphaël; “-terel” sounds a little bit like “temps-réel”, which is
real-time in French.

4 CHAPTER 1. INTRODUCTION

(SCCS [44] is due to Robin Milner and Meije [3] to Gérard Boudol). The
reference [14] is the oldest one about Esterel.

Process calculi turned out not to be well-adapted to Esterel. For-
tunately, Gordon Plotkin published his seminal book on Structural Opera-
tional Semantics or SOS [49]. This new semantics style gave us much sharper
tools to describe intrinsic semantics, and, above all, it freed us from the clas-
sical vision of concurrency as bound to interleaving and rendezvous commu-
nication, which was inappropriate in our control world. Laurent Cosserat
and the author worked out a better set of primitives and made much bet-
ter sense of instantaneous control propagation and communication, which
is the key to get Esterel right[11, 26]. The author rediscovered the beau-
tiful derivative algorithm of Brzozowski that translates any kind of regular
expression into automata [21] and that can be extended to any finite-state
language described by SOS rules. Using this algorithm, Laurent Cosserat
wrote the first Esterel v1 prototype compiler to automata. That compiler
was entirely rewritten by Philippe Couronné and the author in 1985-86, and
the new Esterel v2 system was swiftly used for non-trivial academic and
industrial applications.

Georges Gonthier’s thesis [29] was a major step in the development of
Esterel. He understood the fundamental distinction between the behav-
ioral semantics, which is of a logical nature and based on mutual agree-
ment about signal presence and values, and causality issues that deal with
effective information propagation. He introduced the fundamental encod-
ing of synchronization and exception by integers, and he designed much
more efficient operational semantics and compiling algorithms. While the
Esterel v2 compiler strictly used Brzozowski’s original derivative algo-
rithm in which automaton states are program texts, which is unreason-
ably memory-consuming, Gonthier’s technique uses simple bit-sets as states,
which is orders of magnitude more efficient (see [15] for the same kind of
optimization for regular expressions). Finally, Gonthier designed the overall
architecture of the Esterel v3 compiler, which was written in 1987-88 by
Raphaël Bernhard, the author, Frédéric Boussinot, Annie Ressouche, Jean-
Paul Rigault, and Jean-Marc Tanzi. The architecture and some intermediate
codes have been kept basically unchanged since then. Esterel v3 has been
used rather heavily. It worked well for small to medium-size programs, but
blew up or big programs for which state space explosion turned out to be
the rule.

The next progress came from interaction with Jean Vuillemin’s group at
Digital Equipment Paris Research Laboratory. This group was developing
the PeRLe FPGA-based programmable hardware machine [16]. Many of the

1.3. A BRIEF HISTORY OF ESTEREL 5

hardware designs involved controllers that are a pain in the neck to write
with gates and registers, and the group thought that Esterel was very well
adapted for direct controller specification. The author learned about logic
and hardware and developed a structural translation of Esterel programs
into gates that could be used to directly generate netlists, fully avoiding
the state space explosion of Esterel v3 [6]. Hervé Touati brought Com-
puter Aided Design technology in the picture and he showed how to deeply
optimized the obtained netlists to make them practical [56]. The author
then extended the logic translation to software implementation of general
Esterel programs. Xavier Fornari extended the hardware optimization
techniques to deal with software generation. Frédéric Mignard cleaned up
many processors of the Esterel v3 compiler and built a bunch of new ones.
Jean-Pierre Paris implemented external task control by the exec statement.
Jean-Paul Marmorat and Jean-Pierre Paris developed the graphical simu-
lator and symbolic debugger xsimul, which later became the current xes
tool. The resulting Esterel v4 compiler was delivered in 1992.

Esterel v4 was much better than Esterel v3 since it avoided state
space explosion. However, it required generated circuits to be acyclic. Al-
though this condition is standard in hardware or data-flow systems design,
it turned out to be too restrictive for Esterel. The older Esterel v3

compiler was quite smart about causality and was able to compile many
correct but cyclic programs that were rejected by the more recent Esterel

v4 compiler. This made our users unhappy, and we could not convince them
that the problem lied in their bad programming habits. On the contrary,
they convinced us that making safe cycles is natural when programming
symmetric protocols or resource access strategies. The solution came from
an encounter with a paper of Sharad Malik on cyclic circuits [41], which
we later extended with Tom Shiple [54] by showing the equivalence between
three points of views on Boolean circuits: the electrical point of view that
deals with current propagation and delays, the constructive logic point of
view that deals with proving values of Boolean variables in a constructive
way4, and the denotational point of view of Scott’s semantics. This lead
to the constructive semantics presented in [9] and to the current Esterel

v5 compiler. Technically, the compiling algorithms for the constructive se-
mantics are based on Binary Decision Diagrams. They were implemented by
Tom Shiple and Horia Toma with help of Hervé Touati and Jean-Christophe
Madre, using the Tiger BDD system of Olivier Coudert, J-C. Madre, and
H. Touati. Ellen Sentovich made many contributions to the presentation

4i.e. without speculative computation or reasoning by contradiction.

6 CHAPTER 1. INTRODUCTION

of the semantics and to optimization techniques, that were developed and
implemented by Horia Toma [51, 52]. Xavier Fornari is now in charge of the
development of the Esterel v5 compiler, which has been heavily tested by
Monica Robert.

Synchronous languages are not enough for complex systems program-
ming and they must interact with other languages and communication styles,
in particular with asynchronous ones. The CRP formalism (Communicat-
ing Reactive Processes) developed by the author, R.K. Shyamasundar from
TIFR Bombay and S. Ramesh from IIT Bombay, India, is an attempt at
marrying Esterel and CSP. See [28] for a presentation of CRP. The Po-

lis hardware / software codesign system also uses Esterel in a mixed syn-
chronous / asynchronous framework. See also [5] for a comparison between
synchrony and asynchrony.

The verification tools for Esterel are developed by a group headed by
Robert de Simone, who also deeply contributed to many aspects of the design
of the language and tools. Didier Vergamini developed the early automata
manipulation algorithms included in the Auto explicit verification system,
Amar Bouali wrote the current Xeve BDD-based verification package using
the Tiger library. Valérie Roy developed the Autograph automata visu-
alization tools. Annie Ressouche wrote most of the programs that interface
the compiler and the verifiers. These tools are accessible from the Esterel

Web page. Carlos Puchol, from University of Texas, and Lalita Jagadeesan,
from AT&T Bell Laboratories, developed the Tempest temporal logic ver-
ification system for Esterel [38]. Amar Bouali and Valérie Roy replaced
the original explicit state enumeration technique by implicit traversal using
BDDs in the Hurricane evolution of Tempest.

1.4 Other Synchronous Languages

Esterel is a member of a small community of synchronous languages born
in the beginning of the 80’s. Cooperation has been constant with the Lus-

tre team [33] headed by Paul Caspi and Nicolas Halbwachs in Grenoble,
France, and the early Esterel and Lustre tools shared intermediate lan-
guages and compilation tools. Cooperation was later extended to the Sig-

nal [31] team headed by Paul le Guernic and Albert Benveniste in Rennes,
France, The design of Esterel was influenced by the independent design
of the Statecharts visual formalism [35] introduced by David Harel in
1984 and by the Argos synchronous variant of Statecharts developed by
Florence Maraninchi in Grenoble [42]. See [32] for a global survey of these

1.5. ACKNOWLEDGEMENTS 7

synchronous languages.
Charles Andre’s SyncCharts [1] graphical formalism is an extension of

Argos that yields the power of Esterel. The Modecharts [47] formal-
ism is another synchronous graphical language. The Reactive C language
developed by Frédéric Boussinot [18] is a reactive extension of C that bor-
rows its main concepts from synchronous languages and has evolved into
reactive objects languages [20]. Frédéric Boussinot and Robert de Simone
also developed a synchronous language called SL [19] that can be viewed as a
syntactic restriction of Esterel where all causality problems are suppressed
and that can be easily implemented using Reactive C.

1.5 Acknowledgements

Special thanks to Maurice Gherardi, from the Simulog company, who per-
formed a very careful proof-reading and wrote the syntax chapter. Many
thanks to Frédéric Boussinot (Ecole des Mines), Sylvan Dissoubray (Simu-
log) Xavier Fornari (Armines), Emmanuel Ledinot (Dassault Aviation), Eric
Nassor (Dassault Aviation), Monica Robert (Armines), and Ellen Sentovich
(Cadence) for their proof-reading and numerous improvement suggestions.

Please send report any mistake you find or send any improvement sug-
gestion to berry@cma.inria.fr.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Deterministic Reactive
Systems

2.1 Transformational, Interactive, and Reactive Sys-
tems

Computerized systems can be divided into three broad categories:

• Transformational systems compute output values from inputs values,
and then stop. Most numerical computation programs, payroll pro-
grams, and compilers are transformational.

• Interactive systems constantly interact with their environment in such
a way that the computers can be viewed as the masters of the in-
teraction. A user calls for services, the system listens to him when
it can, and it delivers the services when they are available. Operat-
ing systems, centralized or distributed databases, and the Internet are
interactive.

• Reactive systems, also called reflex systems, continuously react to stim-
uli coming from their environment by sending back other stimuli. Con-
trarily to interactive systems, reactive systems are purely input-driven
and they must react at a pace that is dictated by the environment.
Process controllers or signal processors are typical reactive systems.

Of course, a given large-scale computerized system never falls entirely in
any of the three categories. A banking system involves transformational
payroll programs, interactive access to data bases of clients, and reactive

9

10 CHAPTER 2. DETERMINISTIC REACTIVE SYSTEMS

automatic teller machines and graphical user interfaces. Nevertheless, it is
always useful to identify which parts of the system are transformational,
interactive, or reactive, and to handle them with appropriate tools.

Interactive and reactive systems call for concurrent programming. First,
they act concurrently with their environment. Second, they are themselves
most often made of concurrent parts that communicate with each other, such
as the bank and the banker teller in the banking system or the time-keeper,
stopwatch, and alarm in a digital watch.

2.2 Control-Dominated Reactive Systems

In most reactive applications, there is a fairly clear distinction between data
handling and control handling. Data handling is about continuously pro-
ducing output values from input values. It is the typical activity of signal
processing programs. Control handling is about producing discrete output
signals from input ones. It is the typical activity of man-machine interface
or supervision programs, among other examples listed below. As usual, the
two aspects are not fully independent: for instance, in signal processing ap-
plications, there are usually several computation modes supervised by some
discrete commands. Esterel is an imperative concurrent language specifi-
cally dedicated to control-dominated (parts of) reactive programs, which are
found in the following application areas:

• Real-time process control, in manufacturing, transportation systems,
etc. The input stimuli are physical parameters produced by sensors,
operator commands, device failure signals, etc. The outputs are com-
mands to motors, valves, etc. The program must react to its inputs
within a short predefined time frame. See [10] for examples in avionic
software development, and see [4] for the use of Esterel in the Polis
hardware / software codesign system.

• Embedded systems that drive automated objects such as robots and
domestic appliances. Sequencing tasks is the primary concern. See [27]
for examples in robotics.

• Supervision of complex systems, where information coming from a va-
riety of sources is gathered and handled by one or more supervisors,
that can be programs, human beings, or a combination of those. Safety
systems that detects anomalies in complex processes are typical super-
vision systems.

2.3. DETERMINISM VERSUS NON-DETERMINISM 11

• Communication protocols, or more precisely the control part that con-
cerns connection, disconnection, failure recovery, quality of service con-
trol, etc. The stimuli are either physical signals sent by line handler
devices or logical signals generated by packet decoding. See [13, 48,
38, 39, 24] for examples.

• Peripheral drivers that control disks, printers, or other computer pe-
ripherals.

• Hardware glue logic and controllers. Glue logic is a common name for
protocols and drivers in hardware design. A typical glue logic device is
an interface between two busses. Controllers are finite state machines
driving data-paths, usually opening and closing multiplexer according
to control conditions. See [6] for examples.

• Human-machine interface. HMI is of course ubiquitous and is a basic
tool for supervision. Basic GUIs (Graphical User Interfaces) use a
fixed set of predefined interactors such as menubars, scrollbars, etc.,
see [25]. Modal HMIs fold a lot of commands into a small number of
interactors and display a lot of values on a small number of display
units. They are very common in industrial systems or in airplane
cockpit. See [8] for the small but representative example of a digital
wristwatch.

Esterel can be used in all these quite diverse domains that are usually
handled in different and often separated technical communities. This poses
a non-trivial terminology problem, since the same words can have differ-
ent meanings in different communities, and since the same concepts can be
named by different words. In this document, we try to do our best to define
all the technical words we use and to relate them to other words used in the
different fields whenever necessary.

2.3 Determinism Versus Non-Determinism

Determinism vs. non-determinism is a key difference between reactive and
interactive systems. A system is said to be deterministic if the same se-
quence of inputs always produces the same sequence of outputs. It is non-
deterministic otherwise.

Determinism is the rule for reactive systems. It is very clear that an
airplane must be driven in a deterministic way, and the same holds for

12 CHAPTER 2. DETERMINISTIC REACTIVE SYSTEMS

any controlled physical system governed by deterministic physical laws1. In
man-machine interface systems, it is also clear that user commands have
precise deterministic meanings. We leave it for the reader to check that all
the aforementioned applications are deterministic.

On the contrary, behavioral non-determinism is the rule for interactive
systems for which the interaction is driven by the computers. Even if the
Unix kernel is internally deterministic, its scheduling and resource allocation
policies are unknown to the user, who naturally perceives the system as non-
deterministic: running twice the same sequence of commands can produce
different results if there are other interacting users. There should be no need
to convince the reader that Internet is and must be non-deterministic.

Non-determinism is much harder to handle than determinism. Non-
deterministic systems are harder to specify, and it is not even trivial to
define a good notion of behavior and equivalence for them, while execu-
tion traces are perfectly adequate for deterministic systems. Debugging
non-deterministic systems can be a nightmare since transient bugs may not
be reproduced. Analyzing systems is also much more difficult since the
state space tends to explode. Therefore, it is important to reserve non-
determinism for places where it is really mandatory, i.e. interactive systems,
and to forget about it for reactive systems. Historically, it was long thought
that concurrency and non-determinism had to go together. As we shall see
in the sequel, this is wrong. The main merit of synchronous languages is
probably to have reconciled concurrency and determinism.

2.4 Programming Tools

We are mostly interested in the programming part of reactive systems, that
is, in writing reactive programs and making them work. Let us explain why
we need specific tools for this purpose.

Transformational systems have been well-studied for very long, since
they used to form the bulk of computing. Most programming constructs
and languages were originally tailored for them. It is very clear that their
extension to event handling in interactive or reactive systems is not obvious:
classical languages lack concurrency and event-handling primitives.

Tools for interactive systems programming came afterwards because of
the development of operating systems and distributed algorithms. They in-
troduced the key notions of concurrency, communication, and synchroniza-
tion between processes. In practice, interactive applications are built either

1more precisely, modeled by deterministic systems of mathematical equations.

2.4. PROGRAMMING TOOLS 13

by linking conventional transformational programs through synchronizing
operating systems calls, or by using specific languages such as CSP [36],
Occam [37], or Ada [22] that make concurrency and communication first-
class citizens. The advantage of specific concurrent languages is clear for
program behavior analysis: mathematical semantics can be given in an in-
trinsic way and proof rules can be derived from it [36]. Process calculi
try to abstract away from the concrete programming issues and to address
the essence of interactivity [45]. Large-scale networking has considerably
extended the scope of interactive systems and unveiled new needs such as
process migration, realized for example in Milner’s π-calculus [46] and in the
Java language [2]

Tools for reactive systems did not develop in the same way. The subject
was long kept outside the main core of Computer Science. In our belief,
there are three reasons. First, the control and embedded applications used
to belong to the domain of control theory and electrical engineering, where
the traditions and technical background were quite different2. Second, high-
level reasoning and programming tools promoted by computer scientists were
considered as quite useless by many control engineers, whose main problem
was (and still is) to pack code in small ROM for cheap microprocessors.
Third, it was long thought by computer scientists that tools designed for
interactive systems would cover reactive systems equally well. This turned
out to be false, since classical concurrent languages are non-deterministic,
give no guarantee about response times, and give no fine control over life
and death of reactive activities.

Reactive systems were identified as such in the early 80’s by several au-
thors [14, 30, 23, 35], the name being given by David Harel and Amir Pnueli.
Synchronous languages were born from the recognition that instantaneous
broadcasting was the way to handle communication in reactive systems,
making it possible to handle together concurrency, determinism, and re-
sponse time control, and yielding a programming style far more natural
than the one enforced by conventional interactive communication mecha-
nisms. Lustre [33], developed by Paul Caspi and Nicolas Halbwachs, is
a synchronous functional data-flow language for data-dominated systems.
Signal [31] is a powerful relational synchronous data-flow language devel-
oped by Paul le Guernic and Albert Benveniste. Statecharts [35] is a
visual formalism introduced by David Harel in 1984 for hierarchical state
machine design. Argos [42] is a purely synchronous variant of State-

charts developed by Florence Maraninchi. Electre [50] is an imperative

2Even the computers used to be different.

14 CHAPTER 2. DETERMINISTIC REACTIVE SYSTEMS

task scheduling language that borrows many concepts from synchronous
languages. Some of these languages are surveyed in a book by Nicolas Halb-
wachs [32].

All the reactive languages are accompanied by automatic formal verifi-
cation tools, which are now of common use in industrial environments. It
is now recognized that safety is the main concern in reactive systems. This
is why rigorous high-level languages and verification tools will gradually re-
place low-level hand programming and testing, as in all the other areas of
Computer Science. Formal verification issues will not be covered in this
language primer, see [17] for more information.

As of now, there is no completely satisfactory way of unifying the data-
flow styles of Lustre and Signal and the control flow styles of Esterel and
Statecharts. The programming primitives one need for data-handling and
control-handling are indeed quite different. This is somewhat unfortunate
for the user. Research is active in this area, and we hope to come up with a
reasonable theoretical and practical unification in a finite amount of time.

We mentioned that classical concurrent languages were inadequate for
reactive programming. The converse is also true: reactive languages are
largely inadequate for interactive programming as a whole, although they
can be locally useful for reactive parts of interactive programs. Here also,
there is no known way to unify the interactive and reactive styles 3. A nice
pragmatic superposition of both approaches could be the network of reactive
objects studied for example in [28].

3In [7], we claim that reactive programming is akin to Newtonian mechanics while
interactive programming is akin to chemistry. We shall not develop the argument here,
but just remind the reader that there is no physical theory that unifies in a simple way
mechanics and chemistry.

Chapter 3

The Esterel Programming
Style

3.1 Pure Signal Handling: the ABRO example

Our first example is the following specification:

Specification ABRO:
Emit an output O as soon as two inputs A and B have occurred.
Reset this behavior each time the input R occurs.

The ABRO specification can be implemented either in hardware or in software.
We first assume that the implementation is to be done by a synchronous
digital circuit, because circuits have the simplest timing model to start with.
Software implementation of the same program will be explained later on.

The interface of a (sequential) digital circuit is defined by a list of input
wires, a list of output wires, and a clock. In the electrical view, the wires
carry voltages, say 0V and 3.3V, and the clock tells when outputs can be
sampled and when values can be latched in registers. In terms of clock
cycles, registers behave as unit-delay elements. In the logical view, the
wires carry Booleans values and the clock determines the successive reactions
instants. The logical values are called 0 and 1, or true and false, or set and
unset, or present and absent, according to local usage. In Esterel, we use
present and absent, reserving 0 and 1 for integers and true and false for
Boolean data. Presence or absence defines the status of a signal. In the ABRO
specification, we say that signals occur, which is the same as saying that they
are present.

15

16 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

An input event is defined by a status for each input. Given an input
event, the circuit computes an output event made of a status for each output.
A new input event is processed at each clock cycle.

Being carried by independent wires, hardware input signals can be si-
multaneously present in the same clock cycle. The ABRO specification is
actually ambiguous, because it does not talk about handling such simulta-
neous occurrences of signals. There is clearly no problem if A and B are
simultaneously present: O must be emitted right away. What if A and B are
present when R occurs? We assume that R takes priority and that A and B
are ignored when R occurs. Other choices will be studied later on. There
is also another minor ambiguity at boot time, i.e. for the initial transition.
Here, we assume that booting ABRO is a blank step and that the real behavior
starts only after boot. This is a common assumption.

3.1.1 Execution Traces

It is convenient to have a notation for execution traces of a specification
or program. We use that of the Esterel v5 csimul simulator. Here is a
correct trace w.r.t. the ABRO specification:

> ;
Output:
> A;
Output:
> B;
Output: O
> R;
Output:
> A B;
Output: O
> ;
Output:
> A B R;
Output:

A trace is an alternated sequence of reactions, each reaction being composed
of an input event preceded by the prompt ’>’ and an output event preceded
by ‘Output:’. An input event is written as the list of present signals ter-
minated by a semicolon. Only the present or emitted output signals are
mentioned in the output list; for controller programming, the main goal of
Esterel, this is usually economical since control signals tend to be more

3.1. PURE SIGNAL HANDLING: THE ABRO EXAMPLE 17

often absent than present. A blank event is one with no signal mentioned,
i.e. one where all signals are absent. Here, the initial (boot) input event is
blank and there is another blank input event before the second reset. The
response to this event is a blank output event.

The trace notation implicitly defines the basic timing model. Time is
logical and seen as generated by the sequence of reactions, also called instants
or ticks, which directly correspond to hardware clock cycles. We say that a
reaction occurs at time t if its rank in the trace is t. With that timing notion,
the output part of an event occurs at the same logical time as the input: only
bookkeeping actions are performed in a reaction, and such actions should not
consume logical input time. This model is called the perfectly synchronous
or zero delay model. It will be analyzed in depth in Chapter 6.

3.1.2 Mealy Machines

A common way of programming ABRO is to design a deterministic Mealy
machine (in state graph form), which is a deterministic finite automaton in
which each transition arrow bears an input / output label. A Mealy ma-
chine for ABRO is pictured in Figure 3.1. A transition label contains input
signals preceded by either ‘?’ for presence or ‘#’ for absence and output
signals preceded by ‘!’. A transition labeled “?A.#B.!O” is taken if A is
present and B is absent in the input event, and it provokes emission of O. A
label acts as a filter for input events. In “?A.#R.!O”, the transition is taken
if A is present, independently of the presence of B. In other words, a transi-
tion labeled “?A.#R.!O” abbreviates the pair of transitions “?A.?B.#R.!O”
and “?A.#B.#R.!O”.

Notice that a Mealy machine can be seen as a folding of all possible
traces into a single graph, sharing states with identical futures. Hardware
can be automatically synthesized from Mealy machine specifications.

3.1.3 ABRO in Esterel

Since we have Mealy machines, why should we bother building new lan-
guages? Look at the automaton in Figure 3.1. Each signal appears several
times, unlike in the original specification. For example, A appears 3 times
positively: once on the left, as the first input, once on the right, as the
second input, and once in the middle, for the case where A and B are simul-
taneous. It also appears negatively on the right. The reset signal R appears
8 times, 3 times positively and 5 times negatively. The output O also appears
3 times, one for each possible sequencing of A and B. Consider now the prob-

18 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

Figure 3.1: The ABRO Mealy machine

3.1. PURE SIGNAL HANDLING: THE ABRO EXAMPLE 19

lem ABCRO, where there is one more signal C to wait for before emitting O.
We leave the automaton drawing to the reader: the automaton core now
has the shape of a 3-D cube with 8 vertices. Of course, the n-signal problem
yields a n-cube with 2n vertices. This is not for human beings. Furthermore,
automata are hard to draw and read if not ridiculously small, and they are
very sensitive to specification changes. In practice, Mealy machines are in
no way good programs. In contrast, the Esterel code for ABRO is:

module ABRO:
input A, B, R;
output O;
loop

[await A || await B];
emit O

each R
end module

The declaration part is trivial. The body is written in an imperative way
using control threads. It involves five ingredients: delay, signal emission,
sequencing, concurrency, and abortion. It can be read either in an outside-
in way, insisting first on the reset aspects, or in an inside-out way, insisting
first in the basic behavior. We choose the inside-out way for this example.

Esterel statements are imperative. A statement starts in some in-
stant t, remains active for a while, and may terminate in some instant t′ ≥ t.
A statement is instantaneous if t′ = t; hardware designers would say that
the statement is combinational. If t′ > t, we say that the statements takes
time; hardware designers would say that the statement is sequential.

The delay statement “await A” always takes time; it lasts one A: if
started at time t, it terminates at the least t′ > t such that A occurs at t′,
staying active in between. In terms of threads, the current control thread is
stuck at the await statement until A occurs.

In “await A || await B”, the parallel bars denotes explicit concur-
rency. When a parallel statement p || q starts, it instantaneously starts its
branches p and q, thus forking its incoming control thread. Here, both await
statements start simultaneously and instantaneously when the parallel starts.
The threads then evolve in lockstep compared to the environment: in each
instant, each of them reacts to the current input event. Here, the processing
is trivial: the first branch tests for A in each instant and terminates when A
occurs, while the second one tests for B and terminates when B occurs. The
parallel statement performs branch synchronization by terminating in the
precise instant where both branches are terminated. The branches need not

20 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

terminate at the same time, the parallel waiting for the last one. Therefore,
our parallel terminates exactly when both A and B have been received, be
they successive or simultaneous.

The brackets ‘[’ and ‘]’ are statement parenthesis used to solve syntactic
priority conflicts. They are necessary here since the sequencing operator ‘;’
binds tighter than the parallel operator ‘||’. Sequencing is as usual. In
a sequence “p ; q”, the statement q starts when p terminates. However, in
Esterel, sequencing is instantaneous: q starts in the instant where p ter-
minates; there is no reason to consume logical time for trivial bookkeeping.

The “emit O” statement is instantaneous. It emits the signal O and
terminates at the time it starts. Therefore, O is emitted exactly at the time
where the last of A and B occurs, which is the best meaning we can give to
the “as soon as” specification.

The last item is the handling of the reset condition by the abortion
loop “loop p each R”. The semantics is as follows. When the loop starts,
it starts instantaneously its body p. The body runs freely until the next
occurrence of R. At that time, the body is aborted if still active and it
is immediately restarted afresh. If the body terminates before R occurs,
one simply waits for R and restarts the body afresh. Abortion is strong :
the active body of the “loop...each” statement does not receive control at
abortion time to react from its current state, which is ignored and discarded.
It is only restarted afresh.

Using strong abortion, signal priority is simply realized by statement
nesting: the outermost abortion by R takes priority over the innermost delays
waiting for A and B that are not watched for when R occurs. Therefore,
priority is handled by structure, not by artifacts such as explicit numerical
indices. Abortion is a strong form of statement preemption. A milder form
of preemption called suspension will be presented in Section 3.8.

The Esterel code for ABCRO is

loop
[await A || await B || await C];
emit O

each R

The code grows linearly with the size of the specification.

3.2 Write Things Once

The ABRO example illustrates the fundamental difference between Mealy ma-
chines and Esterel programs. Esterel statements make it possible to re-

3.3. FIRST VALUED EXAMPLE: COUNTING 21

place replication by structure. This is the essence of language design: loops,
functions, concurrency, objects, etc. all replace explicit code replication by
structure. The real key to good programming is the Write Things Once
or WTO principle: any violation of this principle means a replication that
makes the program harder to understand and to maintain, and yields a po-
tential source of bugs: modifying a copy without modifying the other ones.
We do not claim that Esterel fully achieves WTO. We only claim that the
Esterel primitives help finding the real structure of reactive applications,
which is the prerequisite to WTO.

In ABRO, each construct contributes in its own way to WTO. Concurrency
immediately saves an exponential. Sequencing is fundamental for using a
single occurrence of O for all the termination cases of the parallel statement.
The “loop...each” abortion statement makes it possible to preempt the
body in any state using a single occurrence of R. All these constructs are
orthogonal. This means that they can be freely mixed at any nesting depth
without restriction. Here, the parallel statement appears within a sequence
that itself appears within an abortion. Many languages limit concurrency to
toplevel, therefore loosing orthogonality. This is a sure way of not achieving
WTO.

Communication in Esterel is done by broadcasting. Input broadcasting
was implicit when we said that concurrent statements evolve in lockstep in
the same input environment. Broadcasting is extended to all signals. For
examples, processes interested in knowing when ABRO emits O just wait for O.
They do not have to signal their identity to ABRO, the code of which does
not depend on the number of receivers. Broadcasting is essential for WTO
in reactive systems programming.

There are other ways to obtain similar results. An important one is the
definition of hierarchical automata in Statecharts [35], Argos [42, 32],
or SyncCharts [1]. All these formalisms extend Mealy machine in a fully
compatible way and use broadcasting, achieving WTO up to some extent.
Their compilers are able to re-generate flat machines from structured source
code (for Esterel v5, use the -A automaton code generation option).

3.3 First Valued Example: Counting

Specification COUNT:
Count the number of occurrences of the input I seen so far, and
broadcast it as the value of a COUNT signal at each new I.

22 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

The Esterel implementation uses a valued signal to broadcast the count.
In addition to its presence status, a valued signal carries a value, which can
be of arbitrary type. The statement “emit S(exp)” emits the signal S with
value that of the expression exp. The status is just as for a pure signal.
The value is permanent: at any instant, the expression ?S yields the current
value of S, which is either the current value of S if S has been emitted in the
instant or the previous value of S otherwise. The expression pre(?S) yields
the value of S at previous instant1. An initial value can be given to a signal;
it is then specified in its declaration, as shown below. This value is initial
for both ?S and pre(?S).

3.3.1 First Solution, Using pre

The simplest Esterel code for counting is:

module COUNT:
input I;
output COUNT := 0 : integer;
every I do

emit COUNT(pre(?COUNT) + 1)
end every
end module

The declaration of COUNT specifies that this output signal is of type integer,
with initial value 0 for ?S and pre(?S). The every statement differs from
the loop...each statement presented in Section 3.1.3 at initialization time.
In “loop p each S”, the body p is started right away. In “every S do p end”,
one waits for the first future occurrence of S to start p, which is what we
want here. This could also be written

await S;
loop p each S

However, using every is better since it avoids duplicating S and achieves
WTO.

The pre(?COUNT) expression yields the previous value of COUNT. This
value is incremented and the result is emitted as the new value of COUNT.
Beware: writing “emit COUNT(?COUNT+1)” is tempting but incorrect. Since
?COUNT is the current value of COUNT, it cannot be incremented and re-
emitted right away as itself. It is necessary to use the previous value
pre(?COUNT). More on this in Section 3.5 and Chapter 5.

1New in Esterel v5 91.

3.4. SECOND VALUED EXAMPLE: SPEED MEASURE 23

Finally, notice that the module and signal have the same name. In
Esterel, name spaces are disjoint, and no confusion can occur between object
of different kinds such as modules and signals.

3.3.2 Handling the Initial Instant

In “every S do p end”, the starting instant is ignored, i.e. an initial S does
not start p. This can be changed by adding the immediate keyword. In our
counting example, the statement

every immediate I do
emit COUNT(pre(?COUNT));

end every

immediately increments Count if I is present at first instant.

3.3.3 Second Solution, using a variable

Before the introduction of pre(?S), one had to use a local variable to hold
the count. This is still possible, writing:

module COUNT:
input I;
output COUNT : integer;
var Count := 0 : integer in

every I do
Count := Count+1;
emit COUNT(Count)

end every
end var
end module

The var keyword declares a local variable Count, of type integer, initialized
to 0. The variable is incremented when I occurs and serves as the value to
be emitted. Since name spaces are disjoint, the variable could also be named
COUNT just as the signal, without any confusion.

For this example, using pre is simpler than using a variable. When to
use variables and when to use pre will be studied in Section 3.5.

3.4 Second Valued Example: Speed Measure

The next example is more on the software side, although it can obviously
be implemented in hardware. It is used for bicycles, cars, etc.

24 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

Specification SPEED:
Count the number of centimeters run per second, and broadcast
that number as the value of a Speed signal every second.

We assume that centimeters and seconds are received as discrete ticks of
signals Centimeter and Second. The specification is somewhat ambigu-
ous if Centimeter and Second can be simultaneous. Unlike for ABRO, we
first neglect this case, assuming that our execution environment (operat-
ing system) does not support input event simultaneity, i.e. that it serializes
the events it sees. This assumption is very common is event-queue based
reactive software design. Then, the code of Speed is:

module SPEED:
input Centimeter, Second;
relation Centimeter # Second;
output Speed : integer;
loop

var Distance := 0 : integer in
abort

every Centimeter do
Distance := Distance+1

end every
when Second do

emit Speed(Distance)
end abort

end var
end loop
end module

In the declaration part, the ‘#’ symbol in the relation declaration asserts
that Centimeter and Second are exclusive, which is the way to assert input
serialization.

Let us read the executable body in an outside-in way. The “loop...end”
statement performs an infinite loop, restarting its own body afresh as soon
as it terminates. The var keyword declares a local variable called Distance,
of type integer, initialized to 0. One could as well use a DISTANCE signal
incremented using the pre(?S) operator, but a variable is equally simple
here since the intermediate distance values need not be broadcast, being of
no use in the rest of the module.

The abort statement preempts its body when the Second signal occurs.
An abort statement can have a timeout clause following the ‘do’ keyword.

3.5. VALUED SIGNALS VERSUS VARIABLES 25

Here, the timeout clause emits the speed; in general, it can be an arbitrary
statement.

The body of the abort statement is an every temporal loop that incre-
ments the Distance variable every centimeter.

Since control transmission and arithmetic operations are instantaneous
(i.e. of computation time negligible compared to the input timing), the speed
is emitted right away when a second occurs: this is the only way to respect
the mathematical definition of the speed, which would be broken by any
extra delay. In Esterel, when we write Speed, we mean speed!

3.5 Valued Signals Versus Variables

Let us summarize the behavior of variables and signals, which are very
different objects.

• A signal is shared throughout its scope, which is the whole program for
an interface signal and the scope of its declaration for a local signal,
see Section 3.7. A valued signal has one and only one status and
one and only one value at a time. Both the status and the value are
broadcast. Unlike the status, the value is permanent; if it is unchanged
in an instant, the value is that of the previous instant. The writers of a
signal are the environment for an input signal and the emit statements
for an output or local signal. The value can be changed only when the
status is present. The readers are the presence or preemption tests for
the status, and the value access expressions ?S and ?pre(S) for the
value. Presence tests and value access expressions can occur anywhere
in the signal’s scope.

• The value of a variable is written by an instantaneous assignment state-
ment2. The value is read in expressions when the variable’s identifier
is mentioned, as usual. Unlike a signal, a variable can take several
successive values in an instant. For example, in SPEED, the Distance
variable takes two successive values in the same instant when a cen-
timeter occurs: if its value is n before the assignment, it is n+ 1 after
the assignment. The order in which the values are taken is the internal
control-flow order of the program, which we shall call the constructive
order in Chapter 5.

2Or by an instantaneous external procedure call, see Section 4.3.4, or by a non-
instantaneous exec remote task execution statements, see Section 4.7.17.

26 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

Since Esterel has built-in parallelism, we have to keep variable values
consistent between threads. The rule is simple and classical: a variable
is local to a thread in case the thread writes it. If the thread forks on
a ‘||’ parallel statement, then only two cases are legal:

– The variable is accessed in read-only mode in each subthread,

– If the variable is written by some thread, then it can neither be
read nor be written by concurrent threads.

Therefore, it is forbidden to write concurrent assignments such as

X:=0;
X:= X+1

||
X:= 1

There is no way to give decent meaning to such statements in a syn-
chronous deterministic framework.

The sharing law of variables does not apply to signals, and a signal can be
emitted from different threads. Furthermore, it is possible and sometimes
useful to write simultaneous concurrent emissions such as

emit S(1) || emit S(2)

This involves using an associative and commutative function to combine the
emitted values. The discussion of this feature is deferred to Section 4.4.

As mentioned above in Section 3.3, it is impossible to use a signal’s value
in its own computation, unlike for a variable. A frequent beginner’s mistake
is to write

emit S(?S+1)

to increment the current value of a signal S, just as one writes “X := X+1”.
This does not work, since the current value ?S of S is precisely the one
emitted by the emit statement. The value should satisfy the equation ?S =
?S + 1, which is impossible. This phenomenon is called a causality cycle. It
is analyzed in Chapter 5. One can either write

emit S(pre(?S)+1)

or use an auxiliary variable.
We suggest to use the pre operator whenever possible, and to introduce

a variable in the two following cases:

3.6. WEAK AND IMMEDIATE ABORTION 27

• The value does not need to be broadcast every time it is changed. This
is the case for Distance in SPEED, which is changed every centimeter
but broadcast only every second.

• The value is modified by an external procedure call, as in

call Increment(X)()

see Section 4.3.4. Signal values or previous values cannot be used in
this case. Notice that procedure calls can efficiently update variables
in-place, which can be necessary for performance reasons.

3.6 Weak and Immediate Abortion

Let us now accept simultaneity of Centimeter and Second, which is natural
for an hardware implementation and can also be considered useful for a
software implementation. For example, in a polling implementation, the
module is called at regular time intervals with the inputs buffered since last
call. Then, Centimeter and Second are seen as simultaneous if they are
close enough.

What should we do if a centimeter and a second occur simultaneously?
The centimeter can be considered as belonging either to the second interval
that ends in the current instant or to the one that starts in the current
instant, the choice belonging to the specifier. Here, we show how to imple-
ment both choices. Beforehand, we need to refine the semantics description
of delays and abortion. For “abort p when S”, the exact behavior is as
follows:

• In the starting instant, p is immediately started, the initial presence
or absence of S being ignored.

• If p terminates before S occurs, then the whole abort statement ter-
minates at the same time.

• If S occurs while p is not yet terminated, then the abort statement im-
mediately terminates and p does not receive the control in the current
instant.

Because of the first and third clauses respectively, we say that the abort
statement is delayed and strong. It is clear that we may need different behav-
iors in the first and last instant. To make the abort statement sensitive to S
in the first instant, we add the immediate keyword in the delay specification:

28 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

abort
p

when immediate S

Then, an occurrence of S in the first instant provokes an immediate termi-
nation of the abort statement, without p being started at all.

To make the body have its “last wills” and receive the control for a last
time at abortion time, we add the weak keyword:

weak abort
p

when S

If p is non-instantaneous and if S occurs before p terminates, then the
weak abort statement is terminated instantaneously as usual but p receives
the control for a last time when S occurs. Here, the abort statement is
delayed and an initial S is ignored.

If we want to take an initial S into account as well, we use both the
immediate and weak keywords:

weak abort
p

when immediate S

Then, if S occurs in the starting instant, the statement terminates but p is
executed in the instant. The four possible cases are now covered.

The every statement performs strong abortion of its body and it is
delayed by default. The statement “every S do p end” is actually not a
primitive statement, but an abbreviation for

await S;
loop

abort
p; halt

when S
end loop

where the halt primitive statement waits forever. The loop abbreviates the
“loop...each” statement. The every statement also has an immediate form,
written

every immediate S do p end

3.6. WEAK AND IMMEDIATE ABORTION 29

In the expansion, the initial await statement is made immediate3.
Back to our SPEED problem, what happens if we simply remove the

relation in the initial coding of SPEED? Well, things go wrong. Consider
an instant where Centimeter and Second both occur. Since the abortion
by Second is strong, the internal every statement is not executed, which im-
plies that Centimeter is not counted in the currently finishing second. The
external loop loops and the every statement is instantaneously restarted.
Since it is a delayed every, the current centimeter is not taken into account
either. Therefore, the centimeter is lost.

Let us now code the two possible consistent specifications. First, assume
we want to count the centimeter in the finishing second. We just make the
abort statement weak:

loop
var Distance := 0 : integer in

weak abort
every Centimeter do

Distance := Distance+1
end every

when Second do
emit Speed(Distance)

end abort
end var

end loop

The “every Centimeter” statement is now executed if the two inputs are
simultaneous, and the distance is incremented before the speed is emitted.
Here, “before” refers to control propagation in threads. When the external
loop loops, control reaches the “every Centimeter” statement again, which
ignores the current centimeter since it is delayed.

To count the centimeter in the next second, we leave the abort strong
and we make the every immediate:

3We do not allow weak every, which never proved that useful, but this is a lack of
orthogonality that might be corrected some day.

30 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

loop
var Distance := 0 : integer in

abort
every immediate Centimeter do

Distance := Distance+1
end every

when Second do
emit Speed(Distance)

end abort
end var

end loop

Then the centimeter is not counted in the finishing second interval but it is
counted in the now starting interval since the immediate every statement
executes its body.

Finally, notice that making both the await statement weak and the
every statement immediate would lead to count the centimeter twice, an-
other possible mistake4.

Back to the ABRO example of Section 3.1, assume now that R should
not take priority over A and B any more and that O must be emitted even
if R occurs. This behavior can be coded by replacing the abort statement
implicit in loop...each by weak abort:

loop
weak abort

[await A || await B];
emit O;
halt

when R
end loop

3.7 Using Submodules: the REGUL Specification

Consider now the following specification of part of a car speed regulation
system:

4These problems make the author remember the elementary school fencepost problems
(problèmes de poteaux, in French): if a fence has n poles, how much wire should I buy? It
terribly depends on the shape of the fence. Although there is apparently no more open
problems in the field, it is still one of the most difficult part of engineering.

3.7. USING SUBMODULES: THE REGUL SPECIFICATION 31

Specification REGUL:
In each instant, emit the result of the function Regfun applied to
the position of the gas pedal and the current speed as the value
of the Regul signal.

Of course, the emission of Regul should start only once the first value
of Speed has been computed. For REGUL, we additionally require the imple-
mentation to reuse the SPEED module.

Here, we mention a function called Regfun. Such an object is external to
Esterel and written in the host language in which the Esterel program
will be compiled, for example C. The code of REGUL is:

module REGUL:
function Regfun (integer, integer) : integer;
input Centimeter, Second;
sensor GasPedal : integer;
relation Centimeter # Second;
output Regul : integer;
signal Speed : integer in

run SPEED
||

await Speed;
sustain Regul(Regfun(?Speed, ?GasPedal))

end signal
end module

We first declare the type of the external Regul function, which is necessary
for type-checking. We then declare GasPedal to be a sensor. A sensor is a
valued signal without the presence status part. A gas pedal or a thermometer
usually do not send interrupts, they just define numerical values that can
be read at any time. For them, the status part is useless (equivalently, the
status is always present). The value of a sensor is read by the ‘?’ operator,
just as for valued signals.

The body is a local signal declaration that declares the Speed local sig-
nal and whose own body is made of two parallel statements. The first
statement is an instantiation of the SPEED module using the run keyword,
which amounts to copying its body in place and binding the interface signals
of SPEED to the signals bearing the same name in the instantiation scope.
The second statement is the sequence of an “await Speed” delay and of
a sustain statement that emits the Regul signal with the required differ-
ence value in each instant, unlike the emit statement that works only once.

32 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

The Speed local signal is generated by the SPEED module. It is instanta-
neously broadcast to all statements in its scope. Therefore, it is received
by the sustain statement at the time where it is generated, which ensures
that the value of the Regul signal is always exactly the required one. The
“await Speed” delay is necessary to ensure that the value of the Speed sig-
nal is well-defined when the value of Regul is computed. Before the first
emission of Speed by SPEED, the value ?Speed is undefined.

3.8 Suspension

We now present suspension, which is a mild form of instantaneous preemp-
tion. In Unix, typing ^C aborts a process, while typing ^Z suspends it; the
suspended process is resumed when typing bg or fg. The Esterel suspend
statement realizes a similar function. However, instead of using a ^Z-fg
suspend-resume mechanism, suspension is determined in each instant by
the presence of a signal.

Assume the speed regulation system should be suspended when the user
keeps the Coast button pressed. This means that the Regul signal should
not be emitted if the Coast signal is present. This goal is achieved by
replacing the sustain statement by the following construct in the body
of REGUL:

suspend
sustain Regul(Regfun(?Speed, ?GasPedal))

when Coast

In this simple case, the body of the suspend statement has only one state.
In the general case, one can suspend an arbitrary statement in any of its
state. The state is frozen until next instant.

Suspension by suspend is delayed, just as abortion by abort: in the
starting instant, the presence of the suspension signal is not tested for and
the body is run anyway. Suspension can also be made immediate, as in

suspend
sustain Regul(Regfun(?Speed, ?GasPedal))

when immediate Coast

The regulation user interface may be different, involving for example a CoastOn-
CoastOff button pair with CoastOn # CoastOff, which calls for a suspend-
resume way of doing things. In Esterel, this is easily done by synthesizing
the Coast signal from CoastOn and CoastOff:

3.9. GENERIC BEHAVIORS AND MODULES 33

signal Coast in
suspend

sustain Regul(Regfun(?Speed, ?GasPedal))
when Coast

||
loop

await CoastOn;
abort

sustain Coast
when CoastOff

end loop
end signal

3.9 Generic Behaviors and Modules

In the previous coasting example, the loop in the second branch of the par-
allel statement implements a very common two-states behavior. Therefore,
to achieve WTO, it is useful to make a generic module for that behavior.
For this, we just build a module with standard names for interface signals:

module TWO_STATES:
input On, Off;
output IsOn, IsOff;
loop

abort
sustain IsOff

when On;
abort

sustain IsOn
when Off

end loop
end module

Then the module can be instantiated as follows in place of the original loop:

signal IsOff in
run TWO_STATES [signal CoastOn / On,

CoastOff / Off,
Coast / IsOn]

end signal

34 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

Explicit renaming using the ‘/’ symbol overrides the default signal capture
by name. The dummy declaration of the unused signal IsOff is necessary
since IsOff is declared in TWO STATES and must be bound to a signal in the
caller. Notice that IsOff is captured by name since it does not appear in
the renaming list.

An interesting way to program the ABCRO specification of Section 3.1 is
to consider ABRO as a generic behavior to be reused twice in parallel:

module ABCRO:
input A, B, C, R;
output O;
signal AB in

run ABRO [signal AB / O]
||

run ABRO [signal AB / A, C / B]
end signal
end module

Notice that R will reset the two submodules simultaneously, thanks to the
synchronous model.

The SPEED module should also be made generic, actually in a much
broader sense. To measure the speed, it does not matter whether we count
centimeters per second, meters per hour, or whatever. It does not matter
either whether the speed type is integer, float, or whatever. The type, the
initial value, the incrementation function, and the signals should be passed
as parameters. In Esterel, the generic code is:

3.9. GENERIC BEHAVIORS AND MODULES 35

module GENERIC_SPEED;
type T;
constant Initial : T,

Increment : T;
function Add (T, T) : T;
input A, B; % count how many A’s per B
output Speed : T;
loop

var NumberOfA := Initial : T in
abort

every immediate A do
NumberOfA := Add(NumberOfA, Increment)

end
when B do

emit Speed(NumberOfA)
end abort

end var
end loop
end module

The original SPEED module can be obtained by instantiating GENERIC SPEED
as follows:

module SPEED:
input Centimeter, Second;
output Speed : integer;
run GENERIC_SPEED [type integer / T;

constant 0 / Initial, 1 / Increment;
function + / Add;
signal Centimeter / A, Second / B]

end module

The run statement is conceptually replaced by the body of GENERIC SPEED
with the appropriate substitutions done. For example, the actual value 0 is
substituted to the Initial constant. Renaming arguments are passed by
name and not by position as in Lustre or Signal. Each technique has its
advantages and drawbacks. Passing by name can be heavier, but passing
by position is messy for long argument lists that often occur in practice.
Moreover, we can use a very convenient abbreviation: if a name is kept
unchanged in a substitution, we just don’t mention it. This is what we did
for REGUL, see Section 3.7. Finally, it is also possible to give another name
to an instantiated submodule, see Section 4.7.16.

36 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

3.10 Multiform Time

In Esterel, there is no predefined time unit and Second or Millisecond
act as standard signals. Conversely, any signal can be considered as defining
an independent time unit, which gives a broader meaning to timing control
issues. Consider the following elementary school reactive problem:

You are driving your car at 100 km/h. Suddenly, you see an
obstacle on the road at a distance of 50 m. Your reflex time is
1/10 s. Your brakes are able to decelerate the car at 5 m/s2.
What is your timing constraint?

The right answer is 50 meter. This is indeed the only thing that matters
to avoid hitting the obstacle. Read the question carefully: it is not “Will
you hit the obstacle”, which is a different much more difficult issue related
to program verification. That issue can actually be rephrased as the generic
sentence “Will you meet your timing constraint?”. In Esterel, we want to
express timing constraints, not necessarily to check them.

Using meters as “timing constraints” may look unconventional. We con-
sider time as being multiform: the repetition of any signal can be considered
as defining its own time measure. Signal periodicity may be of interest for
physical modeling, but not for programming. Programming in Esterel

mostly consists in understanding what are the time units of a problem and
how they relate with each other. In SPEED, we measure the speed in the
usual unit, centimeters per second. In some applications, it might be better
to use the inverse of the speed expressed in seconds per centimeter. It is
fundamental to understand that this quantity is computed by the very same
program. Passing Centimeter for A and Second for B in GENERIC SPEED
yields the speed, passing Second for A and Centimeter for B yields the
inverse of the speed.

3.10.1 The RUNNER example

The next RUNNER example makes heavy use of multiform time.

Specification RUNNER:
Every morning, go the stadium and do the following for a fixed
number of laps: walk for 100 meter, then, during 15 seconds,
keep jumping at each step; finish the lap by running full speed.

The inputs are Second, Morning (synchronous with Second), Meter, Step,
and Lap (synchronous with Meter). The current action is determined by an

3.10. MULTIFORM TIME 37

output signal chosen among Walk, Jump, and Run. The Walk and Run signals
must be continuously emitted, while the Jump signal should only be sent in
response to a Step input. The code is as follows:

module RUNNER:
constant NumberOfLaps : integer;
input Morning, Second, Meter, Step, Lap;
relation Morning => Second,

Lap => Meter;
output Walk, Jump, Run;
every Morning do

repeat NumberOfLaps times
abort

abort
sustain Walk

when 100 Meter;
abort

every Step do
emit Jump

end every
when 15 Second;
sustain Run

when Lap
end repeat

end every
end module

The code is self-explanatory and it means exactly what it says. The impli-
cation relations written using the ‘=>’ symbol express synchrony of Morning
with Second and of Lap with Meter. Notice the following facts:

• If a lap is shorter than 100 meter, the runner will keep walking during
that lap; the length of successive laps is not bound to be constant.

• If a lap is shorter than (i.e. occurs before) 100 meter plus 15 seconds,
then the runner will never run during that lap.

provided of course that mornings do not occur too often compared to meters,
seconds, and laps.

The same program written in an asynchronous language would have a
quite different meaning. For example, there could be in principle any phys-
ical delay between the time a lap is ended and the Lap signal is actually
perceived by the program. This is why asynchronous languages cannot han-
dle reactive specifications.

38 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

3.11 Traps and Exception Handling

Let us add an extra specification item to REGUL: if the speed gets bigger
than a constant MaxSpeed, the behavior should be stopped at once and an
alarm should be emitted. This is programmed using the trap construct:

trap SpeedTooHigh in
signal Speed : integer in

run SPEED
||

await Speed;
sustain Regul(Regfun(?Speed, ?GasPedal))

||
every Speed do

if ?Speed > MaxSpeed then
exit SpeedTooHigh

end
end every

end signal
handle SpeedToHigh do

emit Alarm
end trap

The if statement instantaneously tests its Boolean condition. If the condi-
tion is true, the then clause is instantaneously executed. Here, it is an exit
statement. When such a statement is executed, control is instantaneously
transferred to the corresponding handler if there is one, the trap simply ter-
minating if there is no handler. At exit time, all statements in the trap body
are weakly aborted, as for a weak abort statement (weak abort is actually
a macro-statement built using traps).

Similarly, for the runner, the jumping phase is pretty strenuous. During
that phase, one should monitor the heart and rush to hospital if there is any
problem. The program structure is

3.12. BOOLEAN SIGNAL EXPRESSIONS AND THE PRESENT TEST39

every Morning do
trap HeartAttack in

repeat NumberOfLaps times
abort

abort
sustain Walk

when 100 Meter;
abort

every Step do
emit Jump

end every
||

<MonitorHeart>
when 15 Second;
sustain Run

each Lap
end repeat

handle HeartAttack do
<RushToHospital>

end trap
end every

We leave it to the reader to fill in the details, i.e. to write the program frag-
ments <MonitorHeart> that contains the “exit HeartAttack” statement
and <RushToHospital>. In the way we wrote the program, the runner may
have to rush to the hospital every morning. Swapping “every Morning”
and “trap HeartAttack” would yield a different behavior: at first heart
attack, the runner would abandon running for good.

3.12 Boolean Signal Expressions and the Present
Test

So far, we have handled signals only by using preemption constructs. It
is also useful to perform instantaneous presence tests of signals using the
dedicated present statement. We give three examples of such tests.

Consider first the TWO STATES module of Section 3.9. In this module,
we clearly start in the off state. In practice, it is also useful to be able to
start in the on state. One way of doing that is to invert on and off states at
module instantiation time, writing for example

40 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

signal IsOn in
run TWO_STATES [signal CoastOff / On,

CoastOn / Off,
Coast / IsOff]

end signal

This is quite clever, but probably a little bit too clever and somewhat mis-
leading. A more pedestrian way is to use another signal meaningful only at
module start time to determine in which state to start:

module TWO_STATES:
input StartOn;
input On, Off;
output IsOn, isOff;
loop

present StartOn else
abort

sustain IsOff
when On;

end present;
abort

sustain IsOn
when Off

end loop
end module

If StartOn is present, we skip the off state and start directly in the on state.
Notice that the then clause of the present test is omitted; if StartOn
is present, the present statement simply terminates, otherwise the else
branch is immediately started. If one finds the omission of then misleading,
one can write the test as follows:

present [not StartOn] then ...

To use the module with initial state the on state, just write

signal StartOn in
emit StartOn;
run TWO_STATES [...]

end signal

3.12. BOOLEAN SIGNAL EXPRESSIONS AND THE PRESENT TEST41

Remove the emit statement to start in off mode.
The second example illustrates the role of signal synchrony in program

architecture. In the wristwatch program described in [8], the timekeeper
broadcasts the time using a Time signal. The alarm manages the AlarmTime
signal to know when to beep. Beeping should occur when both times are
equal, unless the current time is not a proper time but is a time being set by
the user. To distinguish between the two cases, the timekeeper sends a pure
signal WatchBeingSet synchronously with Time whenever it is in set-time
mode. The alarm tests for the absence of this signal when receiving the
time:

every Time do
present WatchBeingSet else

if Equal(?Time, ?AlarmTime) then
emit StartBeeping

end if
end present

end every

This control-based solution is much cleaner than polluting the Time type
with an extra field telling whether the time is actual or set.

The third example illustrates Boolean signal expressions and case state-
ments in tests. It is statement decoding in a microprocessor. Bus wires Bit0
and Bit1 carry the opcode: 11 for Load, 10 for Store, and 01 for Noop, the
code 00 being forbidden. The decoding is written as follows, assuming there
is an enclosing trap WrongOpCode

present
case [Bit0 and Bit1] do

emit Load
case [Bit0 and not Bit1] do

emit Store
case [not Bit0 and Bit1] % Noop
else

exit WrongOpCode
end present

For Noop, the empty do clause is simply omitted.
Boolean signal expressions can be used in any temporal statement, abort,

every, etc.

42 CHAPTER 3. THE ESTEREL PROGRAMMING STYLE

Chapter 4

A Tour of Esterel

4.1 Lexical Aspects

Lexical aspects are classical:

• Identifiers are sequences of letters, digits, and the underline charac-
ter ‘ ’, starting with a letter.

• Integers are as in any language, e.g. 123. and floating-point numer-
ical constants are as in C++ and Java; the values 12.3, .123E2,
and 1.23E1 are constants of type double, while 12.3F, .123E2F,
and 1.23E1F are constants of type float.

• Strings are written between double quotes, e.g., "a string", with
doubled double quotes as in "a "" double quote".

• Keywords are reserved and cannot be used as identifiers. Many con-
structs are bracketed, like “present ... end present”. For such con-
structs, repeating the initial keyword is optional; one can also write
“present ... end”.

• Simple comments start with ‘%’ and end at end-of-line. Multiple-line
comments start with ‘%{’ and end with ‘}%’.

4.2 Modules

The Esterel programming unit is the module. A module has a name, an
interface declaration part, and a body, which is an executable statement:

43

44 CHAPTER 4. A TOUR OF ESTEREL

module name :
interface declaration

statement

end module

A module can use submodules that are instantiated by the run statement.
Instantiation cannot be recursive. An Esterel program is specified by a
collection of modules and a designated module. All modules transitively
referred to in the main module must be defined in the collection.

The Esterel v5 compiler translates an Esterel program into a pro-
gram or circuit written in a host language that is chosen by the user, for
example C.

The interface declaration part specifies which objects a module imports
or exports. This is essential both for Esterel type-checking and for host
language type-checking. There are two kinds of interface objects:

• Data objects, which are declared abstractly in Esterel. Their actual
value is supposed to be given in the host language and linked to the
Esterel compiled code in a way that depends on the compiler and
target language.

• Signals and sensors, which are the primary objects the Esterel pro-
gram deals with. Which host objects correspond to signal and sensors
depends on the host language and code generation type.

The data and signal declarations can be mixed in an arbitrary way, provided
that any item is declared before being used. The scope of interface objects
is the whole module. Here are complete examples of module interface dec-
larations, the components of which are explained below:

module WATCH :

input UL, UR, LL, LR; % the four watch buttons
relation UL # UR # LL # LR; % they are incompatible

input S, HS; % second and 1/100 second
relation S => HS; % no S without an HS

type Time;
constant Noon : Time;
function CompareTime (Time, Time) : boolean;
procedure IncrementTime (Time) (integer);

4.3. DATA 45

output CurrentTime := Noon : Time;

type Beep;

constant WatchBeep : Beep, AlarmBeep : Beep;

function CombineBeeps (Beep, Beep) : Beep;

output Beeper : combine Beep with CombineBeeps;

module ROBOT:

type Coord, Rectangle;

function MakeRectangle (Coord, Coord) : Rectangle;

function InRectangle (Coord, Rectangle) : boolean;

procedure TranslateAndRotate (Rectangle) (Coord, integer);

task MoveRobotInsideRectangle (Coord) (Rectangle);

return RobotInRectangle;

module MISC :

constant WordLength = 16 : integer;

sensor Temperature : float;

inputoutput BusRequest;

output YesVotes := 0 : combine integer with +;

4.3 Data

Data objects are divided between primitive and user-defined objects. Since
data handling is not a primary concern in control-dominated reactive pro-
gramming, we kept the data definition facilities minimal, heavily relying on
the host language capabilities. All data objects are global to the program.
Each data object used within a module must be declared in that module.
For a multi-module program, an data object declared in several submodules
must be identically declared in all of them, see Section 4.7.16.

46 CHAPTER 4. A TOUR OF ESTEREL

4.3.1 Types and Operators

There are only five primitive types in Esterel: boolean, integer, float,
double, and string. The Boolean constants are true and false. The
numerical and string constants were described in Section 4.1.

The operations are the usual ones. Equality is written = and difference
is written <> for all types. The boolean type is equipped with and, or,
and not, and the operations +, -, *, /, <, <=, >, and >= are available for
integer, float, and double.

There is no implicit type conversion. In particular, the user must call
explicitly declared external functions to convert integers to floats or floats to
doubles and conversely. Remember that “1 + 3.14” and “3.14 + 2.718F”
do not typecheck.

The user can define his own types by declaring their names. For Es-

terel, a user type is a completely abstract object. Its actual definition
will be given only in the host language. Since there is no data-structuring
mechanism in Esterel, explicit user types must be constructed for records,
arrays, etc, with appropriate access functions and procedures. This is cer-
tainly heavy, but highly portable.

Equality ‘=’ and unequality ‘<>’ can be used for user types. If they are
used, they must be adequately defined in the host language.

Here are the type declarations of the above module examples:

type Time;
type Beep;
type Coord, Rectangle;

4.3.2 Constants

Constants of any type can be declared as follows:

constant Noon : Time;
constant WatchBeep : Beep, AlarmBeep : Beep;
constant WordLength = 16 : integer;

There are two ways to declare a constant. In the implicit way, only the
name and the type are given, see Noon above. The value is defined in
the host language. In the explicit way, the name, the type, and the value
are declared, see WordLength above. This is possible only for constants of
predefined types.

4.3. DATA 47

4.3.3 Functions

Functions take a list of objects of arbitrary types and return a single object
of arbitrary type:

function CompareTime (Time, Time) : boolean;
function CombineBeeps (Beep, Beep) : Beep;
function MakeRectangle (Coord, Coord) : Rectangle;
function InRectangle (Coord, Rectangle) : boolean;

Functions are defined in the host language. They are called in data expres-
sions, and they must be side-effect free.

4.3.4 Procedures

Procedures have two lists of arguments of arbitrary types:

procedure IncrementTime (Time) (integer);
procedure TranslateAndRotate (Rectangle) (Coord, integer);

The first list is the list of reference arguments that are passed by reference
and possibly modified by the call. The second list is that of value arguments
that are passed by value and not modified. For example, in TranslateAndRotate,
the rectangle is passed by reference and modified when translated and ro-
tated, while the translation and rotation arguments are passed by value.
Each of the lists can be empty. Procedures are called by the call state-
ment, which is assumed to be instantaneous.

Procedures are defined in the host language. Their code should be side-
effect free besides the obvious side-effect on reference arguments (see Sec-
tion 5.2.6 for the evaluation ordering of procedure calls).

4.3.5 Tasks

Tasks are external computation entities syntactically similar to procedures
but whose execution is assumed to be non-instantaneous. They are declared
exactly as procedures:

task MoveRobotInsideRectangle (Coord) (Rectangle);

Tasks are executed by the exec statement and coupled with return signal as
described in Section 4.7.17. Tasks are supposed to run concurrently with the
Esterel program. The way this is implemented depends on the compiler,
on the host language, and on the run-time system. The actual code of tasks
is given in the host language.

48 CHAPTER 4. A TOUR OF ESTEREL

4.4 Signals and Sensors

Signals and sensors are the logical objects received and emitted by the pro-
gram or used for internal bookkeeping. Signals can be interface signals
declared in the module interface or local signals declared by the signal
local signal declaration statement, see Section 4.4.5 and Section 4.7.13 .

Signals are instantaneously broadcast throughout the program, which
implies that all statements see each of them in a consistent way. Pure signals
have a presence status, present or absent. In addition to their status which
is as for pure signals, valued signals carry a value of arbitrary type. For
single valued signals, only one statement can emit the signal in an instant.
For combined valued signals, multiple emitters are allowed. Sensors have a
value but no status. The broadcast value of a valued signal or of a sensor
is unique in each instant. One can also access the previous status and value
of a signal or sensor by using the pre operators.

There is one predefined signal, the special pure signal tick that repre-
sents the activation clock of the reactive program. Its status is present in
each instant. The tick signal is declared implicitly and cannot be rede-
clared.

4.4.1 Interface Signal Declarations

Interface signals are either input, output, inputoutput, or return. The
return signals are used to signal termination of external tasks, see Sec-
tion 4.7.17. Here are the interface signals declarations of the above modules:

input UL, UR, LL, LR; % the four watch buttons
input S, HS; % second and 1/100 second
output CurrentTime := Noon : Time;
output Beeper : combine Beep with CombineBeeps;

return RobotInRectangle;

inputoutput BusRequest;
output YesVotes := 0 : combine integer with +;

Here, UL, UR, LL, LR, S, and HS are pure input signals. The signal BusRequest
is a pure inputoutput signal. It is both received by the module and emitted
by it.

The CurrentTime output signal is a valued signal of abstract time Time.
The value of CurrentTime is accessed through the expression ?CurrentTime,

4.4. SIGNALS AND SENSORS 49

see Section 4.6.2. It is initialized to Noon. Similarly, the YesVotes signal is
integer-valued with initial value 0. If no initial value is given, as for Beeper,
the value is undefined until the first time the signal is received from the
environment or emitted by the program itself. If an initial value is given to
a signal S, it also serves as the initial value of the expression pre(?S).

The return signal RobotInRectangle is a special input signal used for
signaling external task completion, see Section 4.3.5. A return signal can be
valued just as a standard input signal.

4.4.2 Single and Combined Valued Signals

The above CurrentTime signal is called a single signal: it cannot be emitted
twice in the same instant and it cannot be emitted by the program in an
instant if it is received from the environment in that instant. This restriction
holds for any valued signal not declared using the combine keyword. The
signals declared with that keyword are called combined signals.

In the above declarations, Beeper and YesVotes are combined. For
them, the values simultaneously emitted by several emitters or received from
the environment are gathered and combined using the specified binary func-
tion or operator that must be commutative and associative. For Beeper,
the Beep type can represent a set of sound frequencies and combining sev-
eral sounds by CombineBeeps can be taking the union of their frequencies. In
this way, one can hear the timekeeper, alarm, and stopwatch beep together.
For YesVotes, using addition as a combination function makes it easy to
count simultaneous yes votes if each participant broadcasts the number of
voices he or she represents.

For the type boolean, the combination function can be and or or. For the
types integer, float, and double, the combination function can be + or *.
Any other combination function must be user-defined and declared prior
to the signal declaration. The corresponding host language combination
function is assumed to be commutative and associative, which obviously
cannot be checked by Esterel.

4.4.3 Sensors

Sensors are valued input signals without presence information. A sensor is
declared by giving its name and type:

sensor Temperature : integer;

50 CHAPTER 4. A TOUR OF ESTEREL

Sensors differ from signals in the way they are interfaced with the envi-
ronment. The value of a sensor is read by the program whenever needed.
Therefore, the notion of an initial value is meaningless for sensors.

4.4.4 Input Relations

Input relations declare some Boolean condition about input or return signals
that are assumed to be guaranteed by the environment. In the above WATCH
example, the relations are:

relation UL # UR # LL # LR;
relation S => HS;

The first relation is called an incompatibility (or exclusion) relation. It
asserts that the four input buttons are incompatible (or exclusive), i.e. that
no two of them can be simultaneously present in the environment. The
second relation is called an implication relation. It asserts that S can be
present only if HS is, i.e. that a second is always synchronous with a 1/100
second.

Relations are useful to avoid specifying irrelevant behaviors. For exam-
ple, in the WATCH module, the exclusion relation asserts that the user cannot
simultaneously request to change to set-watch mode and to stopwatch mode;
in practice, buttons are serialized by the low-level event handler. Relations
are also useful to optimize automaton code generation, for circuit code op-
timization, and to speed-up program verification.

For the Esterel v5 compiler, only the relations of a program’s main
module matter. The relations declared in the submodules are discarded.

4.4.5 Local Signal Declaration

A local signal declaration is performed by the following construct:

signal Alarm,
Distance : integer,
Beep := OneBeep : combine Beep with CombineBeeps

in
p

end signal

where p is any statement. A local signal declaration is an executable state-
ment, and it can be placed wherever a statement can.

4.5. VARIABLES 51

The individual declarations are the same as for interface signals, see
Section 4.4.1. Types must be declared separately for each signal in a signal
declaration list. Here, Alarm is a pure signal.

The scope of a local signal declaration is the body p. Scoping is lexical:
any re-declaration of a signal hides the outer declaration.

Local signals are subject to reincarnation: a local signal placed within
a loop can be executed several times in the same instant. Then, each exe-
cution declares a new copy or incarnation of the signal, see Section 4.7.13.
Signal handling can also yield causality problems studied in Chapter 5. Sec-
tion 4.7.13 studies the local signal declaration statement in more details,
including issues about taking the pre of a local signal.

4.5 Variables

Variables are assignable objects that have a name and a type. Variables are
declared by the local variable declaration construct, which has the form

var X : double,
Count := ? Distance : integer,
Deadline : Time

in
p

end var

where p is any statement. A variable declaration is an executable statement,
and it can be placed wherever a statement can.

A variable declaration declares the names of the variables, their types,
and possibly their initial values. The scope of a variable declaration is the
body p. Scoping is lexical: any re-declaration of a variable hides the outer
declaration. The type must be declared individually for each variable. The
declaration

var X, Y : integer in

is incorrect since X has no type (there is no ”pure variable”). One must
write

var X : integer, Y : integer in

A variable is modified by assignments, see Section 4.7.2, procedure calls,
see Section 4.7.2, and the exec external task execution statement, see Sec-
tion 4.7.17. An initial value can be assigned at declaration time, as for Count

52 CHAPTER 4. A TOUR OF ESTEREL

above. If no initial value is given, the variable’s value is undefined until the
first assignment is performed.

Unlike a signal, a variable can take several successive values in the same
instant. For example, in the statement

X := 0;
emit S1(X);
X:= X+1;
emit S2(X)

the signals S1 and S2 are emitted simultaneously with respective values 0
and 1, the variable X taking these values in succession within the instant.
This poses absolutely no problem in the constructive semantics of Esterel

presented in Chapter 5, provided of course that variables cannot be shared
in read-write mode between threads. More precisely, if a variable is written
in a thread, then it can be neither read nor written in any concurrent thread.

4.6 Expressions

There are three kinds of expressions in Esterel: data expressions, signal
expressions, and delay expressions.

4.6.1 Data Expressions

Data expressions are built as usual by combining basic objects using oper-
ators and function calls. Their evaluation is instantaneous. All expressions
must type-check.

Constants and variables appear under their names. The current value
of a valued signal or sensor S is written ?S. The previous value of a signal
S is written pre(?S). There is currently no previous value operator for a
sensor (this is due to the way sensors are interfaced in the current compiler:
a sensor is read only in call-by-need; there is no way to know in the current
instant if we have to read the sensor for the next instant, and it would be
too expensive to read the sensor at any instant). Traps can carry values
just as signals, see Section 4.7.14. However, the name space of traps is
distinct from that of signals, and we must use a different symbol to access
trap values. The current value of a valued trap T is written ??T. There is no
?pre operator for trap values. Accessing a yet undefined signal or trap value
is an error. Function calls are written as usual. Here are some expressions:
Delay

4.6. EXPRESSIONS 53

X * WordLength
FloatToInteger(?Temperature) * (??ExitCode+5) / pre(?Age)

4.6.2 Signal Expressions

Signal expressions are Boolean expressions over signal statuses. They are
used in instantaneous present tests or in delay expressions. Signal expres-
sions are obtained by combining signal names or the tick predefined signal
using the and, or, not, and pre operators, viewing present as true and ab-
sent as false. In a signal expression, S means the current status of S and
pre(S) the previous status of S, i.e. its status at previous instant. The bind-
ing conventions are the usual ones: not binds tighter than and, which binds
tighter than or. Any signal can appear in a signal expression, including an
output signal. Here are examples:

Meter and not Second
Bit1 and Bit2 and not (Bit3 or Bit4)
pre(Meter)
I and not pre(J)
I and pre(I or J)

The only restriction is that pre operators cannot be nested1.
The interpretation of signal expressions is obvious, except for the pre

operator. We define a first instant of a signal S as follows:

• If S is a program interface signal, the only first instant of S is the first
instant of the program execution.

• If S is a local signal, a first instant of S is any instant where the local
signal declaration that declares S is entered (local signal declarations
are detailed in Section 4.7.13).

The signal expression pre(S) has value false in any first instant of S, following
our convention that a signal is absent by default: a signal is also considered
absent before it exists. Then, in subsequent instants, pre(S) is true if S was
present in the previous instant.

To define pre(e) where e is a signal expression, we need two auxiliary
semantical operators: pre0(S), which is the previous status of S with initial
value absent just as for pre(S), and pre1(S), which only differs by having

1This restriction may be lifted in subsequent versions if it turns out to be too stringent.

54 CHAPTER 4. A TOUR OF ESTEREL

value present in any first instant of S2. Let ¬0 = 1 and ¬1 = 0. Then pre(e)
is defined by structural induction on e:

pre(e) = pre0(e)
prei(e and e

′) = prei(e) and prei(e
′)

prei(e or e
′) = prei(e) or prei(e

′)
prei(not e) = not pre¬i(e)

The pre1 operator needs not be primitive in Esterel since its effect can be
obtained using two negations: not(pre(not S)) is pre initialized to present.
In any first instant of S, the initial value absent is negated by the outer not
operator and become present. In all subsequent instants, the outer negation
is canceled since the previous value was negated by the inner not operator.

Since tick is always true, the expression “not tick” is always false.
When dealing with complex expressions, some aspects related to rein-

carnation and constructive causality have to be well-understood, see Sec-
tion 4.7.13 and Chapter 5 for details.

4.6.3 Delay Expressions

Delay expressions are used in temporal statements such as await or abort.
There are three forms of delay expressions: standard delays, immediate
delays, and count delays. A delay starts when the temporal statement that
bears it starts, and it elapses in some later instant, possibly in the same
instant for immediate delays.

Standard delays are defined by a signal expression. Standard delays
never elapse instantaneously. For example, the standard delay

Meter and not Second

elapses in the next instant in which a meter occurs without a simultaneous
second.

Immediate delays can elapse instantaneously. They are defined by the
immediate keyword followed by a signal expression, which must appear
within brackets ‘[]’ unless it is a single identifier. For example, the immediate
delay

immediate [Meter and not Second]

2In Lustre [33], one would write false->pre(S) for pre0(S) and true->pre(S) for
pre1(S).

4.7. STATEMENTS 55

elapses instantaneously if a meter and no second are present when the delay
is initiated, and it behaves as a standard delay otherwise. Notice that there
is only one layer of brackets ‘[]’ and that standard parentheses are used
inside delay expressions, as for Meter and (not Second).

Count delays are defined by an integer count expression followed by a
signal expression.

The signal expression must be bracketed using square brackets ‘[]’ if it
is not reduced to a single signal. Here are examples:

3 Second
3 pre(Second)
5*X Meter
3 [Second and not Meter]

The expression is evaluated only once when the delay is initiated. If the
expression’s value is 0 or less, it is set to 1. Therefore, a count delay never
elapses instantaneously. This is fundamental for various kinds of static anal-
ysis including constructiveness analysis, see Chapter 5 and Section 4.7.6.

Notice two restrictions on delays: there is no immediate count delay,
and counts cannot be intertwined with Boolean signal operators. This is a
deliberate choice. Consider an immediate delay expression of the form

await immediate N Second

Then, if N is greater than 0, the statement cannot terminate instantaneously,
while it can if N is 0. Appropriate information about possible instantaneous
termination cannot be extracted from this kind of statement, which is why
we forbid it3. Also, we think that expressions such as

immediate [3 [n Seconds or p [Meter and not Second]]]

are too difficult to understand unambiguously.

4.7 Statements

We describe here all statements except local signal declaration described
in Section 4.4.5 and local variable declaration described in Section 4.5. All
constructs but sequencing ‘;’ and concurrency ‘||’ use bracketing keywords:
abort—end abort, etc. Repetition of the initial keyword is optional, so
abort—end is also correct. To resolve the remaining syntactic ambiguities,

3We could use a positive clause as for repeat, see Section 4.7.6, but this has not been
done yet.

56 CHAPTER 4. A TOUR OF ESTEREL

any statement can be explicitly bracketed using square brackets ‘[]’. Es-

terel is fully orthogonal: statements can be freely mixed in an arbitrary
way. One can sequence parallel statements or put sequences in parallel, one
can subject any statement to an abortion, etc.

In the sequel, we do not add indentation for parallel statements. There-
fore,

signal S in
p

||
q

end signal

is preferred to the more indented form

signal S in
p

||
q

end signal

4.7.1 Basic Control Statements

There are three basic pure control statements:

nothing
pause
halt

The nothing statement terminates instantaneously when started. The pause
statement pauses for one instant. More precisely, it pauses when started, and
it terminates in the next instant (pause can also be written “await tick”,
see Section 4.7.9). The halt statement pauses forever and never terminates.

4.7.2 Assignment and Procedure Call

See Section 4.5 for the definition of a variable. Assignments have the form

X := e

where X is a variable and e is a data expression. The variable and expression
must have the same type. Assignments are instantaneous.

Procedure calls have the form

4.7. STATEMENTS 57

call P (X, Y) (e1, e2)

where X and Y are variables and the ei are expressions. The types must
match those of the declaration. The variables are modified by the call. The
call is instantaneous.

4.7.3 Signal Emission

Instantaneous signal emission is realized by the emit statement, which has
one of two forms:

emit S
emit S(e)

For a pure signal S, the emit statement simply emits S and terminates
instantaneously. For a valued signal, the emit S(e) statement evaluates the
data expression e, emits S with that value, and terminates instantaneously.
Input signals can be internally emitted by the program, but return signals
cannot be emitted.

For a single signal, if an emit signal is executed, it must be the only one in
the instant; for an input or inputoutput single signal, no emit statement can
be executed if the signal is received in the input event. Both requirements are
statically checked by the Esterel v5 compiler using the -Icheck option.
For a combined signal, the emitted value is combined with those emitted
by other emit statements executed in the instant using the combination
function. For an input or inputoutput combined signal that is received from
the environment and locally emitted in the same instant, the received and
emitted valued are combined.

Continuous emission of a signal is realized by the sustain statement:

sustain S
sustain S(e)

When started, the sustain remains active forever and it emits S in each
instant. For a valued signal, the data expression e is re-evaluated in each
instant. The “sustain S” statement abbreviates “loop emit S each tick”,
see Section 4.7.11.

4.7.4 Sequencing

Sequencing is done using the ‘;’ sequence operator. In

p ; q

58 CHAPTER 4. A TOUR OF ESTEREL

the first statement p is instantaneously started when the sequence is started,
and it is executed up to completion or trap exit. If p terminates, q is im-
mediately started and the sequence behaves as q from then on. If p exits
some enclosing traps, the exits are immediately propagated and q is never
started, see Section 4.7.14. For example, “exit T; emit S” does not emit S.

4.7.5 Looping

A simple loop has the following form:

loop
p

end loop

The body p is instantaneously restarted afresh upon termination, this for-
ever. If p exits some enclosing traps, the exits are propagated instanta-
neously and the loop stops. This is the only way to exit a loop from inside.
Of course, a loop can also be killed by an external preemption statement,
see Section 4.7.10 and Section 4.7.14.

The body of a loop is not allowed to be able to terminate instantaneously
when started. This condition is static: there must be no potential direct path
from start to termination in p, even if that path cannot be taken dynamically.
For instance, the following loop is rejected:

loop
present I then

present J else
p

end present
else

q

end present;
end loop

Even if p and q have delays, there is a potential instantaneous path in the
loop body corresponding to the case where I and J are both present. If I
and J are inputs declared incompatible by the input relation I # J, then
the instantaneous path is a false one since it cannot be taken in any valid
input configuration. The program is rejected nevertheless. One must add
an extra clause involving a delay:

4.7. STATEMENTS 59

loop
present I then

present J then
pause % unreachable since I # J

% but ensures static non-termination
else

p
end present

else
q

end present
end loop

4.7.6 Repeat Loops

A repeat loop executes its body for a finite number of times. The body is
not allowed to terminate instantaneously. The simplest form is

repeat e times
p

end repeat

The expression e must be of type integer. It is evaluated only once at
starting time. The body is not executed at all if e evaluate to 0 or to a
negative number. Therefore, the repeat statement is considered as possibly
instantaneous and it cannot be put in a loop if not preceded or followed
by a delay, this even if its own body is non-instantaneous. Therefore, the
following statement is rejected as being a potentially instantaneous loop,
independently of the body ‘...’:

loop
repeat 3 times

...
end repeat

end loop

Esterel compilers are not required to perform static analysis and discover
that 3 is never null, because one can replace 3 by user-defined constants or
complex expressions. To solve this problem, we ask the user to assert that
the body will be executed at least once by adding the positive keyword:

60 CHAPTER 4. A TOUR OF ESTEREL

loop
positive repeat 3 times

...
end repeat

end loop

In the positive repeat statement, the test for repetition is performed only
after the first execution of the body. The body is not allowed to be able
to terminate instantaneously, and the whole positive repeat statement
inherits the same property.

4.7.7 The present Signal Test

The present statement branches according to the instantaneous values of
signal expressions. The simplest form checks for one signal expression and
performs binary branching. Each of the then and else branches can be
omitted, but at least one of them must be specified. An omitted branch is
implicitly nothing:

present S then p else q end present
present [Second and Meter] then p end present
present Meter then q end
present pre(Meter) else q end

The case form tests several signal expressions in sequence:

present
case Meter do

Distance := Distance+1;
emit Distance(Distance)

case Second do
emit Speed(Distance)

end present

The tests are taken in order, and the first true expression starts immedi-
ately its do clause. If the do clause is omitted, the present statement simply
terminates. If none of the expressions is true, the present statement termi-
nates. One can add an else statement for that case:

present
case [Bit0 and Bit1] do

emit Load
case [Bit0 and not Bit1] do

4.7. STATEMENTS 61

emit Store
case [not Bit0 and Bit1] % no-op
else

exit WrongOpCode
end present

4.7.8 The if Data Test

The if statement is used to test Boolean data expressions. In the basic
binary form, either the then or the else clause can be omitted, as for the
present statement:

if X>=0 then p else q end if
if X=Y and Y<>?Z then p end
if ?Flag else q end

Multiple cases can be checked in sequence using the elsif keyword, the
case keyword being reserved for signal expressions:

if X > 5 then
p

elsif X > 3 then
q

else
r

end if

The conditions are evaluated in sequence. The first true condition triggers
the corresponding statement. If no condition is true, then the if statement
executes the else statement if there is one and terminates otherwise.

4.7.9 The await Statement

The await statement is the simplest temporal statement. In its basic form,
it simply waits for a delay:

await Second
await immediate Second
await immediate [Second and Meter]
await pre(Second)
await immediate pre(Second)
await 2 Second
await 2 tick
await 2 [Second and not pre(Meter)]

62 CHAPTER 4. A TOUR OF ESTEREL

The delay is started when the await statement is started. The statement
pauses until the delay elapses and terminates in that instant. An immediate
await statement terminates instantaneously if the signal expression is true
in the starting instant. Be careful: the sequence

await immediate Meter;
await immediate Meter

terminates instantaneously if Meter is present in the starting instant (this
is why making immediate the default would be misleading).

A do clause can be used to start another statement when the delay
elapses:

await 2 Second do
emit Beep

end await

This is simply an abbreviation for “await 2 Second; emit Beep”, but it
makes the dependency of Beep on 2 Second more explicit. As for present,
one can introduce a case list:

await
case 2 Second do p
case immediate Meter
case Button do q

end await

The above statement immediately terminates if Meter occurs at start time.
Otherwise, the first delay to elapse determines the subsequent behavior: p
is started if 2 Second elapses first, the await statement simply terminates
if Meter occurs first, and q is started if Button occurs first. If several delays
elapse at the same time, the first one in the list takes priority. For exam-
ple, if Meter and Button occur simultaneously, then the await statement
terminates and q is not started.

Unlike for present, no else clause is allowed for an await statement.
One can use “case tick” to achieve the same effect.

4.7.10 The abort Statements

An abortion statement kill its body when a delay elapses. For strong abor-
tion, performed by abort, the body does not receive the control at abortion
time. For weak abortion, performed by weak abort, the body receives the
control for a last time at abortion time. The syntax is as follows:

4.7. STATEMENTS 63

abort p when 3 Meter
weak abort p when 3 Meter

For both constructs, the body p is run until termination or until the de-
lay elapses. If p terminates before the delay elapses, so do the abort and
weak abort statements. Otherwise, p is preempted when the delay elapses;
in that instant, p is not executed with strong abortion, and it is executed
for a last time with weak abortion (p has rights to its “last wills”).

If the delay is immediate and elapses immediately at starting time, the
body is not executed at all with strong abortion, and it is executed for one
instant with weak abortion For example, in

abort
sustain O

when immediate I

the abort statement terminates immediately without emitting O if I is
present at starting time. If abort is replaced by weak abort, the whole
statement also terminates instantaneously but O is emitted once.

As for await, one can add a do clause to execute a statement q in case
of delay elapsing:

abort % or weak abort
p

when 3 Meter do
q

end abort

With both weak and strong abortion, q is executed if and only if p did not
terminate strictly before delay elapsing. At abortion time, with strong abor-
tion, p is not executed and q is immediately started. With weak abortion,
the first instant of q is done in sequence after the last instant of p.

As for await, one can introduce an ordered list of abortion cases:

abort % or weak abort
p

when
case Alarm do r

case 3 Second do q

case immediate Meter
end abort

64 CHAPTER 4. A TOUR OF ESTEREL

Here, p is immediately aborted if there is a Meter at starting time. Other-
wise, p is run for at least one instant. The elapsing of any of the three delays
aborts p. If there is a do clause for the delay, that statement is immediately
started; otherwise, the abort statement simply terminates. If more than
one of the delays elapses at abortion time, then the first one in the list takes
priority as for the await statement.

Nesting abort statements also builds priorities. In the statement

abort
abort

p
when I do

q
end abort

when J

the signal J takes priority over I if they occur simultaneously, and q is not
started in that case. This is no special rule, but just a consequence of the
strong abortion semantics of abort.

Finally, notice that “await S” can be defined as “abort halt when S”.

4.7.11 Temporal Loops

Temporal loops are loops over strong abortion statements. The first form is

loop
p

each d

where d is a non-immediate delay. At starting time, the body p is started
right away, and it is restarted afresh whenever the delay d elapses. If p
terminates before d elapses, then one waits for the elapsing of d to restart p.
The “loop each” statement is simply an abbreviation for

loop
abort

p; halt
when d

end loop

The delay cannot be immediate, otherwise the loop body would be instan-
taneous.

The second temporal loop has the form

4.7. STATEMENTS 65

every d do
p

end

The difference is that d is initially waited for before starting the body p.
The delay d can be immediate. In that case, in the starting instant, p starts
immediately if the delay elapses immediately. The statement

every 3 Second do
p

end every

abbreviates

await 3 Second;
loop

p
each 3 Second

The statement

every immediate Centimeter do
p

end

abbreviates

await immediate Centimeter;
loop

p
each Centimeter

All temporal loops are infinite. The only way to terminate them is by exiting
a trap, see Section 4.7.14 or by the elapsing of an enclosing abortion delay.

4.7.12 The suspend Statement

Abortion violently preempts a statement and kills it, in the same way as
ˆC kills a process in Unix. Suspension has a milder action, like ˆZ in Unix.
The basic syntax is

suspend
p

when s

66 CHAPTER 4. A TOUR OF ESTEREL

where s is any signal expression. When the suspend statement starts, p is
immediately started. Then, in each instant, the following occurs:

• If the signal expression s is true, then p remains in its current state
and the suspend statement pauses for the instant.

• If the signal expression s is false, then p is executed for the instant.
If p terminates or exits a trap, so does the suspend statement. If p
pauses, so does the suspend statement, and suspension is re-examined
in the next instant.

Here is an example. The statement
suspend

abort
sustain O

when J
when I

emits O in the first instant and in all subsequent instants where I is absent,
until the first instant where I is absent and J present. Then the suspend
statement terminates and O is not emitted.

The default suspend statement is delayed, in the sense that the signal
expression is not tested for in the first instant. The immediate form performs
that test:

suspend
p

when immediate s

Here p is not started in the first instant if s is true. The immediate form
can be rewritten as follows:

await immediate [not s];
suspend

p
when s

4.7.13 Local Signal Declaration

In Section 4.4.5, we have seen the form of a local signal declaration and the
way in which signals are scoped. We now present some important issues
about local signals. We start by a macro-expansion definition of pre. Then,
we study the interaction between suspend and pre. Finally, we study the
reincarnation phenomenon.

4.7. STATEMENTS 67

The pre Operators for Local Signals

The pre status operator and the pre(?s) value operator need not be prim-
itive in Esterel. For a pure local signal, one could directly define a signal
preS that behaves just as pre(S), by writing

trap T in
signal S, preS in

p;
exit T

||
loop

present S then
pause;
emit preS

else
pause

end
end loop

end signal
end trap

Within p, any occurrence of pre(S) can be changed into preS. The trap
T serves in propagating termination of p. The loop in the second parallel
branch computes the status of pre(S) using two pause statements; this code
is less efficient than the direct implementation available in Esterel v5 91
since it uses two registers instead of one, except when using automaton code
generation where it yields exactly the same automaton.

The same can be done for an interface signal, putting the pre code at
toplevel (no trap is necessary in this case).

Similarly, the pre(?S) previous value operator need not be primitive,
since pre(?S) could be defined as the value ?preS of an auxiliary signal
preS:

68 CHAPTER 4. A TOUR OF ESTEREL

trap T in
signal S : Type, preS : Type in

p;
exit T

||
loop

present S then
var preval := ?S in

pause;
emit preS(preval);

end var
else

pause
end

end loop
end signal

end trap

If S has an initial value, then we specified in Section 4.4 that pre(?S) has
the same initial value. In this case, we should write

signal S := v : Type, preS := v : T in ...

Local Signals and Suspension

Suspension interacts with taking the pre operators for a signal declared
within the suspension body, as in

suspend
signal S in

...
present pre(S) then ...
...

end signal
when I

The expression pre(S) refers to the status of S in the previous instant where
the signal statement was activated, not to the status of S in the previous
absolute instant or tick. Instants where I suspends the signal statement
do not count for pre. In some sense, the suspend statement steals the tick
to its body. This is obvious when expanding the pre operators as explained
in Section 4.7.13.

4.7. STATEMENTS 69

Reincarnation

Because of instantaneous looping of loops, local signals can have several
simultaneous instances that we call reincarnations. They pose no partic-
ular problem, but one has to be aware of their existence, in particular to
understand causality issues. Here is an example:

loop
signal S in

present S then emit O1 else emit O2 end;
pause;
emit S

end signal
end loop

In the first instant, the local signal S is declared. It is absent since there
is no emitter for it. Therefore, the else branch of the present statement
is taken and O2 is emitted. In the second instant, the pause statement
terminates and S is emitted and set present. The loop body terminates and
it is restarted afresh right away. The local signal declaration is immediately
re-entered. It declares a fresh signal, distinct from the old one, whose status
is lost. The fresh incarnation is absent, unlike the old one. The present
statement tests the fresh incarnation and only O2 is emitted. Everything
happens as if the loop body was duplicated:

loop
signal S in

present S else emit O end;
pause;
emit S

end signal;
signal S in

present S else emit O end;
pause;
emit S

end signal;
end loop

In this obviously equivalent statement, the old and fresh incarnations are
split into two syntactically distinct signals that happen to bear the same
name S and the present statement is duplicated. In the original form,
the single S generates two distinct dynamic incarnations, and the present
statement dynamically tests the current incarnation of the signal.

70 CHAPTER 4. A TOUR OF ESTEREL

The pre and pre(?S) operators always refer to the current incarnation.
For example, in

loop
signal S in

present pre(S) then emit O1 else emit O2 end;
pause;
emit S

end signal
end loop

the O2 signal is continously emitted. The S emitted at the end of the loop
body is not matched by pre, which matches the new incarnation, with
pre(S) initially absent, as specified in Section 4.4 and Section 4.4.5.

4.7.14 Traps

A trap defines an exit point for its body. The basic syntax is

trap T in
p

end trap

The scope of T is the body p and scoping is lexical. A redeclaration of a
trap hides the outer declaration.

The body p is immediately started when the trap statement starts. Its
execution continues up to termination or trap exit, which is provoked by
executing the “exit T” statement. If the body terminates, so does the
trap statement. If the body exits the trap T, then the trap statement
immediately terminates, weakly aborting p.

The weak abort statement can be defined using traps. The construct
“weak abort p when S” is an abbreviation for

trap T in
p;
exit T

||
await S;
exit T

end trap

4.7. STATEMENTS 71

Nested Traps

When traps are nested, the outer one takes priority. Consider for example

trap U in
trap T in

p

end trap;
q

end trap;
r

If p exits T, then q is immediately started. If p exits U, then r is immedi-
ately started. If p exits simultaneously T and U, for example by executing
“exit T || exit U”, then U takes priority and only r is executed. From the
point of view of the “trap T” statement, T is discarded and U is propagated.

Trap Handlers

A handler can be used to handle a trap exit, with the following syntax:

trap T in
p

handle T do
q

end trap

If p terminates, so does the trap statement. If p exits T, then p is weakly
aborted and q is immediately started in sequence.

Concurrent Traps

Several traps can be declared using a single trap keyword:

trap T, U, V
p

handle T do
q

handle U do
r

end trap

72 CHAPTER 4. A TOUR OF ESTEREL

In this case, the traps are called concurrent traps and they must have distinct
names. Concurrent traps are at the same priority level, and any of them
can have a handler. If several traps are simultaneously exited, then the
corresponding handlers are executed in parallel:

Here, q and r are executed in parallel if p exits T and U simultaneously.
Since they are concurrent, the q and r handlers cannot share variables. The
trap statement simply terminates if p exits V that has no handler.

Here is the translation of “weak abort p when S do q end” using concur-
rent traps:

trap Terminate, WeakAbort in
p;
exit Terminate

||
await S;
exit WeakAbort

handle WeakAbort do
q

end trap

Valued Traps

Traps can be valued exactly as signals, except that pre(?S) is not available
for traps (it would make no sense since an statement that exits a trap dies
instantaneously). Value initialization and combined traps are allowed. This
is useful to pass a value to the handler. The value is obtained as the result
of the expression ‘??S’, which is allowed only in the handler:

trap Alarm : combine integer with + in
... exit Alarm(3) ...
... exit Alarm(5) ...

handle Alarm do
emit Report(??Alarm)

end trap

Of course, concurrent traps can be valued:

trap T, U := 0 : integer, V : combine integer with + in
p

handle T do
q

handle U and V do
emit O(??U + ??V)

end trap

4.7. STATEMENTS 73

Here, the second handler starts if and only if U and V are exited in parallel,
in which case O is emitted with values the sum of the values of U and V.
Beware of uninitialized trap values, which could occur if and was replaced
by or in the second handler above.

4.7.15 The Parallel Statement

The parallel operator puts statements in synchronous parallel. The signals
emitted by any of its branches or by the rest of the program are instanta-
neously broadcast to all branches in each instant.

A parallel can be binary, as in p || q, ternary, as in p || q || r, or of any
arity. Syntactically, the sequencing operator ‘;’ binds tighter than the par-
allel operator ‘||’. Therefore, p; q || r means [p; q] || r, which is different
from p; [q || r] where the brackets are mandatory.

A parallel statement forks its incoming thread when it starts, starting
instantaneously one thread per branch. The parallel terminates when all its
branches have terminated, waiting for the last one if some branches termi-
nate earlier. The parallel propagates a trap T as soon as one of its branches
exits T, weakly aborting all its branches at that time. See Section 4.7.14 for
the case where several traps are simultaneously exited.

Variables can only be shared among parallel branches if they are read-
only. If a branch can write a variable X, then no other branch can read or
write X. Signals are the only truly shared objects.

4.7.16 The run Module Instantiation Statement

A module can be instantiated within another module using the run exe-
cutable statement. In the simplest form, one simply writes

run SPEED

This amounts to syntactically replace the run statement by the body of
the SPEED module. Recursive or mutually recursive submodule instantiation
is forbidden.

All data objects (types, functions, procedures, tasks) are global to an
Esterel program. Therefore, the data declarations of the instantiated
submodule are exported to the parent module. If some data objects were
already declared in the parent, the parent and child declarations must be
the same.

The signal interface declarations of the instantiated module are simply
discarded, as well as the relation declarations. This means that the interface

74 CHAPTER 4. A TOUR OF ESTEREL

signals of the instantiated submodule must exist in the parent module with
the same type. Notice that a signal declared as input in the submodule is
seen as global after instantiation. For instance, in

module M :
input I;
emit I
end module

module N :
output I;
run M
end module

the signal I is effectively emitted by N although it was declared as an input
in M. This is an anomaly that should be corrected some day.

Any interface object can be renamed at module instantiation time using
the following renaming syntax:

run GENERIC_SPEED [type integer / T;
constant 0 / Initial,

1 / Increment;
function + / Add;
signal CarSpeed / Speed]

A renaming X / Y is read “X renames Y”. The renaming object X can be
either an explicit constant or operator or an identifier. If it is an identifier,
it must be declared in the parent module. The renamed object Y must be
an identifier belonging to the data or signal interface of the instantiated
module. The kinds and types must match.

Full renaming makes it possible to build generic modules. Partial re-
naming is also possible. In that case, any submodule interface object that is
not renamed is captured by the parent object of the same name (and kind:
a type is captured by a type, a signal by a signal, etc.).

The included module itself can be renamed:

run CarSpeed / SPEED [...]
||

run BicycleSpeed / SPEED [...]

This is useful for identifying submodule occurrences in symbolic debuggers.

4.7. STATEMENTS 75

4.7.17 The exec Task Execution Statement

External procedure calls performed using the call statement are supposed
to be instantaneous. This does not fit with many practical applications
where procedure computing times cannot be neglected. The task-exec
mechanism we now describe makes it possible to control execution of ex-
ternal tasks that take time.

Roughly speaking, tasks behave as procedures that are executed asyn-
chronously with the Esterel program. At the Esterel abstraction level,
we take a logical view of tasks. We care about controlling them, and we
do not care about how they are actually executed in the environment con-
currently with the Esterel program. The only thing we are interested in
is when external tasks start, when they terminate in Esterel sense, and
when they should be suspended or aborted by other Esterel statements.

Tasks are not limited to computationally intensive ones. They can also
be of a more physical nature. For instance, in Robotics, a task may be
“grasp this object”.

Tasks are declared in the data interface part of a module, see Section 4.3.

The exec Statement and the Return Signals

The statement that executes a task is the exec statement. It has the form

exec TASK (reference-params) (value-params) return R

where R is called the return signal. A return signal is a special input signal
declared using the return keyword instead of the input keyword in the
module signal interface:

return R1;

return R2 : integer;

return R3 : combine FOO with F;

Notice that a return signal can have a value as any input signal. Return
signals can also appear in exclusion or implication relations together with
input signals, see Section 4.4.4. Like any other input signal, a return signal
can be tested for presence or awaited concurrently with the task execution.
The use of this feature will be explained in Section 4.7.17. Unlike a standard
input, a return signal cannot be internally emitted by the program.

76 CHAPTER 4. A TOUR OF ESTEREL

External Task Execution

When an “exec T return R” statement starts, it signals to its environment
that a fresh instance of the task T should start with parameters passed by
reference and value just as for procedures. The signaling is instantaneous.
The Esterel program does not wait for the task and continues reacting au-
tonomously. More precisely, the thread that has started the exec statements
waits for task completion, but the other threads continue reacting to inputs.
In some instant in the strict future of the starting instant, the environment
signals back task completion to the Esterel program by sending the return
signal R. Within the Esterel program, receiving R provokes instantaneous
update of reference arguments according to the values returned by the task
and instantaneous termination of the exec statement.

During its execution, an exec statement can be suspended or aborted.
This is signaled to the external task by sending appropriate suspension and
abortion signals.

The task launching and signaling implementation mechanism entirely
depends on the compiler and run-time system. The only implementation
constraint is to respect the Esterel logical view.

Uniqueness of Return Signals

One may have several exec statements for a given task T; therefore, one may
also have different concurrent instances of the same task in the environment.
The return signal is used to tell the Esterel program which instance has
terminated. For this to be possible, return signals must uniquely identify
exec statements. Hence, we impose the following restriction:

No two exec statements in a program can have the same return
signal.

This condition must be verified after submodule expansion. Uniqueness of
return signals may call for explicit renaming at submodule instantiation
time:

module OneTask :
task TASK (integer) (integer);
return R;
var X := 0 : integer in

exec TASK(X)(1) return R
end var
end module

4.7. STATEMENTS 77

module TwoTasks :
return R1, R2;

run Task1 / OneTask [signal R1 / R]
||

run Task2 / OneTask [signal R2 / R]
end module

Abortion of exec Statements

As any other Esterel statement, an exec statement is subject to abortion
by abort, weak abort, or trap statements and to suspension by suspend
statements. The simplest case of abortion is the weak one. Consider the
example:

weak abort
exec TASK (X) (1) return R;

when I

In the first instant, the task is started. Then, the behavior is as follows:

• If R occurs before I or if R and I occur simultaneously, then X is
updated and the whole weak abort statement terminates.

• If I occurs before R, then execution of TASK is aborted and the external
task is aborted. There is no update of X.

Strong abortion is a little bit more delicate. Consider the example:

abort
exec TASK (X) (1) return R;

when I

After starting the task in the first instant, the behavior is as follows:

• If R occurs before I, then X is updated and the whole abort statement
terminates.

• If I occurs before R, then execution of TASK is aborted and the external
task is aborted. There is no update of X.

• If I and R occur simultaneously, then the abort statement terminates.
Although the task did terminate, X is not updated since the body of
the abort statement does not receive control. No abort signal is sent
to the task either since it is terminated.

78 CHAPTER 4. A TOUR OF ESTEREL

Notice the subtle difference between weak abortion by weak abort or exit
and strong abortion by abort in the case where R and I are simultaneous:
with strong abortion, update of reference variables is not performed, while
it is performed with weak abortion.

Suspension of exec Statements

Consider a program fragment of the form

suspend
exec TASK (X) () return R

when S

When S occurs after the starting instant, the exec statement is suspended.
This is signaled to the environment by sending an implementation-dependent
suspension signal. The signal is sent in every instant where the exec state-
ment is suspended.

Termination of the exec statement can occur only when that statement
is active. Assume that R and S occur simultaneously. Then, R does not
provoke termination of the exec statement and its occurrence is lost. It is
the environment’s responsibility to sustain R until the exec statement is not
suspended any more, which is easy using the abort and suspend signaling
mechanism.

If needed, it is easy for the execution environment to convert the suspen-
sion information available in each instant from the Esterel program into
a suspend-resume information that may be handier for operating systems.
See the Esterel v5 task execution library for examples.

Testing for the Return Signal

When an exec statement is strongly aborted, one may need to know if the
external task did terminate in the instant. This is easy using a present test
on the return signal:

abort
exec TASK (X) (1) return R

when I do
present R then ... else ... end present

end abort

The same can be done for suspension

4.7. STATEMENTS 79

suspend

exec TASK (X) () return R

when S

||

await R do ... end await

Multiple exec

The multiple exec statement makes it possible to control several tasks si-
multaneously. It resembles the “await. . .case” statement:

exec

case T1 (. . .) (. . .) return R1 do p1
case T2 (. . .) (. . .) return R2 do p2
. . .

case Tn (. . .) (. . .) return Rn do pn

end exec

Reference variables can be shared between the cases. As for the multiple
await statement, “do pi” can be omitted if pi is just nothing.

When a multiple exec statement starts, all tasks are started simulta-
neously and concurrently. Then, one waits for the return signals. When
at least one return signal occurs, the exec statement terminates instan-
taneously; in that instant, all non-terminated tasks are aborted, only one
reference argument update is performed, the one corresponding to the first
terminated case in the case list, and only the corresponding do continuation
is taken. In case of abortion, all tasks are aborted simultaneously. In case
of suspension, all tasks are suspended simultaneously.

A typical use of the multiple exec statement is to try several ways to per-
form a given computation in parallel, stopping when the first computation
is done:

exec

case InvertMethod1 (Matrix) () return R1

case InvertMethod2 (Matrix) () return R2

case InvertMethod3 (Matrix) () return R3

end exec

All necessary bookkeeping is nicely performed by the Esterel compiler.

80 CHAPTER 4. A TOUR OF ESTEREL

Immediate Restart of an exec Statement

An exec statement may be aborted and restarted immediately. Consider
for instance

loop
exec TASK (X) (1) return R;

each I

If I occurs before task completion, the Esterel program signals to the
environment that the current instance of TASK should be aborted and that
a fresh instance should be started right away.

A slightly more difficult situation appears in the following somewhat
artificial program fragment borrowed from [9]:

loop
trap T1 in

loop
trap T2 in

exec TASK (X) (1) return R
||

await I do exit T2 end
end trap

end loop
||

await I do exit T1 end
end trap

end loop

In the first instant, a fresh instance of TASK is started. Then, if I occurs
before R, the following happens instantaneously: the inner trap T2 is exited
and an abort information is sent to the environment to abort the running
instance of TASK; the inner loop loops, and another TASK is restarted imme-
diately; however, the outer trap T1 is also exited, which implies that this
new instance of TASK is aborted right away; since the “trap T1” statement
terminates, the outer loop loops, and yet another instance of TASK is started,
this time in a for-real way.

In such an intricate behavior, the intermediate launching of TASK by the
inner loop does not provoke any signaling to the environment, the task being
simply considered as stillborn by Esterel. Only the aborting of the current
instance and the starting of the last instance are signaled.

Because of this special handling of stillborn tasks, we can guarantee the
following property:

4.7. STATEMENTS 81

In any instant, at most two instances of a task launched by a
given exec statement can be active. The only possibility to have
two instances active at the same time is when an already active
and not yet terminated instance is aborted, while a fresh instance
is started. In Esterel, this means that the exec statement is
aborted and is instantaneously restarted.

82 CHAPTER 4. A TOUR OF ESTEREL

Chapter 5

Constructive Causality

The availability of instantaneous broadcasting and control transmission makes
it possible to write syntactically correct but semantically non-sensical pro-
grams. The constructive semantics mathematically described in [9] char-
acterizes sensible Esterel programs. It is the reference semantics of the
language. In this chapter, we briefly present constructive correctness in
terms of the intuitive operational semantics of Esterel programs, referring
to [9] for the mathematical definition. Most of the examples already ap-
peared in [9] and we keep the same names for them here. We also discuss
the acyclicity condition that automatically guarantees constructiveness and
is very easy to check at compile-time, unlike proper constructiveness.

Users should remember that many causality problems can now be solved
by adding pre status or value operators at the right place, which makes
causality issues much simpler than in previous versions.

5.1 Cyclic and Acyclic Programs

5.1.1 Non-Reactive and Non-Deterministic Programs

In our class of application, reactivity and determinism are the minimal re-
quirements a program should obey. A program is reactive if it provides a
well-defined output for each input. A program is deterministic if it produces
only one output for each input.

Here is the simplest example of a non-reactive program:

module P3:
output O;
present O else emit O end
end module

83

84 CHAPTER 5. CONSTRUCTIVE CAUSALITY

Broadcasting means that a signal is present if and only if it is emitted.
Here, O cannot be present, otherwise it would not be emitted and there-
fore absent; it cannot be absent either, otherwise it would be emitted and
therefore present.

Here is the simplest example of a reactive non-deterministic program:

module P4:
output O;
present O then emit O end
end module

Here, O present can be seen as valid since it is justified by the emission of O,
and O absent can also be seen as valid because it implies non-emission of O.

5.1.2 Signal Dependency Cycles

Both examples involve an instantaneous dependency cycle between O and
itself. Similar examples can be constructed from dependency cycles between
two signals O1 and O2. Here is one:

module P5:
output O1, O2;

present O1 then emit O2 end
||

present O2 else emit O1 end
end module

Dependency cycles can easily be constructed for signal values. Consider
again the wrong COUNT example of Section 3.3:

module BAD_COUNT:
input I;
output COUNT := 0 : integer;
every I do

emit COUNT(?COUNT+1)
end every
end module

The programmer’s intention is clear: emit COUNT(n) at the n.-th occur-
rence of I. However, the program makes no sense. Let us call c the value
of COUNT. By definition of broadcasting, c must satisfy the equation c =
c + 1, which is impossible. The right way to write this program is to write
“emit COUNT(pre(?COUNT) + 1)” or to use an auxiliary variable, as ex-
plained in Section 3.3.

5.1. CYCLIC AND ACYCLIC PROGRAMS 85

5.1.3 Acyclic Programs

The problems we mentioned are generally called causality problems. They
resemble deadlocks in asynchronous languages, and they are indeed “instan-
taneous deadlocks”. To avoid them, most synchronous languages require
signal dependency to be acyclic. In this case, it is obvious that any signal
has one and only one status and one and only one value, i.e. that programs
are reactive and deterministic.

Acyclicity is very easy to check and it is also quite natural in data-
flow programs or in electronic circuits. Often, a program is cyclic instead
of acyclic simply because some pre operator is missing, pre and pre(?S)
cutting all instantaneous cycles as do all delay operators in all formalisms.
Considering P3 above, the programmer’ intention was probably to toggle
between presence and absence of O. Turning P3 into an acyclic program is
easy using pre:

module P3OK:

output O;

present pre(O) else emit O end

end module

Similarly, the BAD COUNT program above is made correct by changing ?COUNT
into pre(?COUNT); If you encounter an unintentional cycle, first check that
you did not forget a pre or a pre(?S).

5.1.4 Correct Cyclic Programs

However, acyclicity has been considered by Esterel users as being too
restrictive a condition. Consider the following programs:

module P13:

input I;

output O1, O2;

present I then

present O2 then emit O1 end

else

present O1 then emit O2 end

end present

end module

86 CHAPTER 5. CONSTRUCTIVE CAUSALITY

module P14:
output O1, O2;
present O1 then emit O2 end;
pause;
present O2 then emit O1 end
end module

In both P13 and P14, there is a static cyclic dependency between O1 and O2.
However, for both programs, it is clear that the cycle is a false one and that
everything goes well at run-time. In P13, only one branch of the test can be
taken at a time, according to the externally defined status of I. In P14, the
dependency from O1 to O2 is valid in the first instant only while the reciprocal
dependency is valid in the second instant only. The imperative syntax of
Esterel makes the correctness of P13 and P14 obvious, which would not
be true of their data-flow counterparts. The more practical example of a
cyclic symmetrical bus arbiter will be presented in Section 5.2.7.

5.2 Constructiveness in Esterel

5.2.1 Logical Correctness

At first glance, it appears natural to simply require programs to be reactive
and deterministic. This is what we call logical correctness. Logical correct-
ness fits reasonably well with data-flow languages [34], but not with the
imperative style of Esterel. Consider the following example:

module P9:
output O1, O2;

present O1 then emit O1 end
||

present [O1 and not O2] then emit O2 end
end module

Surprisingly enough, P9 is logically correct, with unique behavior O1 and O2
absent. Indeed, this hypothesis self justifies: O1 absent implies non-emission
of O1 and non-emission of O2, which is consistent with the assumption. We
leave it to the reader to check that no other hypothesis is consistent. The
problem is that self-justification does not fit with the standard control prop-
agation intuition of imperative language, where the evaluation of a test
should precede the evaluation of its branches, at least in a causal sense.

Another interesting example is the Esterel analogue of the Boolean
equation “O = O and not O”:

5.2. CONSTRUCTIVENESS IN ESTEREL 87

module P12:
output O;
present O then emit O else emit O end
end module

Here, O present is justified by O emitted and O absent is not justified since O
would be emitted. Once more, the program is logically correct by self-
justification, the flow of control going backwards from the then part to the
test.

5.2.2 Constructiveness

The idea of the constructive semantics is to forbid self-justification and
any kind of speculative reasoning, replacing them by pedestrian fact-to-fact
propagation. Ignore values and signal expressions for a while, concentrating
on pure signal tests of the form “present S”. We use a three-valued logic
for signals, where the status of a signal is present, absent, or unknown. In
each instant, the statuses of the input signals are given by the environment
and the statuses of the other signals are initially set to unknown. The only
inferences we can perform are as follows:

1. An unknown signal can be set present if it is emitted.

2. An unknown signal can be set absent if no emitter can emit it.

3. The then branch of a test can be executed if the test is executed and
the signal is present.

4. The else branch of a test can be executed if the test is executed and
the signal is absent.

5. The then branch of a test cannot be executed if the signal is absent.

6. The else branch of a test cannot be executed if the signal is present.

The rules forbid speculative execution, since (3) and (4) can be applied
only if it is already known that the present statement must be executed.
The rules allow us to prune false paths, since (5) and (6) can be applied
anywhere, see example P2 below.The precise mathematical rules are given
in [9].

We say that a program is constructive if the status of each local or output
signal can be determined using these rules; it is then determined in a unique
way. Let us work through an acyclic example:

88 CHAPTER 5. CONSTRUCTIVE CAUSALITY

module P1:
input I;
output O;
signal S1, S2 in

present I then emit S1 end
||

present S1 else emit S2 end
||

present S2 then emit O end
end signal

We start with status unknown for S1, S2, and O. Assume I is present. Then,
the first test takes its then branch and emits S1, which sets S1 present. The
second test can proceed by terminating, which implies that S2 cannot be
emitted since its only emitter has been discarded. Therefore, S2 can be set
absent. Finally, the third present statement can proceed and terminate.
Since the “emit O” statement is discarded, O can be set absent. Conversely,
assume I absent. Then S1 cannot be emitted and is set absent, which trig-
gers emission of S2, which itself triggers emission of O. Notice that present
tests are locked until the status of the signal they test becomes known.

Well-behaved cyclic programs are handled without much difficulty. For
example, in P13 above, if I is present, then the emitter of O1 is discarded
by rule (6), O1 is set absent, the first present test terminates and discards
“emit O2”, and O2 is set absent. Here is a more sophisticated example:

module P2:
output O;
signal S in

emit S;
present O then

present S then
pause

end present;
emit O

end present
end signal
end module

In P2, S is emitted and set present before the control reaches the test for O.
Execution cannot proceed since the status of O is unknown. However, we can
perform false path pruning using rule (6) and infer that the implicit else

5.2. CONSTRUCTIVENESS IN ESTEREL 89

branch of the “present S” statement cannot be executed. Therefore, the
“emit O” statement cannot be reached instantaneously because the then
branch of the “present S” cannot terminate instantaneously, which implies
that O can be set absent since it has no other emitter.

Logically incorrect programs are easily rejected. For example, in P3
or P4, there is no way to make any progress from the unknown state. Logi-
cally correct programs that require self-justification or speculative computa-
tion are rejected as well. For example, in P12, the two “emit O” statements
can neither be executed nor be discarded from the initial unknown status
of O1.

When a signal has several simultaneous incarnations, each of them must
be handled independently. In practice, it is sufficient to reset the status to
unknown when entering the signal declaration.

5.2.3 Constructiveness and Preemption

Preemption statements are easily handled, noticing that they behave just as
tests for the guard in each instant where the guard is active. For example,
the following program is not constructive:

module P3bis:
output O;
abort

sustain O
when O

In the first instant, the guard is inactive and O is emitted. In the second
instant, the guard becomes active, and it must be tested before the body
is executed, in the constructive order. The body is neither found to be
executed nor to be discarded, and the program is non-constructive. In the
second instant, the program’s body just behaves as

module P3ter:
present O else

sustain O
end present

1In [54, 55], we prove that an electronic circuit that implements the Boolean equation
“O = O or not O” indeed behaves in a constructive way rather than in a logical one. For
some wire and gate delays, the output voltage won’t stabilize. We show that constructive-
ness is the logical counterpart of delay-independent electrical stabilization, which gives
strong physical roots to the constructive semantics.

90 CHAPTER 5. CONSTRUCTIVE CAUSALITY

which is a variant of P3. If abort is replaced by weak abort, the problem
disappears, since in the second instant the statement behaves as

module P3bisWeak :
trap T in

present O then exit T end
||

sustain O
end trap

which is obviously constructive, emits O, and terminates.

5.2.4 Constructiveness of Signal Expressions

Signal expressions are evaluated as follows in the constructive semantics:
“not e” evaluates to false if e evaluates to true and conversely; “e1 or e2”
evaluates to true as soon as one of e1 or e2 evaluates to true, even if the
other one is still unknown; it evaluates to false if both e1 and e2 evaluate to
false. The evaluation of “e1 and e2” is dual. Notice that the evaluation is
parallel: the evaluation of an expression does not require the evaluation of
all its subexpressions.

5.2.5 Constructiveness for Valued Signals

Consider now a valued signal S. The most general case is that of a combined
signal with combination function F. Since each emitter can contribute to a
part of the final combined value, that value is known only when all emitters
are either executed or discarded. Unlike the computation of the status that
succeeds as soon as one emitter emits, the computation of the value cannot
be lazy.

A reader of the value is an expression ‘?S’. The expression must lock the
control until the value is defined. All data operators are strict, i.e. must
evaluate all their arguments before giving their result. This is an important
difference between pure and valued signals. Let X and Y be two Boolean-
valued signals. For the status test

present [X or Y] then p else q end

the statement p is executed as soon as one of X or Y is emitted. For the
value test

if ?X or ?Y then p else q end

5.2. CONSTRUCTIVENESS IN ESTEREL 91

the statement p is executed if one of ?X or ?Y is true, but only after the
status of both X and Y is known2.

Value handling combines nicely with status handling. A statement such
as “emit S(2)” should be thought of as a sequence “emit S; ?S:=2” (this
for a single signal; one should invoke the combination function for a com-
bined signal). Consider the following toy example:

module OK :
output O1 : integer, O2: integer;

emit O1(?O2)
||

present O1 then emit O2(1) end
end module

This program is constructively correct, and both O1 and O2 are emitted with
value 1. The constructive reasoning is as follows: The “emit O1” statement
in the first branch is executed, hence, O1 is present, but its value is still
unknown. Since O1 is present, the then branch of the present statement
is executed, and O2 is emitted with value 1. From then on, the value ?O2
becomes readable, and the value of O1 is determined to be 1.

5.2.6 Constructiveness and Side-Effects

The constructive analysis determines the ordering in which statements will
be executed for each state and each input. This ordering also determines in
which order side-effecting host-language procedures are called. Consider for
example the program

signal S1, S2 in
present I then emit S1 else emit S2

||
present S1 then

call P1 () ();
emit S2

end present
||

present S2 then
call P2 () ();

2In the Esterel v5 C translator, the Boolean or value operator is implemented by the
C ‘|’ operator that evaluates both its arguments. It is impossible to define a disjunction
operator that returns 1 as soon as one of its arguments is 1 in any sequential language
such as C, see [12]. Statuses are handled in a very different way.

92 CHAPTER 5. CONSTRUCTIVE CAUSALITY

emit S1
end present

end signal

In this example, it is guaranteed that P1 is called before P2 if I is present
and that P2 is called before P1 if I is absent. For example, with I present,
we must emit S1 and call P1 before emitting S2 that provokes the call to P2.

Generally speaking, any control dependency between calls is respected:
in “call P1()(); call P2()()”, the call to P1 always precedes the call to
P2. Concurrent calls can be ordered by signal dependencies, as in the above
example. If there is no control dependency and no signal dependency, as in
“call P1()() || call P2()”, the order is unspecified and it would be an
error to rely on it.

5.2.7 Constructiveness vs. Acyclicity

Although compile-time constructiveness analysis is available, acyclic pro-
grams should be preferred whenever possible, since their compilation is much
faster and generally more efficient. However, we mentioned that cyclic pro-
grams can be more natural. Let us show the example of a symmetric bus
arbitration mechanism3.

The bus is a ring on which a bunch of identical stations are hooked. In
each instant, the user of the bus can request the bus and he can obtain it
or not. A priority mechanism arbitrates simultaneous requests. A token
defines the current initial station. At any time, the bus is granted to the
first station that asks for it, starting from the initial station in clockwise
order. To obtain fairness, the token is moved to the next station in each
instant, so that each station is the initial one in turn.

3Thanks to R. de Simone for the example.

5.2. CONSTRUCTIVENESS IN ESTEREL 93

The Esterel code of one station is

module STATION :
input Request; % from user
output Granted; % to user
input PreviousPassed; % from previous station
output Pass; % to next station
input Token; % from previous station
output PassToken; % to next station

loop
present [Token or PreviousPassed] then

present Request then
emit Granted

else
emit Pass

end present
end present

each tick
||

loop
present Token then

await tick;
emit PassToken

else
await tick

end present
end loop

end module

A bus with three stations is programmed in Figure 5.1.
The Pass1, Pass2, and Pass3 signals form a static dependency cycle.

At any time, the cycle is dynamically cut at the station that possesses the
token. This is easily found by the constructive reasoning, that figures out in
which order things must be done in each state. However, there is no uniform
order in which to do things.

94 CHAPTER 5. CONSTRUCTIVE CAUSALITY

module BUS :
input Request1, Request2, Request3;
output Granted1, Granted2, Granted3;
signal Pass1, Pass2, Pass3,

Token1, Token2, Token3
in

emit Token1
||

run Station1 /
STATION [signal Request1 / Request,

Granted1 / Granted,
Pass3 / PreviousPassed,
Pass1 / Pass,
Token1 / Token,
Token2 / PassToken]

||
run Station1 /

STATION [signal Request2 / Request,
Granted2 / Granted,
Pass1 / PreviousPassed,
Pass2 / Pass,
Token2 / Token,
Token3 / PassToken]

||
run Station1 /

STATION [signal Request3 / Request,
Granted3 / Granted,
Pass2 / PreviousPassed,
Pass3 / Pass,
Token3 / Token,
Token1 / PassToken]

end signal
end module

Figure 5.1: The 3-stations BUS program

5.2. CONSTRUCTIVENESS IN ESTEREL 95

Finally, notice that dependencies can be somewhat hidden, since circuit
generation from Esterel programs is non-trivial. Here is an example

trap T in
loop

emit O
each A

||
await I;
exit T

end;
emit B

Unexpectedly, that statement builds a dependency from A to B, which may
cause a cycle if the reverse dependency exists somewhere else. Understand-
ing why unfortunately requires understanding the circuit translation pre-
sented in [9]4. Nevertheless, if the program is constructive, the Esterel v5

compiler will compile it correctly using the full constructiveness analysis.

4Since it always pauses, the first branch always returns termination code 1 to the
parallel, and the wire that carries this information depends on A. The second branch has
a wire for exit T that enters the parallel synchronizer at code 2. The two wires join at
the synchronizer and gate at code 2. The wire sourced at this gate reaches the emit B

statement, hence the dependency.

96 CHAPTER 5. CONSTRUCTIVE CAUSALITY

Chapter 6

Reflection on Perfect
Synchrony

We end this primer by a reflection on the zero-delay or perfectly synchronous
model on which Esterel and the other synchronous languages are based.
We discuss two essential questions: why the model is needed, and how it
relates to practical hardware or software implementation.

Our experience has shown that the reaction of users to the synchronous
model varies greatly according to their background. Users trained to con-
trol theory find the model standard. Users trained to digital circuit design
already know it. Users of cycle-based programmable controllers use it im-
plicitly or explicitly. Users trained to classical concurrent programming
languages or process calculi may find the model very puzzling. We hope
that the discussion will help making things clear for most users.

We start by discussing the two kinds of models we need for Esterel:
the idealized zero-delay model and the delay-based low-level implementa-
tion models. We discuss the relations between these two kinds of models,
first in general and then in the particular cases of hardware and software
implementations of Esterel.

6.1 Reactive Programming Models

6.1.1 The Qualities of a Model

Any programming model is a compromise between various conflicting re-
quirements. A model must be simple and intuitive to help the user under-
standing and solving his problem in the simplest and neatest possible way.

97

98 CHAPTER 6. REFLECTION ON PERFECT SYNCHRONY

A model must be accurate enough to describe the physical reality one deals
with in a sensible way. A model must be mathematically efficient to be
useful for defining the semantics of programs and for performing program
analysis, optimization, and verification. Finally, a model must be general
enough to cope with different ways of realizing systems in software, hard-
ware, or mixed architectures that obey different execution logics. Because of
the tension between these requirements, it may be necessary to use several
models corresponding to several levels of abstraction.

Notice that we use the word mathematical instead of the more usual word
formal . It is now clear to most language designers and users that language
semantics should be formally defined. However, almost anything can be for-
malized with enough sweat and enough Greek letters and funny symbols.
We go a step further and claim that semantics should be mathematically
relevant to be of any real use. What really matters in mathematical seman-
tics is that the objects and object combinations obey deep combinatorial
and algebraic properties.

6.1.2 The Models of Esterel

For Esterel, we use two basic kinds of models.

• The semantics of programs is given in the logical synchronous or zero-
delay model. We deal with sentences such as “A occurs” or “control
goes to p”, explaining why things happen but neglecting how they are
actually realized. In particular, we neglect the time it takes to emit
signals or to propagate the control. The programmer is encouraged
to think about the behavior the program he or she writes in that
logical way. The underlying mathematical theories are the Theory of
Automata and the Boolean calculus1, which are very powerful and
very well-studied. See [9] for mathematical details.

• To build real systems, which is our actual goal, we move to more
detailed hardware or software implementation models. The signal A
can be implemented by a bit in memory, an interrupt, a voltage, the
sampling of a continuous signal, or whatever is available. Control
propagation can be realized by propagating electrical signals in a cir-
cuit or by chaining assembly instructions in a CPU. At this level, one
may have to deal with a rather wide variety of physically accurate but
mathematically very difficult models.

1or more exactly its constructive version, which does not matter here

6.1. REACTIVE PROGRAMMING MODELS 99

The translation from the logical model to the various implementation models
is performed by the compiler and the optimizers.

Our approach is based on the standard principle of separation of con-
cerns. First, write the program at the logical level and make use of all the
mathematics available there. Then, implement the program using the best
available automatic synthesis tools, and check that the result is practically
OK.

6.1.3 Inter-Model Consistency

A key practical issue is to check that a physical implementation is consis-
tent with a specification and a set of additional realization constraints. For
Esterel-like languages, one must often check that actual reaction times
are consistent with real-time implementation constraints. Timing analysis
heavily depends on the target implementation model. It is relatively easy
for hardware implementation, since circuit reaction times are computed by
CAD tools. Accurate timing analysis is much harder for software implemen-
tation, especially for RISC processors because of cache misses and pipeline
stalls. However, that problem is not particular to Esterel. Even hand-
written assembly programs are hard to predict. The only things we propose
for Esterel are to develop good optimizers and to use any analysis tool
available for the generated circuits and or software codes.

6.1.4 High-Level vs. Low-Level Programming Models

Because they constantly care for performance, many reactive programmers
tend to discard high-level languages and to work at once within fine-grain
real-time models of gates or assembly statements. However, such detailed
models are most often mathematically too intricate to be of any practi-
cal efficiency, they tend to make programs hard to understand, and they
compromise portability. Furthermore, the automata and Boolean algebra
techniques are inaccessible to such models, which makes automatic program
analysis, verification, and optimization much harder. The end result can
actually be loss of efficiency, since automatic techniques based on high-level
source code can actually generate more efficient object codes than manual
techniques (see for example [43]).

A comparison with mechanics is useful at this point. Consider the prob-
lem of computing planet trajectories. In a very detailed approach, one
considers planets as being made of atoms themselves made of elementary
particles with mass and charge and obeying the laws of quantum mechanics.

100 CHAPTER 6. REFLECTION ON PERFECT SYNCHRONY

In the gross Newtonian approach, one considers planets as perfect spheres
or even as points attracting each other in function of their masses and posi-
tions, and there is no propagation delay for gravity. The first model is more
accurate, but it is useless since it makes it totally impossible to compute
trajectories. The second model is grossly idealized but it has more math-
ematical power and it makes the computation possible, with a reasonable
estimate of the error. The gross model is in fact more efficient than the fine
one for most practical uses. Similarly, for reactive programs, it may be a
mistake to work within a fine-grain model unless this is strictly necessary.
Similarly, our gross approach will not be able to solve all the problems, but
it may well make 90% of them much simpler.

6.2 Logical Time vs. real Time

We now explain in more details why we stick to a purely logical notion of
time at Esterel level. The clearest fact about a reactive system is that
there is an alternation between environment moves and program moves, like
in a two-players game. The environment chooses the inputs of the program,
the program replies by computing the outputs. The game is asymmetrical
in the sense that the environment drives it by choosing the inputs and the
timing. The reactive program is in a slave position and it must be always
ready to accept any input. Therefore, the global input can be characterized
as being an environment-provided sequence of input events. Since we are
interested in discrete systems, the sequence is a discrete one and the events
can be indexed by successive integers called logical instants. In this setting,
it is natural to consider an event as defining the status and value of each
input signal, making it possible for signals to be simultaneous. For example,
all the bits of a bus are received simultaneously by the bus clients. Input
relations can be used to restrict simultaneity if needed.

Formally, logical instants can be represented by integers n ∈ N . The
equality n′ = n + 1 means that instant n immediately follows instant n′,
and n′ > n means that n′ is in the strict future of n. A pure signal S
generates a sequence of statuses Sn, a valued signal additionally generating
a sequence of values ?Sn.

Should we place logical instants on a real-time axis, defining the actual
“physical time” t(n) of the instant n? This natural temptation should be
taken with care. Is that useful for all applications? Yes for many real-time
programs, no for simple man-machine interface drivers. What does it bring
in terms of power? The relation with continuous control theory for control

6.2. LOGICAL TIME VS. REAL TIME 101

programs or with sampling theory for signal processing, the relation with
actual timing delays in telecommunication or systems drivers, nothing for
many other untimed reactive applications. Does real-time indexing bring un-
expected annoying consequences? Yes, Zeno behavior being a good example
(a Zeno behavior occurs when an infinite sequence of discrete events occurs
within a finite amount of physical time). Since it makes the formalism heav-
ier without necessarily adding power, real-time should be introduced only if
necessary for the application and it should not be a mandatory part of the
model.

When are the outputs generated by the reactive program? In the logical
view, there is no problem. The output corresponding to the input event In
receives the same index and is called On. From within the programs, the
signals in In and the signals in On can be equally tested for presence or
absence, as well as the local signals used within the program. There is no
logical delay in generating the output. In a real-time model, the question is
more delicate and one may adopt two main points of view:

• The perfectly synchronous point of view asserts that On occurs at
time t(n) if In occurs at time t(n), thus neglecting the computation
time. This is what mathematicians do when they write xt = yt + zt in
control equations. In that case, the real number t(n) is of no use.

• The delay point of view asserts that On occurs at some time t′(n) >
t(n), with the constraint t′(n) < t(n + 1) for the reactive system to
behave properly. An additional bounded delay property asserting the
existence of a maximum delay δ such that t′(n) − t(n) < δ for all n
may be additionally required.

Clearly, the first point of view corresponds to Newtonian mechanics. It is
the simplest one and also the mathematically most efficient one. It gives
the clearest semantics to programs: in the SPEED program of Section 3.4,
the value of the Speed signal is exactly the speed according to mathematics,
which would not be true in the delay approach. Therefore, the logical model
with only integer indices is the one of choice for reasoning about program
behavior.

Conversely, the delay approach closely corresponds to generated code
analysis. The favorable case is when the maximal delay d can be computed
for a given implementation. In that case, if d makes us happy, there is no
reason to worry and the synchronous model is as good an approximation
as Newtonian mechanics is for planets. Otherwise, we are in trouble, and
implementation must be improved. Of course, the value d depends more on

102 CHAPTER 6. REFLECTION ON PERFECT SYNCHRONY

Figure 6.1: Circuit gates

the implementation target than on the source program and is hard to deal
with. This is why it should not be introduced early in the program design.

6.3 Implementation by Sequential Circuits

We now briefly analyze the logical and delay models for digital sequential
circuits. In [9], we show how to translate an Esterel program into a se-
quential circuit. This translation is currently the basis of both the hardware
and the software implementation of Esterel.

A sequential circuit is a graph of gates, drawn using conventional symbols
pictured in Figure 6.1. One usually divides a circuit into a combinational
part and a register part. The combinational part has and, or, and not gates.
The register part contains elementary delay elements called registers. An
example is pictured in Figure 6.2.

6.3.1 The Logical View of Circuits

In the zero-delay logical view of circuits, wires are Boolean variables and
gates define Boolean equations to be solved given the current input and
the current state of registers. Initially, the registers all have value 0. If
inputs are given, the outputs variables of the combinational part determine
the Boolean primary outputs and the values to be fed into the registers for
next input. Like in Esterel, one solves equations without caring about
physical time. If the combinational part has no cycle, then it is obvious
that the Boolean outputs and next register state are uniquely determined

6.3. IMPLEMENTATION BY SEQUENTIAL CIRCUITS 103

X = A and S

Y = not Z

Z = A or R

R = reg(Z)
S = reg(X)

Figure 6.2: A sequential circuit

by the inputs and current register state. For circuits with combinational
cycles, outputs may not always be well-determined; the constructive logic
propagation theory presented in [41, 9, 54] characterizes logically sensible
(delay-independent) cyclic circuits, which exactly corresponds to construc-
tive Esterel programs.

6.3.2 The Electrical View of Circuits

In the electrical view of circuits, we use a simple but reasonably accurate
model called the up-bounded inertial delay model by J. Brzozowski. More
sophisticated electrical models won’t deeply modify the picture.

Wires can take values 0 (or 0 Volt) and 1 (or 5 Volt) at any real time t.
A wire can switch instantaneously from 0 to 1 or conversely. A gate has a
delay δ with the following properties:

• There is no spontaneous output switch: if the output switches at
time t, then at least one input must have switched between time t− δ
and time t.

• Gates switch according to their Boolean meanings: if all gate inputs

104 CHAPTER 6. REFLECTION ON PERFECT SYNCHRONY

Figure 6.3: Retiming sequential circuits

are kept stable to Boolean values between time t− δ and time t, then
the output becomes stable at time t and its value is the one determined
by the gate’s Boolean function.

Delays can also be put on wires. Notice that short transient input switches
may or may not show up at a gate output.

Registers are driven by a global clock, which is a signal that alternates
between 0 and 1. A clock front time t, the register output is set to the
current register input and it remains stable up to the next clock front.

Consider an acyclic combinational part. It the input and register wires
are kept stable, then, after some input-independent bounded time, the out-
puts are guaranteed to be stable. The bound is obviously determined by
the longest path delay from combinational inputs to combinational outputs,
delays summing up along paths. Call d the bound. Considering now the reg-
isters, we require to use the circuit as follows: keep the inputs stable within
each clock period, and ensure that the clock period is greater than d. Then
the output and register new state wires are guaranteed to be stable at each
clock front. At that time, the outputs can be sampled by the environment
and the registers get updated. Notice that there is no need for the clock to
be regular.

6.3.3 Connecting the Logical and Electrical Views

The connection between the logical and electrical models is simple: the
circuit electrically computes the logical Boolean results in at most one clock
cycle. This is not zero-delay, but the maximal reaction delay d can be
measured and we can verify whether it makes us happy or not 2.

The delay d does not solely depend on the specification, for there are lots
of ways to implement a Boolean circuit specification. At the zero-delay level,
combinational optimization can be used to replace the original combinational

2The result extends to circuits having a cyclic combinational part, as explained in
[9, 54]: electrical stabilization is equivalent to solvability in Constructive Boolean Logic.

6.4. SOFTWARE IMPLEMENTATION 105

Figure 6.4: Cyclic reactive software

equations by equivalent but more efficient ones [53]. Sequential optimization
can be used to improve the state encoding in registers [51, 52, 53]. At
the electrical level, technology mapping makes it possible to use various
electronic gate structures to realize different speed/area/power tradeoffs,
and lots of target physical electronic technologies are available. Retiming
[40] is a logical transformation with interesting electrical consequences. For
instance, although the circuits pictured in Figure 6.3 have the same behavior,
the one on the right is electrically preferable since its output is ready at the
beginning of the clock cycle (it is truly zero-delay).

To summarize things, with the modern view of electronic circuit de-
sign, implementation issues are largely decoupled from specification issues.
Because of the power of Boolean simplification techniques, the zero-delay
model has become the model of choice to design synchronous circuits, and
automatic synthesis is becoming the technique of choice for actual circuit
implementation.

6.4 Software Implementation

Software implementation of reactive programs relies on the same basic prin-
ciples as hardware implementation, but the details differ since event handling
is usually not done in the same way in software. The primary idea is still
that of cycle-based computation, pictured in Figure 6.4. A cycle consists in
an input step, a reaction step, and an output step. Input can be performed
in several ways, e.g., interrupt handling, polling and event sampling, shared
memory reading, etc.

In the Esterel v5 C generated code, interfacing the generated code
is done by calling automatically generated input and reaction functions.
The input of a signal A to a module M is performed by calling a generated
input function called M I A(). Calling this function only sets one status bit

106 CHAPTER 6. REFLECTION ON PERFECT SYNCHRONY

and stores the value in a temporary location for valued signals, which is
very fast. Setting simultaneous inputs simply consists in calling their input
functions in any order. The reaction of M to the input event consisting of the
input signals received so far is performed by calling a generated C function
called M(). The reaction updates the value store and the state, and it calls
a user-supplied output function called M O X() for each emitted signal X.
For example, assume we want to trigger a reaction with two inputs A and B
present. We execute the following C code:

M_I_A();
M_I_B();
M();

If X is emitted by the reaction, the function M() will call an output func-
tion M O X() we have to supply.

The reaction is subject to an essential atomicity condition: during the
execution of the main reaction function M(), it is forbidden to call any input
function. This is the software counterpart to the hardware requirement that
input voltages must be kept stable during a clock cycle.

As for hardware, there is lots of freedom for code generation. The Es-

terel v5 compiler can generate straight-line code implementing a sorted
system of Boolean equations (default option), automata tables (-A option),
etc. Different code structures correspond to different time/space tradeoffs.
There is no obligation to implement the program in a way that resembles
its logical structure. Unlike in conventional concurrent languages, writing
source code concurrent threads does not mean executing matching run-time
threads. The only thing that matters is preserving the behavior. As for cir-
cuits, the full power of Boolean calculus and automata theory can be used
to optimize the generated code. Some transformations can entirely remove
concurrency, i.e., perform scheduling at compile-time. Other can unravel
some form of concurrency not explicit in the source program and usable at
run-time. There is still an enormous potential of improvement in that area,
which is outside the scope of this primer.

Chapter 7

The Esterel Grammar

7.1 Syntax Notation

The context-free syntax of the language is described using a simple variant
of Backus-Naur-Form (BNF). In particular,

(i) Concatenated capitalized words are used to denote syntactic cate-
gories, for example:

Identifier
ExceptionHandler

The page reference of the description of a category can be found under
the “Grammar Summary” index entry.

(ii) Typewriter type style words or characters are used to denote reserved
words, delimiters or lexical elements of the language, other than iden-
tifiers. For example:

type TypeDeclList ;
Identifier => Identifier

(iii) Alternative items are on different lines. For example:

ConstantLiteral :
Identifier
true

false

StringConstant

107

108 CHAPTER 7. THE ESTEREL GRAMMAR

A single item can extend over many lines. In that case, additional
indentation is put on the lines following the first one. For example:

Abort :
weakopt abort Statement when DelayExpression
weakopt abort Statement when DelayExpression

do Statement end weakopt abortopt

weakopt abort Statement when
AbortCaseList
end weakopt abortopt

(iv) Optional items have opt written in subscript. Thus the two following
rules are equivalent:

AwaitCaseList :
AwaitCaseListopt AwaitCase

AwaitCaseList :
AwaitCase
AwaitCaseList AwaitCase

(vi) If the name of any syntactic category does not start with italicized
style, it is equivalent to the category name of the italicized part. The
unitalicized part is intended to convey some semantic information.
For example ModuleIdentifier or SignalIdentifier are both equivalent
to Identifier alone.

7.2 Modules

Module :

module ModuleIdentifier :
InterfaceDeclListopt

Statement
end moduleopt

7.3. INTERFACE DECLARATION 109

7.3 Interface Declaration

InterfaceDeclList :

InterfaceDeclListopt InterfaceDecls

InterfaceDecls :

TypeDecls

ConstantDecls

FunctionDecls

ProcedureDecls

TaskDecls

InterfaceSignalDecls

SensorDecls

RelationDecls

OutputDecls

7.3.1 Type Declarations

TypeDecls :

type TypeDeclList ;

TypeDeclList :

TypeDecl

TypeDeclList , TypeDecl

TypeDecl :

Identifier

7.3.2 Constant Declarations

ConstantDecls :

constant ConstantDeclList ;

110 CHAPTER 7. THE ESTEREL GRAMMAR

ConstantDeclList :

ConstantDecl

ConstantDeclList , ConstantDecl

ConstantDecl :

Identifier : TypeIdentifier

Identifier = ConstantAtom : TypeIdentifier

7.3.3 Function Declarations

FunctionDecls :

function FunctionDeclList ;

FunctionDeclList :

FunctionDecl

FunctionDeclList , FunctionDecl

FunctionDecl :

Identifier (TypeIdentifierListopt) : TypeIdentifier

IdentifierList :

Identifier

IdentifierList , Identifier

7.3.4 Procedure Declarations

ProcedureDecls :

procedure ProcedureDeclList ;

ProcedureDeclList :

ProcedureDecl

ProcedureDeclList , ProcedureDecl

ProcedureDecl :

Identifier (TypeIdentifierListopt) (TypeIdentifierListopt)

7.3. INTERFACE DECLARATION 111

7.3.5 Task Declarations

TaskDecls :

task TaskDeclList ;

TaskDeclList :

TaskDecl

TaskDeclList , TaskDecl

TaskDecl :

Identifier (TypeIdentifierListopt) (TypeIdentifierListopt)

7.3.6 Signal Declarations

InterfaceSignalDecls :

input SignalDeclList ;

output SignalDeclList ;

inputoutput SignalDeclList ;

return SignalDeclList ;

SignalDeclList :

SignalDecl

SignalDeclList , SignalDecl

SignalDecl :

Identifier

Identifier : ChannelType

Identifier := Expression : ChannelType

ChannelType :

TypeIdentifier

combine TypeIdentifier with FunctionIdentifier

combine TypeIdentifier with PredefinedCombineFunction

112 CHAPTER 7. THE ESTEREL GRAMMAR

PredefinedCombineFunction :

+

*

or

and

7.3.7 Sensor Declarations

SensorDecls :

sensor SensorDeclList ;

SensorDeclList :

SensorDecl

SensorDeclList , SensorDecl

SensorDecl :

Identifier : TypeIdentifier

7.3.8 Input Relation Declarations

RelationDecls :

relation RelationDeclList ;

RelationDeclList :

RelationDecl

RelationDeclList , RelationDecl

RelationDecl :

ImplicationDecl

ExclusionDecl

ImplicationDecl :

SignalIdentifier => SignalIdentifier

7.4. EXPRESSIONS 113

ExclusionDecl :

SignalIdentifier # SignalIdentifier

ExclusionDecl # SignalIdentifier

7.4 Expressions

7.4.1 Data Expressions

Expression :

Constant

(Expression)

? SignalIdentifier

pre(? SignalIdentifier)

?? ExceptionIdentifier

- Expression

Expression * Expression

Expression / Expression

Expression + Expression

Expression - Expression

Expression mod Expression

Expression = Expression

Expression <> Expression

Expression < Expression

Expression <= Expression

Expression > Expression

Expression >= Expression

not Expression

Expression and Expression

Expression or Expression

FunctionCall

114 CHAPTER 7. THE ESTEREL GRAMMAR

The precedence of operators is given below. Each line holds operators with
the same precedence. Operators in higher lines have higher precedence than
operators in lower lines. All operators are left-associative, except the minus
unary operator which is right-associative.

- (unary minus)

* / mod

+ -

= <> < <= > >=

not

and

or

Constant :

ConstantLiteral

UnsignedNumber

ConstantLiteral :

ConstantIdentifier

true

false

StringConstant

ConstantAtom :

ConstantLiteral

SignedNumber

SignedNumber :

UnsignedNumber

- UnsignedNumber

7.4. EXPRESSIONS 115

UnsignedNumber :

UnsignedIntegerConstant

UnsignedFloatConstant

UnsignedDoubleConstant

FunctionCall :

FunctionIdentifier (ExpressionListopt)

ExpressionList :

Expression

ExpressionList , Expression

7.4.2 Signal Expressions

SignalExpression :

SignalIdentifier

pre(SignalIdentifier)

not SignalExpression

SignalExpression and SignalExpression

SignalExpression or SignalExpression

(SignalExpression)

7.4.3 Delay Expressions

DelayExpression :

BracketedSignalExpression

immediate BracketedSignalExpression

Expression BracketedSignalExpression

BracketedSignalExpression :

SignalIdentifier

[SignalExpression]

116 CHAPTER 7. THE ESTEREL GRAMMAR

7.5 Statements

Statement :

Parallel

NonParallel

Parallel :

NonParallel || NonParallel

Parallel || NonParallel

NonParallel :

AtomicStatement

Sequence

Sequence :

SequenceWithoutTerminator ;opt

SequenceWithoutTerminator :

AtomicStatement ; AtomicStatement

SequenceWithoutTerminator ; AtomicStatement

Notice that sequencing has priority over parallelism. Notice also that we
make it possible to terminate a sequence by a trailing semicolon. This is to
(partly) conform with C programming style where ‘;’ is a terminator. It is
therefore possible to write “abort emit X; emit Y; when S”.

AtomicStatement :

nothing

pause

halt

Emit

Sustain

Assignment

ProcedureCall

Present

7.5. STATEMENTS 117

If

Loop

Repeat

Abort

Await

LoopEach

Every

Suspend

Trap

Exit

Exec

LocalVariableDecl

LocalSignalDecl

RunModule

[Statement]

7.5.1 Signal Emission

Emit :

emit SignalIdentifier

emit SignalIdentifier (Expression)

Sustain :

sustain SignalIdentifier

sustain SignalIdentifier (Expression)

7.5.2 Assignment and Procedure Call

Assignment :

VariableIdentifier := Expression

118 CHAPTER 7. THE ESTEREL GRAMMAR

ProcedureCall :

call ProcedureIdentifier (VariableIdentifierListopt)
(ExpressionListopt)

7.5.3 The present Signal Test

Present :

PresentThenElse

PresentCaseElse

PresentThenElse :

present PresentEvent ThenPartopt ElsePartopt end presentopt

PresentEvent :

SignalExpression

[SignalExpression]

ThenPart :

then Statement

ElsePart :

else Statement

PresentCaseElse :

present PresentCaseList ElsePartopt end presentopt

PresentCaseList :

PresentCase

PresentCaseList PresentCase

PresentCase :

case PresentEvent

case PresentEvent do Statement

7.5. STATEMENTS 119

7.5.4 The if Data Test

If :

if Expression ThenPartopt ElsifPartListopt ElsePartopt end ifopt

ElsifPartList :

Elsif

ElsifPartList Elsif

Elsif :

elsif Expression ThenPartopt

7.5.5 Looping

Loop :

loop Statement end loopopt

7.5.6 Repeat Loops

Repeat :

positiveopt repeat Expression times Statement end repeatopt

7.5.7 The abort Statements

Abort :

weakopt abort Statement when DelayExpression

weakopt abort Statement when DelayExpression
do Statement end weakopt abortopt

weakopt abort Statement when
AbortCaseList
end weakopt abortopt

AbortCaseList :

AbortCaseListopt AbortCase

120 CHAPTER 7. THE ESTEREL GRAMMAR

AbortCase :

case DelayExpression do Statement

case DelayExpression

A weak abort statement can be ended with either end weak abort, end abort,
or just end. An abort statement can only be ended with either end abort,
or end.

7.5.8 The await Statement

Await :

await DelayExpression

await DelayExpression do Statement end awaitopt

await AwaitCaseList end awaitopt

AwaitCaseList :

AwaitCaseListopt AwaitCase

AwaitCase :

case DelayExpression do Statement

case DelayExpression

7.5.9 Temporal Loops

LoopEach :

loop Statement each DelayExpression

Every :

every DelayExpression do Statement end everyopt

7.5.10 The suspend Statement

Suspend :

suspend Statement when DelayExpression

7.5. STATEMENTS 121

7.5.11 Traps

Trap :

trap ExceptionDeclList in Statement
ExceptionHandlerListopt

end trapopt

ExceptionDeclList :

ExceptionDecl

ExceptionDeclList , ExceptionDecl

ExceptionDecl :

Identifier ChannelTypeopt

Identifier : ChannelType

Identifier := Expression : ChannelType

Exit :

exit ExceptionIdentifier

exit ExceptionIdentifier (Expression)

ExceptionHandlerList :

ExceptionHandlerListopt ExceptionHandler

ExceptionHandler :

handle ExceptionEvent do Statement

ExceptionEvent :

ExceptionIdentifier

(ExceptionEvent)

not ExceptionEvent

ExceptionEvent and ExceptionEvent

ExceptionEvent or ExceptionEvent

122 CHAPTER 7. THE ESTEREL GRAMMAR

7.5.12 The exec Task Execution Statement

Exec :

exec TaskIdentifier (VariableIdentifierListopt) (ExpressionListopt)
return ReturnSignalIdentifier

exec TaskIdentifier (VariableIdentifierListopt) (ExpressionListopt)
return ReturnSignalIdentifier do Statement end execopt

exec ExecCaseList end execopt

ExecCaseList :

ExecCaseListopt ExecCase

ExecCase :

case TaskIdentifier (VariableIdentifierListopt) (ExpressionListopt)
return ReturnSignalIdentifier do Statement

case TaskIdentifier (VariableIdentifierListopt) (ExpressionListopt)
return ReturnSignalIdentifier

7.5.13 Local Signal Declaration

LocalSignalDecl :

signal SignalDeclList in Statement end signalopt

7.5.14 Local Variable Declaration

LocalVariableDecl :

var VariableDeclList in Statement end varopt

VariableDeclList :

VariableDecl

VariableDeclList , VariableDecl

VariableDecl :

Identifier : TypeIdentifier

Identifier := Expression : TypeIdentifier

7.5. STATEMENTS 123

7.5.15 The run Module Instantiation Statement

RunModule :

run RunModuleNames

run RunModuleNames [RenamingList]

RunModuleNames :

ModuleIdentifier

ModuleIdentifier / ModuleIdentifier

RenamingList :

Renaming

RenamingList ; Renaming

Renaming :

type TypeRenamingList

constant ConstantRenamingList

function FunctionRenamingList

procedure ProcedureRenamingList

task TaskRenamingList

signal SignalRenamingList

TypeRenamingList :

TypeRenaming

TypeRenamingList , TypeRenaming

TypeRenaming :

TypeIdentifier / TypeIdentifier

ConstantRenamingList :

ConstantRenaming

ConstantRenamingList , ConstantRenaming

ConstantRenaming :

ConstantAtom / ConstantIdentifier

124 CHAPTER 7. THE ESTEREL GRAMMAR

FunctionRenamingList :

FunctionRenaming

FunctionRenamingList , FunctionRenaming

FunctionRenaming :

FunctionIdentifier / FunctionIdentifier

PredefinedFunction / FunctionIdentifier

PredefinedFunction :

and

or

not

+

-

*

/

mod

<

>

<=

>=

<>

=

ProcedureRenamingList :

ProcedureRenaming

ProcedureRenamingList , ProcedureRenaming

ProcedureRenaming :

ProcedureIdentifier / ProcedureIdentifier

TaskRenamingList :

TaskRenaming

TaskRenamingList , TaskRenaming

7.6. OLD SYNTAX 125

TaskRenaming :

TaskIdentifier / TaskIdentifier

SignalRenamingList :

SignalRenaming

SignalRenamingList , SignalRenaming

SignalRenaming :

SignalIdentifier / SignalIdentifier

7.6 Old Syntax

Previous versions of Esterel used a different syntax for some constructs.
For backward compatibility, we have chosen to still parse the old syntax,
although we try to discourage its usage.

Valued signals used to be declared using parentheses as in emit state-
ments:

output Speed (integer);
output Beeper (combine Beep with CombineBeeps);

the standard notation is now the colon ‘:’ as for variables.
Abortion used to be written with the watching and upto keywords. For

instance,

abort
p

when S

used to be written

do
p

watching S

and
abort

p
when S do

q
end abort

126 CHAPTER 7. THE ESTEREL GRAMMAR

used to be written

do
p

watching S timeout
q

end timeout

The upto statement used to be written

do
p

upto S

with the following meaning:

abort
p; halt

when S

This statement turned out to be not fundamental and its name is not fully
clear. It is still available.

Finally, it used to be possible to declare several constants or variables of
a given type in a row, as in:

constant A, B : integer;
var X, Y : integer in ...

to be interpreted as

constant A : integer , B : integer;
var X : integer, Y : integer in ...

This syntax is now discouraged and not part of the Esterel definition,
because it does not extend to signal declarations. The declaration

signal X, Y : integer in ...

means that X is a pure signal while Y is an integer-valued signal. Therefore,
it is not equivalent to

signal X : integer, Y : integer in ...

Bibliography

[1] C. André. Representation and analysis of reactive behaviors: A syn-
chronous approach. In Proc. CESA’96, Lille, France, July 1996.

[2] K. Arnold and J. Gosling. The Java Programming Language. Addison-
Wesley, 1996.

[3] D. Austry and G. Boudol. Algèbres de processus et synchronisation.
Theoretical Computer Science, 30(1):91–131, 1984.

[4] F. Balarin, M. Chiodo, A. Jurecska, H. Hsieh, A. L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara. Hardware-Software Co-Design of Embedded Systems: The
Polis Approach. To be published by Kluwer Academic Press, 1997.

[5] G. Berry. Real-time programming: General purpose or special-purpose
languages. In G. Ritter, editor, Information Processing 89, pages 11–17.
Elsevier Science Publishers B.V. (North Holland), 1989.

[6] G. Berry. Esterel on hardware. Philosophical Transactions Royal Soci-
ety of London A, 339:87–104, 1992.

[7] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language, and Interaction: Essays in Honour
of Robin Milner. MIT Press, 2000.

[8] G. Berry. Programming a digital wristwatch in Esterel. In
http://www.esterel.org, 2000.

[9] G. Berry. The Constructive Semantics of Pure Esterel. Draft book,
available at http://www.esterel.org, version 3, July 1999.

[10] G. Berry, A Bouali, X. Fornari E. Nassor, E. Ledinot, and R. de Simone.
Esterel: a formal method applied to avionic development. Science of
Computer Programming, 36:5–25, 2000.

127

128 BIBLIOGRAPHY

[11] G. Berry and L. Cosserat. The synchronous programming languages
Esterel and its mathematical semantics. In S. Brookes and G. Winskel,
editors, Seminar on Concurrency, pages 389–448. Springer Verlag Lec-
ture Notes in Computer Science 197, 1984.

[12] G. Berry, P-L. Curien, and J-J. Lévy. Full Abstraction for Sequential
Languages, pages 89–132. Cambridge University Press, 1985.

[13] G. Berry and G. Gonthier. Incremental development of an HDLC entity
in Esterel. Comp. Networks and ISDN Systems, 22:35–49, 1991.

[14] G. Berry, S. Moisan, and J-P. Rigault. Towards a synchronous and
semantically sound high level language for real-time applications. In
IEEE Real Time Systems Symposium, pages 30–40. IEEE Catalog 83
CH 1941-4, 1983.

[15] G. Berry and R. Sethi. From regular expressions to deterministic au-
tomata. Theoretical Computer Science, 48:117–126, 1987.

[16] P. Bertin, D. Roncin, and J. Vuillemin. Programmable active memories:
a performance assessment. In G. Borriello and C. Ebeling, editors,
Research on Integrated Systems: Proceedings of the 1993 Symposium,
pages 88–102, 1993.

[17] A. Bouali. Xeve: an Esterel verification environment. In Proc. Com-
puter Aided Verification (CAV’98), Vancouver, Canada, 1998.

[18] F. Boussinot. Reactive C: An extension of C to program reactive sys-
tems. Software Practice and Experience, 21(4):401–428, 1991.

[19] F. Boussinot and R. de Simone. The SL synchronous language. IEEE
Transactions on Software Engineering, 22(4):256–266, April 1996.

[20] F. Boussinot, G. Doumenc, and J.B. Stefani. Reactive objects. Annals
of Telecommunications, 51(9–10):459–473, 1996.

[21] J. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4), 1964.

[22] A. Burns and A. Wellings. Concurrency in Ada. Cambridge University
Press, 1995.

[23] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: a declar-
ative language for programming synchronous systems, 1987.

BIBLIOGRAPHY 129

[24] I. Chrisment, D. Kaplan, and C. Diot. An alf communication architec-
ture: Design and automated implementation. To appear in JSAC.

[25] D. Clément and J. Incerpi. Programming the behavior of graphical
objects using Esterel. In TAPSOFT ’89, Springer-Verlag LNCS 352,
1989.

[26] L. Cosserat. Sémantique opérationnelle du langage synchrone Esterel.
Thèse de docteur-ingénieur, Université de Nice, 1985.

[27] Eve Coste-Manière and Nicolas Turro. The maestro language and its
environment: Specification, validation and control of robotic missions.
In IEEE/RSJ Intl Conf on Intelligent Robots and Systems, IROS’97,
pages vol2, p 836, Grenoble, France, September 1997.

[28] S. Ramesh G. Berry, R. K. Shyamasundar. Communicating reactive
processes. In Proc. 20th ACM Conf. on Principles of Programming
Languages, Charleston, Virginia, 1993.

[29] G. Gonthier. Sémantique et modèles d’exécution des langages réactifs
synchrones; application à Esterel. Thèse d’informatique, Université
d’Orsay, 1988.

[30] P. Le Guernic, A Benveniste, P. Bournai, and T. Gautier. SIGNAL:
a data-flow oriented language for signal processing. Technical report,
RR. 378, INRIA, 1985.

[31] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Program-
ming real time applications with Signal. Another Look at Real Time
Programming, Proceedings of the IEEE, Special Issue, Sept. 1991.

[32] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer,
1993.

[33] N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous dataflow pro-
gramming language Lustre. Another Look at Real Time Programming,
Proceedings of the IEEE, Special Issue, Sept. 1991.

[34] N. Halbwachs and F. Maraninchi. On the symbolic analysis of combi-
national loops in circuits and synchronous programs. In Euromicro’95,
Como (Italy), september 1995.

[35] D. Harel. Statecharts: a visual approach to complex systems. Science
of Computer Programming, 8:231–274, 1987.

130 BIBLIOGRAPHY

[36] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall In-
ternational, 1985.

[37] C.A.R. Hoare. Concurrent programming. Addison-Wesley, 1990.

[38] L. Jagadeesan, J. Von Olnhausen, and C. Puchol. Safety property
verification of Esterel programs and applications to telecommunications
software. In Proc. Conf. on Computer-Aided Verification (CAV’95),
Liège, Belgium, July 1995.

[39] L. Jagadeesan, J. Von Olnhausen, and C. Puchol. A formal approach to
reactive system software: A telecommunications application in Esterel.
Journal of Formal Methods in Systems Design, 8(2), March 1996.

[40] C.E. Leiserson and J.B. Saxe. Retiming synchronous circuitry. Algo-
rithmica, 6(1), 1991.

[41] S. Malik. Analysis of cyclic combinational circuits. IEEE Trans.
Computer–Aided Design, 13(7):950–956, 1994.

[42] F. Maraninchi. The Argos language: graphical representation of au-
tomata and description of reactive systems. In International Conference
on Visual Languages, Kobe, Japan, 1991.

[43] P.C. McGeer, K.L. Mcmillan, A. Saldanha, A. Sangiovanni-Vincentelli,
and P. Scaglia. Fast discrete function evaluation using decision dia-
grams. In Proc. International Conf. on Computer-Aided Design (IC-
CAD), 1995.

[44] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25(3), 1983.

[45] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[46] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
part i and ii. Information and Computation, 100(1):1–77, 1992.

[47] A. K. Mok, C. Puchol, and D. Stuart. Compiling Modechart specifica-
tions. In Proc. IEEE Real-Time Systems Symposium (RTSS ’95), Pisa,
Italy, December 1995.

[48] G. Murakami and Ravi Sethi. Terminal call processing in Esterel. In
Proc. IFIP 92 World Computer Congress, Madrid, Spain, 1992.

BIBLIOGRAPHY 131

[49] G. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, University of Aarhus, 1981.

[50] O. Roux. Compilation of the Electre reactive language into finite tran-
sition systems. Theoretical Computer Science, 146:109–143, 1995.

[51] E. Sentovich, H. Toma, and G. Berry. Latch optimization in circuits
generated from high-level descriptions. In Proc. International Conf. on
Computer-Aided Design (ICCAD), 1996.

[52] E. Sentovich, H. Toma, and G. Berry. Efficient latch optimization using
exclusive sets. In Proc. Digital Automation Conference (DAC), 1997.

[53] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P.R. Stephan, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli. Sis: A system for sequential circuit synthesis. Technical
report, University of California at Berkeley, 1992. Memorandum No.
UCB/ERL M92/41.

[54] T. Shiple and G. Berry. Constructive analysis of cyclic circuits. In Proc.
International Design and Test Conference ITDC 96, Paris, France,
1996.

[55] Thomas R. Shiple, Vigyan Singhal, Gérard Berry, Robert K. Bray-
ton, and Alberto L. Sangiovanni-Vincentelli. Analysis of combinational
cycles. Technical Report UCB/ERL M96, Electronics Research Labo-
ratory, College of Engineering, University of California, Berkeley, 1996.

[56] H. Touati and G. Berry. Optimized controller synthesis using Esterel.
In Proc. International Workshop on Logic Synthesis IWLS’93, Lake
Tahoe, 1993.

Index

*, 46, 49
+, 46, 49
%, 43
%{, 43
}%, 43
||, 19, 73, 116

and ;, 73
-, 46
/, 46
:=, 25, 50, 51, 56, 117
;, 20, 57, 116

and ||, 73
<=, 46
<>, 46
<, 46
=>, 37, 50
=, 46
>=, 46
>, 46
??, 52, 72
?, 25, 31, 52
[, 20, 54, 55, 73
#, 24, 50
], 20, 54, 55, 73
pre(?S), 22, 52

ABCRO
code, 20
specification, 17

abort, 24, 27, 62, 63, 77, 78, 119
Abortion

abort, 24, 27, 62

and WTO, 21
by trap, 70
delayed, 27
each, 20
every, 24
immediate, 27
of task, 77, 78
strong, 20, 27, 62
syntax, 119
weak, 28, 29, 62
weak abort, 28, 29, 62

ABRO
code, 19
specification, 15
variant, 30

absent status, 15, 48, 87
and, 41, 46, 49, 53, 102
Argos, 13
Assignment, 25, 51, 56

syntax, 117
Asynchronous languages, 37
await, 19, 56, 61, 64, 120

BAD COUNT, 84
Benveniste, 13
Blank event, 17
boolean, 46
Boot, 16
Broadcasting, 21, 48, 73
BUS, 94

call, 47, 56, 75, 117

132

INDEX 133

Capture, 74
case, 41, 60, 63, 79, 118, 119, 122
Caspi, 13
Causality cycle, 26
Causality problems, 51, 85
Circuit, 15

clock, 15, 104
cyclic, 103
delay, 104
electrical view, 103
gate, 102
input event, 15
input wire, 15
interface, 15
logical view, 102
output event, 15
output wire, 15
retiming, 105
sequential, 102
stabilization, 104

Clock, 15, 104
Code

of ABCRO, 20
of ABRO, 19
of COUNT, 22, 23
of REGUL, 31
of RUNNER, 37
of SPEED, 24
of TWO STATES, 33

combine, 49
Comment, 43
Communication protocol, 11
Concurrency, 10, 19
Constant

declaration, 46
syntax, 109

explicit, 46
false, 46
float, 43
implicit, 46

integer, 43
renaming, 74, 123
scope, 45
string, 43
true, 46
type, 46
value, 46

Constructive semantics, 83, 87
Constructiveness

acyclicity, 92
and preemption, 89
signal expression, 90
valued signal, 90

Control handling, 10
COUNT

code, 22, 23
specification, 21

Data
constant, 46

syntax, 109
declaration, 73
export, 73
expression, 52

syntax, 113
function, 31, 47

syntax, 110
procedure, 27, 47

syntax, 110
scope, 45
task, 47

syntax, 111
type, 46

syntax, 109
Data handling, 10
Data-flow, 13, 14
Declaration

data, 44
example, 44
interface, 43

134 INDEX

order, 44
return, 44
sensor, 44
signal, 44

Delay, 19
count, 54, 55
elapsing, 54
examples, 54, 55
expression, 52, 54

syntax, 115
immediate, 27–29, 54, 61, 63,

65
non-immediate, 64
standard, 54
start, 54

Dependency cycle, 84
false, 86

Determinism, 11, 83
Digital circuit, 15
do, 24, 41, 60, 63, 79, 118, 119, 122
double, 46
Driver, 11

each, 20, 64, 80, 120
Electre, 13
else, 40, 60, 61, 118, 119
elsif, 61, 119
Embedded system, 10
emit, 20, 57, 117
end, 55
Equality, 46
Event queue, 24
every, 22, 24, 28, 64
exec, 47, 75–80, 122
Execution trace, 16
exit, 38, 70, 121
Expression

?, 52
pre, 22, 52
data, 52

syntax, 113
delay, 52, 54

syntax, 115
examples, 52–55
signal, 52, 53, 65

syntax, 115

false, 15, 46
False path, 87
float, 46
Formal verification, 14
Function, 31

call, 47, 52
declaration, 47

syntax, 110
definition, 47
renaming, 74, 123
scope, 45
signal combination, 49
type, 47

function, 31
Future instant, 100

Gate, 102
and, 102
delay, 103
not, 102
or, 102
reg, 102
stabilization, 104

Generic module, 33
GENERIC SPEED, 35
Glue logic, 11
Grammar Summary

Abort, 119
AbortCase, 119
AbortCaseList, 119
Assignment, 117
AtomicStatement, 116
Await, 120

INDEX 135

AwaitCase, 120
AwaitCaseList, 120
BracketedSignalExpression, 115
ChannelType, 111
Constant, 114
ConstantAtom, 114
ConstantDecl, 110
ConstantDeclList, 109
ConstantDecls, 109
ConstantLiteral, 114
ConstantRenaming, 123
ConstantRenamingList, 123
DelayExpression, 115
ElsePart, 118
Elsif, 119
ElsifPartList, 119
Emit, 117
Every, 120
ExceptionDecl, 121
ExceptionDeclList, 121
ExceptionEvent, 121
ExceptionHandler, 121
ExceptionHandlerList, 121
ExclusionDecl, 112
Exec, 122
ExecCase, 122
ExecCaseList, 122
Exit, 121
Expression, 113
ExpressionList, 115
FunctionCall, 115
FunctionDecl, 110
FunctionDeclList, 110
FunctionDecls, 110
FunctionRenaming, 124
FunctionRenamingList, 123
IdentifierList, 110
If, 119
ImplicationDecl, 112
InterfaceDeclList, 109

InterfaceDecls, 109
InterfaceSignalDecls, 111
LocalSignalDecl, 122
LocalVariableDecl, 122
Loop, 119
LoopEach, 120
Module, 108
NonParallel, 116
Parallel, 116
PredefinedCombineFunction, 111
PredefinedFunction, 124
Present, 118
PresentCase, 118
PresentCaseElse, 118
PresentCaseList, 118
PresentEvent, 118
PresentThenElse, 118
ProcedureCall, 117
ProcedureDecl, 110
ProcedureDeclList, 110
ProcedureDecls, 110
ProcedureRenaming, 124
ProcedureRenamingList, 124
RelationDecl, 112
RelationDeclList, 112
RelationDecls, 112
Renaming, 123
RenamingList, 123
Repeat, 119
RunModule, 123
RunModuleNames, 123
SensorDecl, 112
SensorDeclList, 112
SensorDecls, 112
Sequence, 116
SequenceWithoutTerminator, 116
SignalDecl, 111
SignalDeclList, 111
SignalExpression, 115
SignalRenaming, 125

136 INDEX

SignalRenamingList, 125
SignedNumber, 114
Statement, 116
Suspend, 120
Sustain, 117
TaskDecl, 111
TaskDeclList, 111
TaskDecls, 111
TaskRenaming, 124
TaskRenamingList, 124
ThenPart, 118
Trap, 121
TypeDecl, 109
TypeDeclList, 109
TypeDecls, 109
TypeRenaming, 123
TypeRenamingList, 123
UnsignedNumber, 114
VariableDecl, 122
VariableDeclList, 122

Halbwachs, 13
halt, 56, 116
handle, 38, 71, 72
Hardware system, 11
Harel, 13
Host language, 31, 44

constant definition, 46
function definition, 47
procedure definition, 47
task definition, 47
type definition, 46

Human-machine interface, 11

Identifier, 43
if, 38, 61, 119
immediate, 23, 27–29, 32, 54, 61,

63, 65
Implementation

hardware, 102

polling, 27
Implication relation, 37
Incarnation, 51, 69, 89
Initial value

of signal, 48, 50
of variable, 51

Input
blank event, 17
event, 15, 16
polling, 27
serialization, 24
wire, 15

input, 48
inputoutput, 48
Instant, 17, 100
Instantaneous, 19
integer, 21, 46
Interactive system, 9, 12
Interface

declaration, 43
data, 44
example, 44
sensor, 44, 112
signal, 44, 111
syntax, 109

Keyword, 43

Language
asynchronous, 37
synchronous, 13

Le Guernic, 13
Local signal, 31
Logical correctness, 86
Loop

non-instantaneous, 58
simple, 58
syntax, 119, 120

loop, 20, 24, 58, 64, 69, 119, 120
Lustre, 13

INDEX 137

Maraninchi, 13
Mathematical Semantics, 83
Mealy machine, 17
Model

implementation, 98
synchronous, 98
zero-delay, 98

Module, 44
argument passing, 35
body, 43
full renaming, 74
generic, 33
instantiation, 35
interface, 43

data, 44
example, 44
sensor, 44
signal, 44

main, 44
name, 43
name renaming, 74
partial renaming, 74
renaming, 74, 76, 123
run, 35, 44
submodule, 44
syntax, 108

Non-determinism, 12
not, 40, 41, 53, 102
nothing, 56, 116

OK, 91
Old syntax, 125
or, 46, 49, 53, 102
Orthogonality, 21
Output

event, 15, 16
wire, 15

output, 48

P1, 87

P12, 86
P13, 85
P14, 85
P2, 88
P3, 83
P3bis, 89
P3bisWeak, 90
P3PK, 85
P3ter, 89
P4, 84
P5, 84
P9, 86
Parallel, 19, 73

and sequence, 73
and variable, 73
synchronization, 19
syntax, 116
termination, 19, 73
trap propagation, 73
weak abortion, 73

pause, 56, 116
Pnueli, 13
Polling, 27
positive repeat, 59, 119
pre, 53, 67

and suspend, 68
Preemption, 58

abort, 24, 27
abortion, 20
constructiveness, 89
every, 24
strong abortion, 20, 27
suspension, 20, 32
weak abort, 29
weak abortion, 28, 29

present, 39, 41, 60, 69, 118
present status, 15, 48, 87
Primitive type, 46
Priority, 16, 20

between traps, 71

138 INDEX

by nesting, 64
in case list, 60, 64

Procedure
call, 47, 51, 56, 117
declaration, 47

syntax, 110
definition, 47
evaluation ordering, 91
reference argument, 47
renaming, 74, 123
scope, 45
type, 47
value argument, 47

Program, 44
acyclic, 85, 87
BAD COUNT, 84
BUS, 94
causality, 85
constructive, 87
COUNT, 22
cyclic constructive, 88
deterministic, 83
logical correctness, 86
logically incorrect, 89
non-deterministic, 84
non-reactive, 83
non-sensical, 83
OK, 91
P1, 87
P12, 86
P13, 85
P14, 85
P2, 88
P3, 83
P3bis, 89
P3bisWeak, 90
P3OK, 85
P3ter, 89
P4, 84
P5, 84

P9, 86
reactive, 83
STATION, 93

Pruning, 87

Reaction, 16
atomicity, 106

Reactive system, 9, 13
Reactivity, 83
Real time, 10
reg, 102
REGUL

code, 31
specification, 30

Reincarnation, 51, 69, 89
Relation, 50

=>, 50
#, 50
exclusion, 24, 50
implication, 37, 50
syntax, 112

relation, 50
in submodule, 73
in submodule, 50

Renaming, 74, 123
full, 74
partial, 74

repeat, 59, 119
Retiming, 105
return, 48, 75, 122
Roux, 13
run, 73, 76, 123
RUNNER

code, 37
heart attack, 38
specification, 36

Scope
lexical, 51
of data objects, 45

INDEX 139

of signal, 44, 51
of trap, 71
of variable, 51

Self-justification, 86
Semantics

constructive, 83, 87
determinism, 83
logical, 86
reactivity, 83

Sensor, 31, 48, 49
? operator, 31, 52
declaration, 49

syntax, 112
renaming, 74, 123
type, 49
value, 31, 52

Sequence, 20, 57
and parallel, 73
syntax, 116

Sequential circuit, 102
Signal, 48

:=, 50
? operator, 22, 25, 52
pre(?S) operator, 52, 67
absent status, 15
and, 53
as time unit, 36
Boolean expression, 41
broadcasting, 21, 48, 73
combination function, 49, 57
combined, 26, 49, 57
declaration, 48, 50, 125

syntax, 111, 122
dependency cycle, 84
emit, 57, 117
emitted, 16
expression, 52, 53, 65

syntax, 115
incarnation, 51, 69, 89
initial value, 48, 50

initialization, 50
input, 48
inputoutput, 48
instantaneous test, 39
interface, 48
local, 31, 48
not, 53
occurrence, 15, 100
or, 53
output, 48
periodicity, 36
pre, 53, 67
present status, 15
previous value, 52, 67
priority, 16
pure, 48, 57, 100
reader, 25
reincarnation, 51, 69, 89
relation, 24
renaming, 74, 123
return, 48, 49, 75, 122
scope, 44, 51
sensor, 31
signal, 50
simultaneous, 16, 27, 100
single, 49
status, 15, 48, 53, 87
sustain, 31
three-valued status, 87
tick, 48, 53
type, 48, 50
value, 21, 25, 52
valued, 48, 57, 125
writer, 25

Signal, 13
signal, 31, 48, 50, 69, 122
Signal expression

constructiveness, 90
Simultaneous, 16
Specification

140 INDEX

of ABCRO, 17
of ABRO, 15
of COUNT, 21
of REGUL, 30
of RUNNER, 36
of SPEED, 24

SPEED
code, 24
specification, 24

Statecharts, 13
Statement

||, 19, 73, 116
:=, 25, 50, 51, 56, 117
;, 20, 57, 116
[, 20
], 20
abort, 24, 27, 62, 77, 78, 119
abortion, 20
active, 19
assignment, 25, 56, 117
await, 19, 61, 64, 120
call, 47, 56, 75, 117
combinational, 19
do, 24
each, 20
emit, 20, 57, 117
every, 22, 24, 28, 64
exec, 47, 75–80, 122
exit, 70, 121
halt, 56, 116
if, 61, 119
immediate, 23
instantaneous, 19
loop, 20, 24, 58, 64, 69, 119,

120
nothing, 56, 116
parallel, 19, 73, 116
pause, 56, 116
positive repeat, 59, 119
present, 39, 41, 60, 69, 118

repeat, 59, 119
run, 73, 76, 123
sequence, 20, 57, 116
signal, 31, 48, 50, 122
start, 19
suspend, 32, 65, 66, 78, 120
suspend immediate, 32
sustain, 31, 57, 117
syntax, 116
takes time, 19
termination, 19
trap, 70, 121
var, 23, 24, 51, 122
weak abort, 28, 62, 70, 72, 77,

119
and trap, 70, 72

STATION, 93
Status

absent, 48, 87
present, 48, 87
unknown, 87

String, 43
string, 46
Supervision system, 10
suspend, 32, 65, 66, 78, 120

and pre, 68
suspend immediate, 32, 65
Suspension, 32, 65

delayed, 32, 66
immediate, 32, 66
of task, 78
syntax, 120

sustain, 31, 57, 117
Synchronization, 19
Synchronous, 100
Synchronous language

Argos, 13
data-flow, 13, 14
Electre, 13
Esterel, 10

INDEX 141

imperative, 10, 13, 14
Lustre, 13
Signal, 13
Statecharts, 13
visual, 13

Synchronous model, 17
System

control-dominated, 10
determinism, 11
driver, 11
embedded, 10
hardware, 11
HMI, 11
interactive, 9, 12
mixed, 9
non-determinism, 12
protocol, 11
reactive, 9, 13
supervision, 10
transformational, 9, 12

Task, 75
abortion, 76–79
declaration, 47

syntax, 111
definition, 47
exec, 47, 122
immediate restart, 80
multiple exec, 79
renaming, 74, 123
return, 76
return renaming, 76
return signal, 76
scope, 45
start, 76
stillborn, 80
suspend–resume, 78
suspension, 76, 78, 79
testing for return, 78
type, 47

task, 75, 122
then, 38, 40, 60, 61, 118, 119
Thread, 19, 26, 29
Three-valued logic, 87
tick, 17, 48, 56
Time

logical, 17, 100
physical, 100

Time unit, 36
timeout, 126
Timing analysis, 99
Trace, 16
Transformational system, 9, 12
Trap, 70

?? operator, 52
concurrent, 72
exit, 70
handler, 71, 72
nesting, 71
priority, 71
propagation, 57
scope, 71
syntax, 121
type of, 72
value, 52, 72
valued, 72

trap, 38, 70, 121
true, 15, 46
TWO STATES

code, 33
TWO STATES, 39
Type

boolean, 46
declaration, 46

syntax, 109
definition, 46
double, 46
float, 46
integer, 46
of constant, 46

142 INDEX

of function, 47
of procedure, 47
of signal, 48, 50
of task, 47
of variable, 51
primitive, 46
renaming, 74, 123
scope, 45
string, 46

Unequality, 46
unknown status, 87
upto, 125

Valued signal, 21
constructiveness, 90

var, 23, 24, 51, 122
Variable, 23–25, 51

:=, 51, 56, 117
assignment, 25, 56, 117
declaration, 51

syntax, 122
initial value, 51
scope, 51
type, 51
unshared, 26, 51, 73

Voltage, 15

watching, 125
weak abort, 28, 29, 62, 70, 72, 119
when, 63, 119, 120
when immediate, 65, 66
Write Things Once, 20
WTO, 20, 22

Zero-delay model, 17

	1 Introduction
	1.1 Organization of the Primer
	1.2 The Evolution of Esterel
	1.3 A Brief History of Esterel
	1.4 Other Synchronous Languages
	1.5 Acknowledgements

	2 Deterministic Reactive Systems
	2.1 Transformational, Interactive, and Reactive Systems
	2.2 Control-Dominated Reactive Systems
	2.3 Determinism Versus Non-Determinism
	2.4 Programming Tools

	3 The Esterel Programming Style
	3.1 Pure Signal Handling: the ABRO example
	3.1.1 Execution Traces
	3.1.2 Mealy Machines
	3.1.3 ABRO in Esterel

	3.2 Write Things Once
	3.3 First Valued Example: Counting
	3.3.1 First Solution, Using pre
	3.3.2 Handling the Initial Instant
	3.3.3 Second Solution, using a variable

	3.4 Second Valued Example: Speed Measure
	3.5 Valued Signals Versus Variables
	3.6 Weak and Immediate Abortion
	3.7 Using Submodules: the REGUL Specification
	3.8 Suspension
	3.9 Generic Behaviors and Modules
	3.10 Multiform Time
	3.10.1 The RUNNER example

	3.11 Traps and Exception Handling
	3.12 Boolean Signal Expressions and the Present Test

	4 A Tour of Esterel
	4.1 Lexical Aspects
	4.2 Modules
	4.3 Data
	4.3.1 Types and Operators
	4.3.2 Constants
	4.3.3 Functions
	4.3.4 Procedures
	4.3.5 Tasks

	4.4 Signals and Sensors
	4.4.1 Interface Signal Declarations
	4.4.2 Single and Combined Valued Signals
	4.4.3 Sensors
	4.4.4 Input Relations
	4.4.5 Local Signal Declaration

	4.5 Variables
	4.6 Expressions
	4.6.1 Data Expressions
	4.6.2 Signal Expressions
	4.6.3 Delay Expressions

	4.7 Statements
	4.7.1 Basic Control Statements
	4.7.2 Assignment and Procedure Call
	4.7.3 Signal Emission
	4.7.4 Sequencing
	4.7.5 Looping
	4.7.6 Repeat Loops
	4.7.7 The present Signal Test
	4.7.8 The if Data Test
	4.7.9 The await Statement
	4.7.10 The abort Statements
	4.7.11 Temporal Loops
	4.7.12 The suspend Statement
	4.7.13 Local Signal Declaration
	4.7.14 Traps
	4.7.15 The Parallel Statement
	4.7.16 The run Module Instantiation Statement
	4.7.17 The exec Task Execution Statement

	5 Constructive Causality
	5.1 Cyclic and Acyclic Programs
	5.1.1 Non-Reactive and Non-Deterministic Programs
	5.1.2 Signal Dependency Cycles
	5.1.3 Acyclic Programs
	5.1.4 Correct Cyclic Programs

	5.2 Constructiveness in Esterel
	5.2.1 Logical Correctness
	5.2.2 Constructiveness
	5.2.3 Constructiveness and Preemption
	5.2.4 Constructiveness of Signal Expressions
	5.2.5 Constructiveness for Valued Signals
	5.2.6 Constructiveness and Side-Effects
	5.2.7 Constructiveness vs. Acyclicity

	6 Reflection on Perfect Synchrony
	6.1 Reactive Programming Models
	6.1.1 The Qualities of a Model
	6.1.2 The Models of Esterel
	6.1.3 Inter-Model Consistency
	6.1.4 High-Level vs. Low-Level Programming Models

	6.2 Logical Time vs. real Time
	6.3 Implementation by Sequential Circuits
	6.3.1 The Logical View of Circuits
	6.3.2 The Electrical View of Circuits
	6.3.3 Connecting the Logical and Electrical Views

	6.4 Software Implementation

	7 The Esterel Grammar
	7.1 Syntax Notation
	7.2 Modules
	7.3 Interface Declaration
	7.3.1 Type Declarations
	7.3.2 Constant Declarations
	7.3.3 Function Declarations
	7.3.4 Procedure Declarations
	7.3.5 Task Declarations
	7.3.6 Signal Declarations
	7.3.7 Sensor Declarations
	7.3.8 Input Relation Declarations

	7.4 Expressions
	7.4.1 Data Expressions
	7.4.2 Signal Expressions
	7.4.3 Delay Expressions

	7.5 Statements
	7.5.1 Signal Emission
	7.5.2 Assignment and Procedure Call
	7.5.3 The present Signal Test
	7.5.4 The if Data Test
	7.5.5 Looping
	7.5.6 Repeat Loops
	7.5.7 The abort Statements
	7.5.8 The await Statement
	7.5.9 Temporal Loops
	7.5.10 The suspend Statement
	7.5.11 Traps
	7.5.12 The exec Task Execution Statement
	7.5.13 Local Signal Declaration
	7.5.14 Local Variable Declaration
	7.5.15 The run Module Instantiation Statement

	7.6 Old Syntax

