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Chapter 1

Introduction

This manual describes how to use the Esterel v5 91 compiler, how to in-
terface the generated code in embedded applications, and how to simulate
Esterel programs using either the graphical simulator xes or the textual
simulator csimul.

The Esterel v5 91 compiler is an improvement over the former Esterel
v5 21 compiler. The language has been extended by adding the pre signal
and value operators, see the Esterel Primer [1]. Some bugs have been fixed.
Automaton code generation has been entirely rebuilt. It is now fully based
on constructive causality, just as all the other compiling techniques. The
session recorder of the xes simulator has been improved. The generated
code is fully compatible with that of Esterel v5 21. As the name suggests,
this should be the last release of the Esterel v5 series. The next compiler
Esterel v6 will handle modular compiling.

We assume basic knowledge of the Esterel language, which is presented
in details in [1], and of issues such as program constructiveness, which are
fully studied in [2]. The last reference also explains how Esterel programs
are translated into Boolean circuits.

Chapter 2, Getting Started, is a quick introduction. Chapter 3, Us-
ing the Esterel Compiler, tells how to compile programs using the esterel
command. Chapter 4, The Esterel to C Interface, explains how to embed
the generated code. Chapter 5, Building Esterel Simulators, explains how
to build a simulator in a C environment. Chapter 6, The xes Graphical
Simulator, explains how to perform graphical simulations, while Chapter 7,
Simulation with csimul, presents the stream-based interactive or batch sim-
ulator. Chapter 8, Simulation Examples, presents a few examples. Finally,
Chapter 9, Constructive Cyclic Programs in Esterel v5 91, explains how the

1
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Esterel v5 91 compiler checks program for constructiveness and generates
sequential code from cyclic programs. Since there are some limitations, it
is important to read this chapter if you have to deal with cyclic valued
programs.

Please signal any bug or bad explanation and suggest any improvement
by sending mail to esterel-users@sophia.inria.fr. We appreciate your
feedback.

WARNING: Chapter 6, The xes Graphical Simulator, should
be printed in color if possible.



Chapter 2

Getting Started

2.1 Installing and Uninstalling the Esterel v5 91
System

2.1.1 Unix Systems

The installation procedure is described in the README.txt file of the Esterel
v5 91 tar file. We recall it here:

1. Extract the tar file directory and place it where you want it to stay.
Be careful: this directory MUST remain permanently at the same
location in your machine or network, since the installation procedure
only builds symbolic links to the files it contains.

2. Edit the Makefile file and set the definitions of the following 9 vari-
ables ESTEREL DISTRIB DIR, ESTEREL COMMAND, XES COMMAND,
XESTEREL COMMAND, BIN DIR, LIB DIR, INCLUDE DIR, MAN1 DIR, and
MAN3 DIR. They control the location where the Esterel components
will be accessible. The ESTEREL DISTRIB DIR defines the installation
directory location. The Esterel automatic installation procedure can
build links into appropriate places. For instance, assuming that Es-
terel v5 91 is installed in /opt/esterelv5 91, one may want to install
the esterel command in /usr/local/bin, by creating a link:

/usr/local/bin/esterel -> /opt/esterelv5_91/bin/esterel

To do this, set the BIN DIR variable to /usr/local/bin. No link is cre-
ated if the variable is left empty. The ESTEREL COMMAND, XES COMMAND

3
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and XESTEREL COMMAND variables are used to change the name of the
links. Links to libraries, include files and manual entries can be cre-
ated in a similar way using the LIB DIR, INCLUDE DIR, MAN1 DIR, and
MAN3 DIR variables. Please, perform the following checks:

– Check that ESTEREL DISTRIB DIR is defined in the Makefile and
that it defines a path known from other machines that may access
it by network.

– Check that the values of BIN DIR (resp. LIB DIR, etc.) are dif-
ferent from those of ESTEREL DISTRIB DIR/bin, (resp. /lib). It
is impossible to link a file onto itself!

– If a previous Esterel distribution exists with links, uninstall it
beforehand (see below). If you want the new and old systems to
coexist, you can reinstall the old one by changing the command
names (e.g. changing esterel into esterelv5 21) and installing
the old libraries in specific directories (e.g. libv5 21).

3. Type

make install

The Esterel automatic installation procedure sets the access rights of
the installed files. If needed, check that they suit your own system
management policy.

The Esterel compiler and xes simulator should be ready to run. To check
that the Esterel software is installed and operational and to identify the
software’s version, type the commands:

esterel -version
xes -version

To uninstall the Esterel compiler installed by the Makefile, i.e. all the sym-
bolic links created by the installation procedure above, type

make uninstall

2.1.2 Windows NT

The Esterel installation is automatically performed by the Setup.exe pro-
gram. The installation does the following:

1. it creates a new group named Esterel in the Programs menu. The
group gives access to:
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– the Esterel GUI (graphical user interface) xesterel,

– the Esterel installation directory,

– the manual,

– the manual pages in HTML format,

– the Esterel Primer,

– the uninstallation program.

2. it adds the ESTEREL variable to the user environment and modifies the
path.

Note: the compiling of the C code generated by Esterel must be compatible
with Visual Studio to run simulations. The xes simulator uses CL.EXE and
LINK.EXE from the Microsoft DevStudio 6 development environment. These
tools use the INCLUDE and LIB environment variables, which have to be set
correctly to make the tools work outside of DevStudio. Please refer to the
file Vc\bin\Vcvars32.bat in the Visual C++ distribution.

2.2 Handling a Simple Example

To try Esterel compiling, enter the following program in file foo.strl using
your favorite editor:

module Foo :
input I, J;
output O;
await I;
await J;
emit O
end module

To compile the Foo program into an executable C code, just type

esterel foo.strl

This command generates an executable C file foo.c ready to be embed-
ded in a complete application using the interface conventions described in
Chapter 4. However, this is not the simplest thing to do. Beforehand, it is
recommended to simulate the program and check its correct behavior using
the xes simulator and symbolic debugger. For this, recompile the program
with the -simul option:

esterel -simul foo.strl
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The foo.c generated file now contains additional code for simulation and
symbolic debugging. Compile the foo.c file and call the xes command with
argument the object file.

cc -c foo.c

xes foo.o

Two windows appear on the screen: a main panel that provides interaction
with the simulator, and a source code panel. Click on the tick button to
start the simulation with an empty event. The first await keyword turns
red, indicating that the program is now waiting for the input I. Enter a
second event with I present by double-clicking on the I button in the main
panel. The first await turns back to blue and the second await turns red,
indicating that the program is now waiting for J. Double-click on the J input
button. The O output button turns red, telling that the output signal O is
emitted. An orange warning window pops up since the module execution is
terminated. Click on the Reset button to restart the simulation or on the
Quit button to quit.

A richer animation is provided if the Esterel program is compiled with
the -I interpretation option, as in

esterel -I -simul foo.strl

cc -c foo.c

xes foo.o

Then, in each reaction, the statements effectively executed appear on green
background. The simulation is slightly slower, but is should be fast enough
even for very large programs.

To see the generated code in a readable form, type

esterel -Ldebug foo.strl

This generates a file foo.debug that contains a human-readable description
list of equations that encodes the generated control circuit [2].

2.3 Code Generation Options

The Esterel v5 91 compiler is able to generate software or hardware code
in different ways, which we briefly present. All the software codes have the
same run-time interface and they are fully interchangeable in applications.
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2.3.1 Sorted Circuit Code

The default is to generate a sorted circuit code, i.e. a sorted sequence of
Boolean equations that implements the behavior of the Esterel program.
With no option, this sequence is printed out in C. This is what you got
by executing the previous command “esterel foo.strl”. This default
mode only applies to statically acyclic programs, as described in the Esterel
language primer [1]. Sorted circuit code can also be generated for cyclic con-
structive programs [1, 2] using the -causal option of the Esterel command,
as in

esterel -causal prog.strl

For programs that do have static cycles, the -causal option invokes a com-
piling algorithm based on Binary Decision Diagrams (BDDs), which can use
a large and somewhat unpredictable amount of space and time, see [7].

2.3.2 Interpreted Unsorted Circuit Code

One can also generate an unsorted circuit code using option -I:

esterel -I -simul foo.strl

The -I option has important advantages and drawbacks studied in Sec-
tion 3.3.2. As we mentioned before, it provides better source code debug-
ging information. When running the xes simulation for code compiled with
option -I, a small C interpreter interprets the circuit equations. The state-
ments executed in the current reaction appear on a green background in the
source-code window. This visualizes the exact execution path. We recom-
mend to use option -I when building a simulator with the -simul option.

2.3.3 Automaton Code

A third possibility for software code generation is to generate an automaton-
based code. For this, use the -A option:

esterel -A [-simul] foo.strl

The generated foo.c file is fully interchangeable with the previous ones, but
the circuit is replaced by an explicit finite-state machine transition table.
The advantages and drawbacks of automata are described in Section 3.3.31.

1The v3 technology available up to Esterel v5 21 is no more available. It is completely
superseded by the new technology, thanks to Yannis Bres. The single-state automaton -S

option has also been suppressed.
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As for sorted circuit code, a human-readable form of the automaton is
printed in file foo.debug when typing the following command:

esterel -Adebug foo.strl

For more information about the emitted signals, type

esterel -Adebug:"-emitted -names" foo.strl

The ‘:’ symbol is used to pass a list of additional option to the final code
generator.

2.3.4 Hardware Circuit Generation

Pure Esterel programs are programs that only handle pure signals, i.e.
that involve no types, constants, functions, procedures, tasks, valued sig-
nals, or variables. Only simple counters are allowed in Pure Esterel, as in
“await 3 S” or “repeat 5 times” or “repeat N times” provided that N
is an initialized integer constant. For Pure Esterel programs, one can also
generate hardware circuit netlists. For example, to build a circuit from
foo.strl, type

esterel -Lblif foo.strl

The -L option defines the target language, here the blif circuit description
format (blif stands for Berkeley Logic Interchange Format). An actual
circuit can be build from the foo.blif file by using logic optimizers and
technology mappers not detailed here. Option -Ablif is also available to
generate circuits based on explicit automata, although this is generally not
a good idea.

2.4 The xesterel GUI

If you prefer a graphical interface to a command line interface, use the
xesterel GUI (Graphical User Interface). It can be used to generate and
execute an esterel or xes command line, setting the various options by
clicking on graphical objects. See the on-line documentation for more details.

2.5 Examples

Chapter 8 contains basic examples. Their Esterel and C codes are in the
documentation directory of the Esterel tar file together with this manual.
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The distribution tar file also contains a non-trivial complete example: a
wristwatch with timekeeper, stopwatch, and alarm. Go to the wristwatch
directory, and read the README file. Print the file paper.ps that contains a
description of the program (it has been rewritten for v5 91 using pre, please
have a look even if you know it already). Edit the Makefile appropriately,
and try at least running the tkww fullscreen simulation and the xww xes-
based simulation. When using xes, Click on whatever is red or blue in the
source code windows and observe the result.

Try different code generation options by changing the ESTEREL FLAGS
and ESTEREL SIMUL FLAGS variable in the Makefile. Try in particular op-
tion -A for automaton code generation.
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Chapter 3

Using the Esterel Compiler

This chapter presents the compiler structure in a detailed way. Its reading
is useful for making the best usage of it.

3.1 The Esterel v5 91 Compiler Structure

The Esterel v5 91 compiler is made out of several internal processors con-
trolled by a single esterel command. Normally, the user should only call
this command and should never call directly the internal processors. How-
ever, it is important to know the names and functions of the processors.
For this, it is necessary to understand how the compiler handles source and
intermediate codes using simple file suffix rules.

strl A file foo.strl contains source Esterel code. It can contain sev-
eral modules.

ic A file foo.ic contains intermediate Esterel code. A file foo.ic is
obtained from a file foo.strl by running the strlic processor.
Each source module produces an intermediate code module, which
starts by a set of tables and continues by a set of statements
written in an imperative parallel kernel code roughly equivalent
to the kernel Esterel calculus [2] but presented in a graph form,
which is more efficient for compilation purposes. The strlic
processor type-checks the source code and generates the ic code
only if no errors are found.

If a source module contains calls to other modules, the same calls
appear in the ic code.

11
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The current version of ic code is ic8.

The iclc processor resolves open calls and links together several
ic modules by recursively expanding submodule calls. If all sub-
modules are provided, one obtains a fully linked ic module that
contains no submodule calls. Fully linked ic code is also called lc
code for compatibility with previous versions. The iclc processor
also performs type-checking of submodule calls.

The ic format can conveniently replaces source code in libraries.
It can also be used when source code communication is undesir-
able. It is always equivalent to input foo.strl or foo.ic into
the esterel command.

sc A file foo.sc contains unsorted circuit code obtained by the com-
piling process described in [2].

Unsorted circuit code contains the same tables as ic code, but
kernel statements are replaced by equations of a Boolean circuit.
The circuit may be combinationally cyclic, and the equations are
written in no particular order. The lcsc processor transforms
fully linked lc files into sc files. It is the heart of the compiler.

For technical reasons, the Esterel v5 91 compiler uses two versions
of the sc code. Version sc6 is used by default; it is the same as
for Esterel v5 21. The new scoc automaton generator uses the
newer version sc8.

ssc A file foo.ssc contains sorted circuit code. This code code con-
tains the same tables as ic and sc codes, but the equations are
sorted and printed in topological order: any Boolean variable that
appears on the right-hand-side of an equation is previously defined
by another equation. The scssc processor transforms sc files into
ssc files. It accepts only acyclic sc circuit code. The much more
elaborate sccausal processor performs a full constructiveness (or
causality) analysis of sc code and generates a ssc code if the pro-
gram is constructive [1, 2]. The analysis can be expensive if the
program is cyclic.

The current version of ssc code is ssc6

oc A file foo.oc contains automaton code, common to the Lustre
and Esterel compilers. Automaton code contains the same tables
as ic code, but the kernel statement table are replaced by an
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automaton state / transition table. The current version is oc5.
The scoc processor transforms ssc files (version sc8)into oc files.
Unlike unsorted or sorted circuit codes, automaton code can be
generated only for comparatively small programs since state ex-
plosion can occur. When it can be generated, automaton code is
very efficient.

c A file foo.c contains executable C code or ANSI C code. Such
code can be generated in three different ways: from sc code, using
the scc processor; from ssc code, using the sscc processor; from
oc code, using the occ processor. These three processors share
the same executable, which is actually occ. The scc and sscc
commands are simply shell scripts that call occ with different
options.

debug A file foo.debug contains a human-readable form of the ssc or
oc codes, respectively generated by the sscdebug and ocdebug
processors (sscdebug is a shell script that calls ocdebug with an
appropriate option).

blif A file foo.blif contains synchronous circuit descriptions written
in the blif format (Berkeley Logical Interchange Format). Such
a file is generated from a ssc file by the sscblif processor. For
Pure Esterel programs, i.e. programs that handle no data (only
pure signals and counters), the circuit is behaviorally equivalent
to the source Esterel program and it can be directly implemented
in hardware, preferably after combinational and sequential op-
timizations described in other documents. For general Esterel
programs and for Pure Esterel programs to be implemented in
software, the sscblif processor must be used with option -soft,
using the command

esterel -Lblif:-soft foo.strl

The compiler then extracts the control part of the source pro-
gram and prints it as a synchronous blif circuit. This circuit
can be optimized using techniques and tools described in sepa-
rate documents [5, 6] and the optimized version can be used to
rebuild an optimized ssc code using a processor called blifssc
not presented here.
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3.2 Usage of the esterel Command

The esterel command receives as arguments a list of options and a list of
files to be compiled. Options and files can appear in any order. The files
can be either source Esterel files (suffix .strl) or intermediate code files
(suffixes .ic, .lc, .sc, .ssc, and .oc).

Since the general esterel command has numerous options, we have de-
veloped an experimental xesterel graphical user interface to help building
an esterel command line. The options can either be written by hand, for
example in a Makefile, or be generated by xesterel.

First, to be sure to run Esterel v5 91, execute the following command
line:

esterel -version

Replacing -version by -info will print extended information about the
current version.

3.2.1 Basic Usage

The simplest use of the esterel command is to compile a single file foo.strl
with no option, by executing the following command line:

esterel foo.strl

This generates a C code file foo.c by calling successively the processors
strlic, iclc, lcsc, scssc, and sscc. The intermediate code files are re-
moved (see option -K below to keep them). The generated C code is suited
for being embedded in applications. The interface conventions are described
in Chapter 4.

To run simulations, use option -simul:

esterel -simul foo.strl

Then, compile the resulting C program and call the xes simulator

cc -c foo.c
xes foo.o

This works that simply only if the Esterel code does not refer to external
objects such as types, constants, functions, procedures, or tasks. Otherwise,
one must define these objects in the target language (e.g. C) and link them
with foo.o as explained in Chapter 5.



CONTENTS 15

3.2.2 Compiling Multi–Files Programs

If the source code is in several files, say main.strl and aux.strl, put both
file names in the command line and tell what should be the basename of the
result using option -B:

esterel main.strl aux.strl -B foo

This command line also generates a file foo.c. If one forgets to specify the
basename, it will be esterel by default and the object file will be called
esterel.c.

All the Esterel modules that are not themselves included in other mod-
ules are compiled. When including Esterel module libraries, one may need
to specify which is the main module to compile as a program. This is done
using the -main option followed by the main module name:

esterel -main WRISTWATCH watch.strl alarm.strl
stopwatch.strl -B wristwatch

3.2.3 Performing Sanity Checks

Some options perform extensive sanity checks of the Esterel source code:
constructiveness, single emission of single signals, etc. Before embedding
any generated code, it is useful to perform the checks as follows:

esterel -W -Icheck foo.strl

The -W option prints various warnings that are not printed by default. Read
them carefully. The -Icheck option performs checks for constructiveness
and performs other checks on signals. It is detailed in Section 3.5.

3.2.4 Keeping Intermediate Files

To keep the intermediate files for further use, type
esterel -simul -K main.strl aux.strl -B foo

The ic files will be main.ic and aux.ic. The other intermediate code files
will be foo.lc for the linked ic code, foo.sc for the sc code, and foo.ssc
for the ssc code.

To perform the compilation in several steps, for example with an inter-
mediate stop at the sc code level, type

esterel -sc main.strl aux.strl -B foo
esterel foo.sc
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The available options are -ic, -lc, -sc, -ssc, and -oc.
This illustrate the facts that one never needs to directly call the com-

piler’s internal processors and that any intermediate code can be passed to
the esterel command.

Since the Esterel v5 91 compiler internally uses two different versions
of the sc code, there is a slight difficulty when using partial compilation
for automaton generation. By default, i.e. when not using the -A option
the version of sc is sc6. When using the -A option, the version is sc8.
Therefore, using both -A and -sc will generate sc8 code, which can later
only be processed by option -A.

3.2.5 Printing Details about Compiling

To know which processors the esterel command is calling, use the -v ver-
bose option:

esterel -v -simul main.strl aux.strl -B foo

Add option -stat if you want to know how much resources the processors
use.

To know which processors the esterel command would call without
performing the compilation, type

esterel -n main.strl aux.strl -B foo

3.3 Controlling Code Generation

There are three ways to generate code from Esterel programs: from the ssc
sorted circuit code, which is the default, directly from the sc unsorted circuit
code using option -I, which makes it possible to compile all constructively
correct Esterel programs, and from the oc automaton code. We present
them in turn.

3.3.1 Sorted Circuit Code Generation

By default, the C code is generated from the ssc sorted circuit code us-
ing the processor chain strlic, iclc, lcsc, scssc, and sscc. The scssc
processor performs a simple topological sort of the equations, which is fast
but limited. Only statically acyclic programs [1, 2] can be handled in this
way. In such programs, there must be no potential cyclic instantaneous
dependency between signals. When cycles are found, the scssc processor
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prints a textual error message that is usually hard to read. The cycles (more
precisely, the strongly connected components) can be visualized using the
-cycles option:

esterel -cycles foo.strl

This command calls the xes symbolic debugger described in Chapter 6 to
visualize the cycles.

For general programs, one must use the -causal option to generate
sorted circuit code:

esterel -causal foo.strl

The following cyclic programs will now compile:

module Cyclic1:
output X, Y;
present X then emit Y end;
pause;
present Y then emit X end
end module

module Cyclic2:
input I;
output X, Y;
present I then

present X then emit Y end
else

present Y then emit X end
end present
end module

In both programs, there is a static instantaneous dependency from X to Y
due to “present X then emit Y” and a reverse static instantaneous depen-
dency from Y to X due to “present Y then emit X”. In Cyclic1, because
of the “pause” statement, the potential cycle is not an actual cycle since the
dependencies are not active at the same instant. In Cyclic2, the potential
cycle is not an actual cycle since the first dependency is meaningful only if
I is present while the second dependency is meaningful only if I is absent.
(Try esterel -cycles to visualize the static cycles). These facts cannot be
discovered by simple equation sorting. They require the much more elab-
orate constructive causality analysis performed by the sccausal processor
when option -causal is set. Beware: the -causal option can be expensive
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in compiling time and space. More details on code generation from cyclic
programs can be found in Chapter 9.

The -L target language definition option can be used to change the target
language. The L letter is followed by a language name. For example,

esterel -Ldebug foo.strl
esterel -causal -Ldebug cycle.strl

generate a readable code using sscdebug instead of sscc. For Pure Es-
terel programs, one can use the -Lblif option to generate a blif hardware
circuit:

esterel -Lblif foo.strl

Then, the sscblif processor replaces sscc. To extract the control of an
Esterel program for optimized software code generation or verification pur-
poses, one must pass the option -soft to sscblif. This is done as follows:

esterel -Lblif:-soft bigprogram.strl

The Esterel v5 91 compiler is open, and other code generators may be added
to it. For example, typing option -LLego will call the sscLego code gener-
ator, which generates code for the Lego MinstormsTM robots.

3.3.2 Unsorted Circuit Code Generation

Object C code is directly generated from the sc unsorted circuit code when
option -I is used, as in

esterel -I -simul main.strl aux.strl -B foo

The processor chain is strlic, iclc, lcsc, and scc.
Unsorted circuit code has major advantages but also some drawbacks.

Let us start with the advantages.
First, the -I option makes it possible to compile cyclic programs that

contain instantaneous cyclic dependencies between signals, such as the Cyclic
program above. Compiling is always very fast. However, cyclic programs
may or may not have a meaning, according to the constructive semantics
of Esterel described in [2]. With option -I, all Esterel programs generate C
code, be them meaningful or not. At run-time, for each input event, the C
code performs a fast interpretation of the circuit that succeeds and produces
the right output and state change if and only if the program-input pair is
meaningful, i.e. constructive in the sense of [2]. If the program-input pair is
non-constructive, execution returns an error code that must be checked by
the caller. Examples of constructive and non-constructive cyclic programs
are given in [2].

Second, the -I option is especially useful for simulation. Running
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esterel -I -simul foo.strl

and invoking the xes simulator as before, one can simulate any Esterel
program. Constructiveness errors will provoke simulation errors and an ex-
planation of the error will be given directly on the source code using the
xes source code debugging interface, see Section 6.4.8. Furthermore, sym-
bolic debugging is enhanced since the exact control path followed during the
transition is shown on the source code using a green background. Therefore,
we strongly recommend to use option -I when running xes (try it on the
wristwatch example).

The drawback is of course that causality errors are not reported at com-
pile-time when the -I option is used, which may be misleading. Fortunately,
the Esterel v5 91 compiler provides a way to check that a program is con-
structive. Just type

esterel -W -Icheck foo.strl

This calls the aforementioned sccausal processor, performs the full con-
structiveness analysis, but does not generate code. If option -Icheck suc-
ceeds, the code generated with the -I option will never encounter a causality
error and it is safe to embed it. Other properties such as single emission
of single signals are also checked on the way. If errors are found during
the check, they are reported graphically using the xes symbolic debugging
interface.

WARNING: Option -Icheck should always be used before
embedding code generated with option -I. Since this option also
checks single emission of single signals, which is not checked by
default, the option should also be used before embedding any Es-
terel generated code.

3.3.3 Automaton Code Generation

A third possibility for software code generation is to generate an automaton-
based code. The main advantage is speed: reactions using automata are
usually faster than reactions using sorted or unsorted circuit code. The main
drawback is size: in the worst case, the automaton table can be exponentially
bigger than the source code, while the circuit’s size is most often linear
and (rare) worst-case square. Automata are usually preferred for small
applications (man-machine interface drivers, communication protocols, etc).
Try both automata and circuits for a given application, and choose the best.
There is no general choice rule.
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Automaton code generation is done when using the -A option:

esterel -A [-simul] foo.strl

The processor chain is strlic, iclc, lcsc, scoc, and occ. This process
generates an automaton from any constructive Esterel program, but it can
be quite expensive. (Compared to v5 21, there is no more need to use the
-causal option in conjunction with the -A option when generating automa-
ton code. The scoc processor independently performs full constructiveness
analysis).

Inline-code can be generated instead of tables and indirect function calls
for the automaton using the -inline option of the occ processor. This op-
tion generates faster, and sometimes smaller, objects for small automatons.
This option is NOT compatible with the -simul, -sc or -ssc options. The
command line becomes:

esterel -A:-inline foo.strl

A different target language can be specified as for option -L. If option -Abar
is used, the back-end ocbar replaces occ. For instance, -Adebug generates
a readable description of the automaton by calling ocdebug and -Afc2 gen-
erates an automaton in the fc2 format suited for the Esterel verification
tools, calling ocfc2.

3.3.4 ANSI C Code Generation

ANSI C code is available for any kind of code generation. One just has to
specify the -ansi option to the code generator commands are:

• Sorted circuit code generation:

esterel -Lc:-ansi [-causal] [-simul] foo.strl

• Unsorted circuit code generation:

esterel -Ic:-ansi [-simul] foo.strl

• Automaton code generation:

esterel -Ac:-ansi [-causal] [-simul] foo.strl
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3.4 Why Compilation May Fail

Compilation may fail for a variety of reasons.

• The program may have syntax errors, type-checking errors, or logically
inconsistent exclusion or implication relations. The error messages are
printed by strlic.

• The program may contain several modules calling each other in an
inconsistent ways (cyclic structure, type clashes, etc.). The error mes-
sages are printed by iclc.

• The program may contain a statically instantaneous loop, i.e. a loop
with a potentially instantaneous path from loop to end loop. The
error message is printed by lcsc. The current compiler Esterel v5 91
can only handle statically loop-free programs defined in [2].

• The program may have a combinational cycle. In this case, if neither
option -I nor option -causal is specified, the program is rejected by
the scssc processor. A graphical error message can be visualized by
typing

esterel -cycles foo.strl

Use the -I or -causal options to compile cyclic programs.

All Esterel textual error messages have the same format. They can be
directly used by programming tools, such as the Emacs text editor, to point
to the location of the errors (the Emacs <CTRL>-X ‘ “next error” command
is used to jump from one error location to another). All Esterel graphical
error messages are reported using a variant of the xes simulator.

Internal error messages denote compiler bugs and should be reported to
esterel-bugs@sophia.inria.fr together with the result of the command

esterel -info.

and the Esterel source code if possible.

3.5 Sanity Checks

Three options of the esterel commands performs sanity checks on the
program. These checks should be performed before embedding a program.
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• Option -W prints various warnings that can be useful to detect poten-
tial problems in the program.

• Option -Icheck performs a complete constructiveness analysis and
checks for single emission of single signals. No code is generated.

• Option -single checks for single emission of single signals and code
is generated normally.

The checks performed by the -Icheck and -single options can be expensive
since they involve a state reachability analysis.

Constructiveness analysis is detailed in Chapter 9. We only study single
signals here.

3.5.1 Multiple Emission of Single Signals

In Esterel, a signal that is not declared to be combined (also called multiple)
should not be emitted more than once in any reaction. That fact is checked
at run-time in simulation mode but not in embeddable generated C code.
The -Icheck option check this property at compile time for all program
state and inputs, only for programs previously found to be constructive.

The following program does not respect the single signal emission con-
dition:

module SingleError :
input I0, I1, I2;
output O1: integer, O2: integer;
present I0 then

emit O1(0);
emit O2(0)

end present;
present I1 then

emit O1(1)
end present;
present I2 then

emit O2(2)
end present
end module

If the input signals I0 and I1 are both present, then the output signal O1 is
emitted twice. Similarly, if I0 and I2 are simultaneously present, then the
signal O2 is emitted twice. To get the error messages, type
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esterel -Icheck SingleError.strl

Two counter-examples are displayed, one for each signal that violates the
single emission property. Each counter-example is composed of an input
sequence and of a graphical presentation of the execution path that leads to
the error on the source code.

One can make this program correct by adding the relations
relation I0 # I1, I0 # I2;

to make the input signals exclusive. This is done in program SingleOk.strl
to be found in the distribution tape. The -Icheck option then stops com-
plaining.

If the program is statically cyclic, running the -Icheck option followed
by the -causal option will perform twice the constructiveness check. One
can save time by checking constructiveness, checking single emission of sin-
gle signals, and generating code with one command line only using option
-single:

esterel -causal -single constructive.strl

3.6 Options of the esterel command

3.6.1 Version Identification

The first options are useful to print the compiler version.

-version Print the version of the compiler and auxiliary processors.

No compiling is performed.

-info Print extended information about the version compiler and aux-
iliary processors.

No compiling is performed. Please join the output of the com-
mand esterel -info to any bug report.

3.6.2 Verbose Compilation

The next option tells the esterel command to report facts about how
compiling goes.

-v Verbose mode.

Print the calls to the compiler processors.
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-n Explain what compiling will do.

Just as -v, but no compiling is performed.

-stat Compilation statistics.

Print the time and memory used by the auxiliary processors.

-size Print code size.

Print information about the size of intermediate and object codes.

-show Trace automata states.

The -show option is meaningful only in conjunction with the -A
automaton generation option. It displays the race between ex-
plored states and created states [3].

-W,-w Print or hide compilation warnings.

Only harmful warnings are printed by default. The -W option
prints all compilation warnings. Use it before claiming confidence
in a program. On the contrary, the -w option suppresses all warn-
ings for silent compilation.

3.6.3 Code Generation Options

-main Foo Choose the main module to compile.

A set of strl or ic files can contain several modules. By default,
the iclc linker generates code for all root modules, i.e. all modules
that are not themselves called by other modules. This may cause
the presence of undesired modules in the lc linked intermediate
code, such as unused library modules. The -main Foo option
specifies that linked intermediate code should only be generated
for the Foo module.

-L Sorted circuit code generation.

The -L option specifies that the target is sorted circuit code
and can also specify the target language, as in -Lc, -Ldebug,
or -Lblif. The default target language is C, and the default op-
tion is -Lc. In this case, the output file has suffix .c. If another
language is chosen, say by -Ldebug, then the output file has the
language name for suffix, here .debug; The esterel command
calls the back-end processor sscdebug instead of sscc.
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-causal Sorted circuit code generation from cyclic programs.

The -causal option triggers full constructive causality analysis
of the program using the sccausal processor. It is compatible
with option -L, which can be used in conjunction to define the
target language, as in -causal -Ldebug.

-I Unsorted circuit code generation.

The -I option specifies that the target is unsorted circuit code.
When using this option, remember that constructive causality is
not tested at compile time and that all programs generate code.
Constructiveness errors are reported only at run-time. Use op-
tion -Icheck to perform a full constructive causality check of the
program.

-A Automaton code generation.

The -A option specifies that the target is automaton code. The
target language is changed as before: using -Adebug will call
ocdebug instead of occ and generate a readable automaton de-
scription if a file with suffix .debug.

-simul Simulation code generation

The -simul option must be used in conjunction with any of -L,
-I, or -A to generate code suited for simulation using xes or
libcsimul.a. This works only for C code generation.

-s Do not generate code

Compiling is performed, but no output file is generated.

3.6.4 Constructiveness Analysis and Other Verifications

-Icheck Check for constructiveness and perform other verifications

Calls the sccheck processor, which is a variant of the sccausal
causality analysis processor. This will check that the program is
actually constructive, without generating code. Other properties
are verified, such as single emission of single signals. In case
of errors, the messages are displayed graphically using the xes
symbolic debugger, see Chapter 6. We strongly recommend to
use option -Icheck before embedding any Esterel code.
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-cycles Graphically display static cycles To be used for statically cyclic
programs. Executing the command line

esterel -cycles foo.strl

will pop up an error dialog box and source code windows where
the strongly connected components of the program are shown
using a pink background.

-single Graphically display single signals emitted twice This option checks
single emission of single signals (i.e. valued signal without a com-
bination function). Executing the command line

esterel -single foo.strl

will generate code normally unless there is a multiple emission of
a single signal. In that case, the compiler pops an error dialog box
and source code windows where the single signals emitted more
than once are shown. Note: -single implies -causal.

3.6.5 Controlling File Names

-B Define the basename of the generated files

The esterel command takes as arguments a number of files suf-
fixed by .strl, .ic, .lc, .sc, .ssc, or .oc and processes them.
Normally, it directly outputs C code. The basename of the out-
put C file is the basename of the argument file if there is only one
argument, as in

esterel foo.strl

Here, the generated C file is called foo.c. If there is more than
one argument, the default basename is esterel. Since this is
often inconvenient, the -B option allows to define the basename.
For example, the call

esterel foo.strl bar.strl -B foo

puts its result in file foo.c in the current directory.

-D Define the directory in which to place the generated files

The default directory in which the output file is generated is the
current working directory. The -D option modifies this directory.
For example, the call
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esterel foo.strl -D /tmp

puts its result in file foo.c in /tmp.

3.6.6 Partial Compilation

It is sometimes convenient to stop compiling at some intermediate code level.
The following options determine at which level to stop:

-ic Stop the compilation after the production of the ic intermediate
code files. This option is especially useful to store intermediate
code in libraries. For example, the following command puts the
ic code of its argument files in foo.ic, bar.ic and foobar.ic:

esterel -ic foo.strl bar.strl foobar.strl

Notice that each .strl file generates a .ic file.

-lc Stop the compilation after the production of the lc linked inter-
mediate code file.

This option stops the compilation after the iclc processor has
been run. Unlike for the -ic command, there is only one output
file whose name is determined either by the basename of the ar-
gument file if there is only one file argument or by the -B and -D
options (default ./esterel.lc). For example, the command

esterel -lc foo.ic

generates a single linked file foo.lc, the command

esterel -lc foo.strl bar.strl foobar.strl -D ../bar

generates a single linked file ../bar/esterel.lc, and the com-
mand

esterel -lc foo.strl bar.strl -B foo

generates a linked file foo.lc.

-sc Stop the compilation after the production of the sc unsorted cir-
cuit code file.

This option stops the compilation after the lcsc processor has
been run. There is only one output .sc file whose basename is
determined as for the -lc option. The sc file is in format sc6,
unless -A option is used, in which case it is in format sc8.
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-ssc Stop the compilation after the production of the ssc sorted circuit
code file.

This option stops the compilation after either the scssc processor
or the sccausal processor has been run. There is only one output
.ssc file whose basename is determined as for the -lc option.

-oc Stop the compilation after the production of the oc automaton
code file.

This option stops the compilation after the scoc processor has
been run. There is only one output .oc file whose basename is
determined as for the -lc option.

Any intermediate code file can be processed further by calling the esterel
command again. For example, to translate circuit code in foo.sc into sorted
circuit code in foo.ssc, simply type

esterel -oc foo.sc

This is the way to call the scssc processor using only the esterel command.

3.6.7 Keeping Intermediate Files

By default, when compiling a set of files, the esterel command removes all
the intermediate ic, lc, sc, ssc, and oc files it has created on the way. It is
sometimes useful to keep the intermediate code files. Using the option -K,
all intermediate files are kept. The option can be specialized to save only
some particular format, using the forms -Kic, -Klc, -Ksc, -Kssc, and -Koc.

For example, the command
esterel -Klc -Kssc foo.strl bar.strl -B foo

generates foo.c that contains sorted circuit C code, and, in addition, keeps
the linked intermediate ic code in file foo.lc and the sorted circuit code
in file foo.ssc. The intermediate code files foo.ic, bar.ic, and foo.sc
are deleted. The above command is equivalent to the following command
sequence:

esterel -lc foo.strl bar.strl -B foo
esterel -ssc foo.lc
esterel foo.ssc

Remember that Esterel v5 91 uses two versions of the sc code: version sc8
for automaton code generation, version sc6 for the other cases. If you use
intermediate sc files, always use consistently option -A when calling the
esterel command to write and read the files.
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3.6.8 Passing Options to Processors

Processor-specific options can be passed to processors using an additional
‘:’ symbol. This is especially useful for code generators. For example,

esterel -Lblif:-soft foo.strl

calls sscblif with option -soft to extract the control circuit, and

esterel -Adebug:"-emitted -names" foo.strl

calls ocdebug with options -emitted -names for a more verbose debug
printout. Notice the need for quotes when several options are passed to
the back-end processor.
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Chapter 4

The Esterel to C Interface

4.1 Introduction

The Esterel v5 system generates a C code file from a source Esterel program.
The C code can be generated either for direct execution, which is the default,
or for interactive simulation if Esterel is called with the -simul option.

The main object in the generated code is the reaction function, which
inherits the name of the compiled Esterel module. Inputs and outputs are
performed using auxiliary input and output functions whose names are au-
tomatically computed from the module and signal names. The run-time
interface is purely procedural. No assumption is made on the operating
system that supports the execution. The decisions of when an input event
occurs and when signals should be considered as simultaneous are left to
the user. This makes it possible to execute the generated code in arbitrary
execution environments.

The run-time interface is independent of the code generation style: the
sorted equation code generated by the default option or by the -causal
option, the unsorted equation code generated by the -I option, and the
automaton code generated by the -A option have exactly the same interface.

The generated C code may require some auxiliary code to define the
types, constants, functions, procedures, and tasks used in the module’s body.
This auxiliary code is called the data-handling code. Some master code is
also needed to realize the execution interface with the outside world, i.e.
detect input events, call the reaction function, and perform output actions.

We start in Section 4.2 by an overview of the data handling and execu-
tion interface. In Section 4.3, we present the details of the data-handling
interface. Section 4.4 is devoted to the reaction interface. Tasks are handled
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in Section 4.5.
To simplify the presentation, we assume that the C code of an Esterel

program PROG is in a file prog.c. This file is typically generated from
prog.strl by the command

esterel prog.strl

4.2 Overview

If the Esterel source program refers to user-defined types, constants, func-
tions, procedures, or tasks, the user must link the generated code with some
data-handling code that defines the implementation of these objects.

The actual definition of the user-defined types must be known to compile
the generated file prog.c. The type definitions must appear in a file prog.h,
which is automatically included by prog.c. In addition to type definitions,
the prog.h file can contain inline definitions of constants, functions, and
procedures by #define directives. The constants, functions and procedures
not defined in this way can appear in any other C file; we suggest to write
them in a file prog data.c than can be used both in execution and in
simulation mode.

For actual execution, the generated code must also be linked with some
master code that realizes the interface with the outside world (i.e. detects
input events and realizes output events).

Assume that the user decides that the module PROG should react to an
input event, composed for example of two simultaneous input signals I1
and I2, where I2 is a valued signal having as input value the value of the
C expression exp. The user first calls two automatically generated input
C functions PROG I I1 and PROG I I2, the order between the calls being
irrelevant:

PROG_I_I1();
PROG_I_I2(exp);

The user then calls the reaction function by executing the C code

PROG();

WARNING: Reactions are not reentrant and must be executed
in an atomic way. During the execution of the reaction function,
neither user input C functions nor the reaction function itself can
be called.
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During its execution, the reaction function can call the user-supplied C
data-handling functions that implement the functions, procedures, and tasks
declared in the Esterel program. It can also read a sensor S1 by calling the
user-supplied sensor C function PROG S S1 that should return the sensor’s
value.

If the Esterel program emits the output signal O1, the generated C code
calls the user-supplied output C function PROG O O1 with the appropriate
output value as argument if the signal O1 is valued.

To summarize, the user must write functions to read sensors, named
PROG S xx, and output functions, named PROG O xx. The reaction function
PROG and the input functions PROG I xx are defined by the Esterel compiler
in the generated code. Notice that all functions related to program input,
output, or execution are prefixed with the program name. On the contrary,
the data-handling function names and the module names are not prefixed.
Therefore, it is unwise to use a name of the predefined C functions as esterel
function name (itoa for example) and a C reserved word as module name
(switch or main for example).

4.3 C Code for Data Handling

4.3.1 Where to Define the Data-handling Objects

Assume as before that the basename used by Esterel is prog. Then a direc-
tive of the form

#include "prog.h"

is generated in the prog.c file if the Esterel input file declares a type, a
constant, a function, a procedure, or a task.

The prog.h include file must contain the code needed to separately com-
pile the generated prog.c C file. Therefore, prog.h must at least contain
the C definition of the user-defined types used in the source program. It can
also contain inline constant, function, and procedure definitions by #define
directives.

The constants, functions, and procedures used in the Esterel source pro-
gram and not #defined in prog.h are automatically declared to be extern
in the generated file prog.c. They can be defined in any other C file. As
said before, it is often convenient to write them in a file prog data.c.

In all cases, the types, constants, functions, and procedures must be
defined in C with the same name as in the Esterel.
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4.3.2 Predefined Types

The basic type integer is implemented as int. The basic type boolean
is also implemented as int, with constants false = 0 and true = 1. The
basic types float and double are respectively implemented by the C types
float and double.

There are some peculiarities for the basic type string, since there is no
real string type in C. It is implemented as follows: the type itself is declared
as char*; a variable VAR of type string is declared as an array of characters
and is allocated in the generated code, by the declaration

char __PROG_Vxx [STRLEN];

where xx is some allocation number. The constant STRLEN is set to 81 in
file prog.c. You must edit this file to change the length of strings, or use
compiling command of the form

cc -DSTRLEN=125 -c prog.c

String assignment is done by copy using the C strcpy function. If you really
want variable length strings, then you must define your own user type!

4.3.3 User-defined Types

The file prog.h must contain a type definition for each user type declared
in the source program. If a type is called T in the source program, it must
also be called T in prog.h. Any declaration of a variable or signal of type T
in the source program generates a C declaration of the form

T __PROG_Vxx;

Therefore, it is preferable to use the typedef C construct to declare the
types. This is compulsory for structures. Here is an example:

typedef struct
{

int hours;
int minutes;
int seconds;

} TIME;

If T is a user type defined in a module, the module can refer to the assignment
procedure for T and to the Boolean equality and inequality functions for
objects of type T. Such references are generated only if necessary.
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Assignment Function

A reference to the assignment procedure is generated in the following cases:

• There is an explicit assignment or variable initialization of type T, i.e.
the assignment symbol “:=” is used somewhere for a variable of type
T.

• There is a valued signal of type T, either in the main module or in
one of its submodules. In the case of valued signals, assignment is
necessary to handle signal emissions.

• An exec statement calls a task with a reference parameter of type T.

For assignments to be correctly generated, the user must write an assignment
function for each user type T. This C function will be automatically called
to execute assignments. It takes two arguments, the first one of type T*, the
second one of type T. Since the result of an assignment function is never used,
the result type should be void. For example, the source Esterel assignment

X := exp

where both X and exp are of type T generates the following C code:

_T(&__PROG_Vxx, exp)

WARNING: Assignment must always be done by full copy or
be equivalent to a full copy (or bitwise copy). Arbitrarily strange
behaviors can appear otherwise.

If C supports assignment by bitwise copy on type T, then one can just define
T in the following way:

#define _T(x,y) (*(x)=y)

The parentheses are needed to avoid priority conflicts. Notice that a source
assignment X := exp generates the C assignment

(*(&__PROG_Vxx) = exp)

which is immediately translated back into PROG Vxx = exp by the C com-
piler. There is no loss of efficiency.
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Equality Function

A reference to the equality function of type T is generated if and only if a
comparison “=” between objects of type T appears in the Esterel code.

In this case, the user must write an equality function named eq T. This
C function takes two arguments of type T and returns a Boolean, i.e. an int
in C. For example, the definition of equality for type TIME could be:

int _eq_TIME (t1, t2)
TIME t1, t2;

{
return ( t1.hours == t2.hours

&& t1.minutes == t2.minutes
&& t1.seconds == t2.seconds);

}

In the same way, if unequality is used for type T in the source program, an
unequality C function named ne T must be defined. This C function has
the same type as eq T; it can be defined as the negation of eq type, but
sometimes a more clever implementation can also be used.

A reference to the unequality function of type T is generated if and only
if a comparison “<>” between objects of type T appears in the module or
one of its submodules.

An Example with Arrays

Let us consider an example that involves arrays. Since there is no array
type declaration in C, arrays have to be encapsulated in structures. Notice
the use of the assignment and inequality C functions of the underlying TIME
type.

typedef struct {TIME array[10];} ARRAY_10_OF_TIME;
_ARRAY_10_OF_TIME (pa, a) /* assignment */

ARRAY_10_OF_TIME *pa, a;
{

int i;
for (i = 0; i < 10; i++)

_TIME(&(pa->array[i]), a.array[i]);
}
int _eq_ARRAY_10_OF_TIME (a1, a2) /* equality */

ARRAY_10_OF_TIME a1, a2;
{

int i;
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for (i = 0; i < 10; i++)
if (_ne_TIME(a1.array[i], a2.array[i])) return 0;

return 1;
}
int _ne_ARRAY_10_OF_TIME (a1, a2) /* inequality */

ARRAY_10_OF_TIME a1, a2;
{

int i;
for (i = 0; i < 10; i++)

if (_ne_TIME(a1.array[i], a2.array[i])) return 1;
return 0;

}

4.3.4 Conversion To and From Strings

When the Esterel C code is generated for interactive simulation, objects of
arbitrary types must be printed by the simulators and possibly entered as
input signal values. For this, the user must define a string representation for
each user-defined type and provide three conversion functions: a function
that converts an object into a string for printing, a function that converts a
string to an object for reading, and a function that checks the syntax of a
string to be read.

The printing function for type T must be called T to text. It must take
a type T object as argument and returns a pointer to characters.

The reading function for type T must be called text to T and it must
return void. It must take as arguments a pointer to characters and a pointer
to T. The function must convert a string into a T object by performing side-
effects on its pointer argument, the T object being allocated in the generated
code.

The checking function must be called check TYPE. It must take a pointer
to character as argument and return an int. The function must returns 0
if the string is not valid, i.e. if the string is not accepted by the text to T
conversion function as a T object representation.

For example, if the Esterel program uses a type TIME declared as a
C struct compound of three integer fields called hours, minutes, and
seconds, the conversion functions could be defined as:
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void _text_to_TIME (time_ptr, str)
TIME* time_ptr;
char* str;

{
sscanf(str, "%d:%d:%d",

&(time_ptr->hours),
&(time_ptr->minutes),
&(time_ptr->seconds));

}
char* _TIME_to_text (time)

TIME time;
{

static char buf[9]="";
sprintf(buf, "%02d:%02d:%02d",

time.hours,
time.minutes,
time.seconds);

return (buf);
}

The above functions convert a dd:dd:dd string representation of time to a
type TIME object, and conversely.

Notice that no TIME object is allocated by the text to TIME conversion
function; it only performs side-effects using its time ptr pointer argument.
Notice also that the handling of string representations is up to the user. In
the above TIME to text function, our choice is to use a static character
array buf. This is correct since the xes and csimul simulators guarantee
that the conversion function is never called twice before printing the string
representation.

A possible implementation of the check TIME function is

int _check_TIME (string)
char* string;

{
int hours, minutes, seconds;
return(( sscanf(string, "%d:%d:%d",

&hours, &minutes, &seconds) == 3)
? 1 : 0);

}

This is of course a partial check. One could also checks for the bounds of
the numerical fields.
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Remark: It is convenient to write the string conversion func-
tions together with the other data-handling functions. Their def-
initions can be enclosed in a “#ifdef SIMUL” directive, making
them defined only in simulation mode.

4.3.5 Constants

Each constant used in the Esterel program must be defined in C with the
same name, unless it is initialized in the Esterel code. A constant can
be defined either by a #define directive in prog.h or by a standard C
variable definition. If not #defined, a constant is automatically declared to
be extern in prog.c. It can therefore be defined in any other file. Consider
the example:

constant NUMBER_OF_PERSONS: integer,
LUNCH_TIME: TIME;

Then prog.h can contain
#define NUMBER_OF_PERSONS 45

and prog data.c can contain:
TIME LUNCH_TIME = {12, 0, 0};

4.3.6 Functions

Each function used in the Esterel program must have a C definition. The
definition can be given either by a #define directive in prog.h or by a clas-
sical C function definition. If not #defined, the C function is automatically
declared to be extern in the generated file prog.c.

A C function definition must match the source function type declaration.
For example, let us define the function declared in the PROG module by the
following Esterel declaration:

function FETCH (ARRAY_10_OF_TIME, integer) : TIME;

A possible definition is:
TIME FETCH (a, i)

ARRAY_10_OF_TIME a;
int i;

{
return(a.array[i]);

}
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4.3.7 Procedures

Each procedure used in the Esterel program must have a C definition, using
either a #define directive in prog.h or a standard C function definition in
some other file. If not #defined, the C function is automatically declared
to be extern in prog.c.

An Esterel procedure has two argument lists: the first one is the list
of reference arguments, the second one the list of value arguments. In C,
the two lists are concatenated into a single list; the reference arguments
are passed by pointers and the value arguments are passed by value. For
example, consider the Esterel procedure declaration:

procedure PROC (T1) (T2);

The corresponding C function PROC has two arguments, the first one of type
pointer to T1, the second one of type T2. Therefore, the correct C declaration
is:

void PROC (pt1, t2)
T1 *pt1;
T2 t2;

{
...

}

Here is another example:

procedure STORE (ARRAY_10_OF_TIME) (integer, TIME);

A correct C implementation is:

void STORE (pa, i, t)
ARRAY_10_OF_TIME *pa;
int i;
TIME t;

{
_TIME(&(pa->array[i]), t);

}

Notice the use of the assignment function TIME to perform the time update.
There is an exception for strings, which are already pointers. No addi-

tional pointer is generated for strings appearing in the reference argument
list. For example:

procedure STORE_CHAR (string) (integer, CHAR);
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can be implemented by

void STORE_CHAR (s, i, c)
char *s;
int i;
CHAR c;

{
s[i] = c;

}

where CHAR is a user type implemented by char. The declaration “char *s”
is used instead of “string *s” as would be the case for user types.

4.4 The Reaction Interface

The reaction function provided by the Esterel compiler for a program PROG
is also called PROG. In addition, for input and output, the generated code
provides a function for each input signal, and the user must provide an
output function per output signal and a sensor function per sensor.

4.4.1 Input Signals

For each input signal IS, the Esterel compiler generates an input C function
called PROG I IS, which takes an argument of the appropriate type if the
signal IS conveys a value. For example, from the Esterel declarations

input WATCH_MODE_COMMAND;
input WATCH_TIME (WATCH_TIME_TYPE);
return R;

appearing in a module named DISPLAY, the compiler generates the following
functions:

void DISPLAY_I_WATCH_MODE_COMMAND () {...}
void DISPLAY_I_WATCH_TIME (__V) WATCH_TIME_TYPE __V; {...}
void DISPLAY_I_R () {...}

When a program PROG should react to an input event composed of one or
more simultaneous input signals, the associated input C function(s) should
be called before calling the main execution function PROG.

If several input functions are called before calling PROG, the correspond-
ing input signals are considered as forming the current input event of the
reaction. The input signals are considered as being simultaneous. There-
fore, the notion of “simultaneous signals” is a purely logical one at the C



42 CONTENTS

level. Two signals are considered as simultaneous at that level as long as
their input C functions are both called before calling the reaction function.
Which signals are to be considered as simultaneous and when to call the
automaton is entirely left to the user.

For single signals, if the same input function is called twice, only the
last call matters. For combined signals, the values of successive calls to the
input function are combined using the signal’s combination function.

WARNING: In the C code, the ordering between the input
function calls forming an input event is irrelevant.

For example, assume that some signals have arrived from the external
world, say a pure signal IS1 and an integer-valued signal IS2 conveying the
integer value 3. To perform the corresponding program reaction, one must
first call the two automatically generated input functions PROG I IS1 and
PROG I IS2 and then call the C function PROG. One can execute the following
sequence:

PROG_I_IS1 ();

PROG_I_IS2 (3);

PROG ();

Assume now that IS is a combined integer signal with addition as combina-
tion function and that the following sequence is executed

PROG_I_IS (1);

PROG_I_IS (2);

PROG ();

then the current value of IS is 1 + 2 = 3 just before the call to the reaction
function. This sequence is exactly equivalent to the following one:

PROG_I_IS (3);

PROG ();

4.4.2 Return Signals

Return signals are particular input signals used to signal the completion of
external tasks, see [1]. In the C generated code, return signals are handled
exactly as standard input signals.
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4.4.3 Output Signals

For each output signal OS, the user must write a void output C function
PROG O OS that takes an argument of the appropriate type if the signal OS
conveys a value. This function is automatically called by the reaction func-
tion if the signal is emitted.

WARNING: The order of the output function calls performed
by the reaction function is arbitrary and unspecified1.

Assume that a reaction causes the output of a pure signal OS1 and of an
integer signal OS2 with value 4. Then PROG calls the user-defined C functions
PROG O OS1 and PROG O OS2 with the appropriate arguments; the following
calls will be executed (in arbitrary order) in the body of PROG:

PROG_O_OS1 ();
PROG_O_OS2 (4);

The C functions PROG O OS1 and PROG O OS2 must do whatever is necessary
to communicate with the actual environment.

4.4.4 Inputoutput Signals

For an inputoutput signal IOS, an input C function PROG I IOS is automat-
ically generated as for an input signal, and the user must write an output
C function PROG O IOS as for an output signal.

An inputoutput signal IOS received by the reactive program behaves as if
it was internally emitted by it, and is therefore re-emitted outside whenever
received in a reaction:

• if IOS is a pure inputoutput signal, then PROG O IOS is called if IOS is
received or emitted by the program. Therefore, PROG O IOS is always
called by the reaction function if PROG I IOS was called before.

• If IOS is a single signal, then there are two cases:

– If IOS is received by the program, it cannot be emitted by it
in the same reaction, which is detected by the Esterel compiler
when option -Icheck is set. The function PROG O IOS is called
with argument the value received by PROG I IOS.

1According to the Esterel semantics, this ordering cannot be specified
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– If IOS is not received, then PROG O IOS is called if and only if IOS
is emitted by the program; the argument of PROG O IOS is the
emitted value.

• If IOS is a combined signal, then all the emitted or received values are
combined using the signal’s combination function; the output function
PROG O IOS is called if and only if IOS is received or emitted, with
argument the combined value.

4.4.5 Sensors

A program reaction can access the current values of sensors. Let SE be a
sensor of type T. If the program needs the current value of SE to perform its
reaction, it calls an argumentless user-supplied sensor C function PROG S SE.
This function must return a value of type T, which is the sensor current value.
To ensure sensor value consistency, the program calls each sensor C function
at most once in a reaction. Here is an example:

int PROG_S_TEMPERATURE () {...}

4.4.6 Reaction and Reset

For the Esterel main module PROG, the Esterel compiler generates a void ar-
gumentless C reaction function PROG and a void argumentless reset function
PROG reset that resets the program by performing the following actions:

• resetting the program to its initial state.

• resetting the valued interface signals for which an initial value was
provided in Esterel source code.

The reset function should be called before any reaction is performed if there
are initialized interface signals in PROG. To perform a program reaction, one
calls the input C functions and then call the reaction function, as in:

PROG_I_IS1 ();
PROG_I_IS2 (3);
PROG ();

Programs often contain instantaneous initial statements, such as signal emis-
sions or variable initializations, to be performed during the first reaction. To
perform them, it is often useful (but not mandatory) to generate a “blank”
initial event by calling the reaction function before calling any input C func-
tion. (This “boot transition” is different from the automaton reset).
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4.4.7 Warnings and Advises

• Since assignments of initial values to valued interface signals are per-
formed by the reset function, it is highly mandatory to always call the
reset function before initialization if there are initialized signals.

• The relations between input signals specified in the source program
are not checked when the automaton is called in direct embedded
execution. The code may behave strangely if called with inputs which
do not satisfy the relations. However, the simulation interface does
enforce relations.

• The combination functions associated with combined signals must be
commutative and associative. Otherwise, the results of signal combi-
nations can be arbitrary since the combination order depends on the
action schedule chosen by the compiler.

• The automaton code is not reentrant and its execution must be atomic.
Therefore, during a call to the automaton, it is forbidden to call it
again and to call input C functions. Arbitrarily strange behaviors can
arise otherwise. In particular, interrupt handling routines should never
call directly input C functions or the automaton. They should instead
fill event queues to be read when the automaton call terminates. One
can also use interruption masking during the automaton execution.

• Access to uninitialized variables and uninitialized signal values are not
checked when the reaction function is called in direct execution. But
the simulation engine does enforce this check.

4.5 Task Handling

We now describe the interface of the C code generated by the Esterel com-
piler for an exec statement. This code reflects concretely the way tasks are
handled abstractly in Esterel. It is organized in two layers. The low-level
layer is a direct interface to run-time C data structures that contain all the
required information about the status of exec statements. The optional
higher-level layer provides the user with a functional interface.

Our design might look heavy at first glance, but it intends to provide
the user with maximal flexibility with respect to actual task handling. The
functional interface is reasonably simple, but not fully general since other
ways of interfacing exec statements can be thought of, in particular as
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far as task suspension is concerned. The low-level interface is meant to be
convenient for any user who wants to design its own fine-grain task handling.

Notice that we do not provide the user with an actual asynchronous task
handling interface, because this is highly dependent on particular operating
systems.

4.5.1 Low-level Layer: the ExecStatus Interface

We assume that the main module is called PROG. The following C function
returns the number of exec statements in the compiled program:

int PROG_number_of_execs ();

The following C function returns the number of exec statements associated
with a task of name TASK in the compiled program:

int PROG_number_of_execs_of_TASK ();

The ExecStatus Structure

Each exec statement, which is uniquely identified by its return signal, is
associated with a C structure of type ExecStatus that contains all relevant
information about the exec status just after a reaction. This structure can
be recovered in three ways:

by name: for each exec of return signal R, the generated C code contains a
variable PROG exec status R declared by:

ExecStatus PROG exec_status_R = ... ;

by absolute number: the generated code declares an array of pointers to the
ExecStatus variables, of size PROG number of execs(), which

has one entry for each exec statement:

ExecStatus *PROG exec_status_array [] = ... ;

by relative number: for each task TASK, the generated code contains an array
of pointers to the ExecStatus variables, with one entry for each
exec of that task. The size of the array is given by the function
PROG number of execs of TASK():

ExecStatus *PROG exec_status_array_of_TASK[] =
... ;
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Here is the definition of the ExecStatus structure:

typedef struct
{

unsigned int start : 1 ;
unsigned int kill : 1 ;
unsigned int active : 1 ;
unsigned int suspended : 1 ;
unsigned int prev_active : 1 ;
unsigned int prev_suspended : 1 ;
unsigned int exec_index;
unsigned int task_exec_index;
void (*pStart)(); /* takes a function as argument */
int (*pRet)(); /* may take a value as argument */

} __ExecStatus;

The meaning of these fields is as follows:

start has value 1 if and only if the exec statement starts
and is not immediately killed. In that case, a new in-
stance of the task code should be started in the current
instant. See below for how to recover the actual param-
eter values using the pStart field.

kill has value 1 if and only if the exec statement is killed
in the current instant. Then, the currently running
instance of the task should be killed; notice that kill
can only be 1 if there is such a running instance.

active has value 1 if and only if the exec statement is active in
the current instant; this means that the exec is started
in the current instant or has been started before, has
not yet been killed, and that the task code has not yet
returned.

suspended has value 1 if and only if the exec statement is active
and suspended in the current instant by an enclosing
suspend statement.

prev active has value 1 if the exec was already active in the previ-
ous Esterel instant.

prev suspended has value 1 if the exec was suspended in the previous
instant.
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exec index an integer index identifying uniquely the exec state-
ment. This index ranges between 0 and n − 1 if the
Esterel program contains n exec statements after full
submodule instantiation.

task exec index an integer index identifying uniquely the exec state-
ment among those referring to the same task. This
index ranges between 0 and p − 1 if the Esterel pro-
gram contains p exec statements for this task after full
submodule instantiation.

pStart an auxiliary function pointer to be used at start time,
i.e. when start is 1. See details below.

pRet a pointer to the return function PROG I R associated
with the return signal, if the name of the main module
is PROG and the name of the return signal is R (re-
member that a return signal is just a particular input
signal). See details below.

The function pointed to by pStart takes a user-provided function as argu-
ment, and the reference and value arguments are passed to this user function
with the same convention as for a procedure (reference arguments as point-
ers, value arguments as values). A typical use is

if (exec_status.start)
(*exec_status.pStart) (my_start);

This will call the user-provided function my start with arguments the ar-
guments of the task at start time.

The user-provided function my start should perform two actions: effec-
tively starting the task in the environment, and saving the pointers to the
reference arguments for their update at return time, see below.

Calling the (*pRet) or PROG I R function in the master code amounts to
emitting R, hence to signal to Esterel that the task is completed. The return
function takes a value if and only if the return signal carries a value; then
the value passed becomes that of the return signal. The return function can
be called either directly using its full name PROG I R or indirectly through
the pRet pointer.

When the return function is called, the locations pointed by the pointers
passed at start time for reference arguments are supposed to contain the
values updated by the task.



CONTENTS 49

Notice that there are redundancies between the fields of ExecStatus.
For example, prev active and prev suspended could be computed directly
by the user. However, we chose to include these informations since they are
very easy to compute from within Esterel and very handy for the user.

Reincarnation of exec Statements

Notice that an exec statement can be killed and restarted in the same
instant, for example by executing the following:

loop

exec T(...)(...) return R

each I

In this case, when I occurs, there may be two active occurrences of the task
code that the user has to manage properly. The first one is the one being
killed, the second one is the one being started. There can be no more that
these two occurrences.

Handling Reference Arguments

Let us give more details on the handling of reference arguments. Consider
an Esterel variable X implemented as a C variable of location X, and assume
that X is passed by reference in an exec statement.

At starting time, the contents of X are copied into another location L
whose address is passed to the user starting function my start. During task
execution, the user may freely modify the contents of L. At return time,
i.e. when PROG I R or equivalently (*pRet) and then PROG are called, the
contents of L are automatically copied back to location X.

This copy-restore mechanism is made necessary by the possibility of
killing exec statements: if reference arguments could be modified in place
at location X before an exec gets killed, the value of X would change in the
Esterel program, which is forbidden by the Esterel semantics.

Update of reference arguments must be performed in place in the location
L passed to the user starting function my start; this is why these pointers
should be saved by my start. Actual update of X by L is triggered only
when the automaton PROG is called with return signal R present (and of
course only if the exec statement is not killed by an enclosing abortion
statement).
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4.5.2 The Functional Interface to Tasks

We now describe the much simpler functional interface. The user should
provide four C functions:

• A user start function to start the task. This function receives the
reference and value parameters plus a pointer to the ExecStatus
record of the exec statement as the last parameter; this is useful to
index process-id tables associated with asynchronously running oper-
ating systems tasks, using the exec index fields.

• A kill function that is called when a task is killed, with a pointer to
the ExecStatus structure as argument.

• A suspend function that is called when the task becomes suspended,
i.e. is now suspended but was not suspended in the previous instant
(suspended=1, prev suspended=0). This function also receives a poin-
ter to the ExecStatus structure as argument.

• A resume function that is called when the task should resume, i.e.
when it was suspended at previous instance and it is neither suspended
nor killed in the current instant. This function also receives a pointer
to the ExecStatus structure as argument.

To use the functional interface, one simply has to write a call to a specific
STD EXEC library macro with arguments the return signal name and the user
functions, this for each exec and right after each call to the automaton:

#include "exec_status.h"
my_start () { ... }
my_kill () { ... }
my_suspend () { ... }
my_resume () { ... }
...
PROG(); /* perform a transition */
STD EXEC (R1, PROG,

my_start_1, my_kill_1,
my_suspend_1, my_resume_1);

STD EXEC (R2, PROG,
my_start_2, my_kill_2,
my_suspend_2, my_resume_2);

A special DUMMY function can be used if a user function is not necessary,
for instance if there is no suspend statement in the Esterel program:
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STD EXEC (R2, PROG,
my_start_2, my_kill_2, __DUMMY__, __DUMMY__);

Finally, one can also write
STD EXEC_FOR_TASK (TASK, PROG,

my_start, my_kill,
my_suspend, my_resume);

This calls STD EXEC for all return signals of task TASK.
To get familiarity with the functional and low-level exec generated code

interfaces, we recommend reading exec status.h.

4.6 The sametype Utility

In the context of a simulation, it may be convenient to define a user-type
either as a predefined type or as an already defined user-type. For that
purpose, a tool named sametype and a C header file csimul.h are provided
in the Esterel distribution tape. The sametype tool is used to define a new
type as a synonym of a previously defined one; it automatically generates
all the C definitions required by the simulator. The csimul.h header file
contains all the predefined type definitions; it must be included by C files
using Esterel predefined types. These tools allow a quick implementation of
a C simulator to ensure that the final program works well.

The executable file sametype must be called with the following syntax:

sametype NEW_TYPE OLD_TYPE

where NEW TYPE and OLD TYPE respectively denote the user-type to be de-
fined and the target type used as actual definition. For example, if type
TEMPERATURE is to be defined as a synonym for the predefined type integer,
all necessary C definitions for type TEMPERATURE will be automatically de-
duced from those of integer, using the shell command

sametype TEMPERATURE integer

This command generates on the standard output stream the C definition of
NEW TYPE and the C definitions of all the functions associated to this type
and required for the simulation: the assignment function, the equality and
inequality test functions and the string conversion functions.

If the Esterel program uses no external object (type, constant, function,
or procedure), the output of the sametype command can be added to the
header file prog.h,
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sametype TEMPERATURE integer >> prog.h

The definitions generated by sametype use the definitions of OLD TYPE and
of its associated functions. If OLD TYPE is a user-defined type, its defini-
tion must be provided in the file prog.h before the definition of NEW TYPE,
otherwise OLD TYPE must be one of the following types: integer, boolean,
float, double, or symbolic. The type symbolic must be used instead of
string. The C definitions of the types integer, boolean, and symbolic
are provided in the header file csimul.h that must be included in the file
prog.h. Provided that csimul.h has been correctly installed, it should be
included by using the following directive:

#include <csimul.h>

The functions associated to the types integer, boolean, float, double,
and symbolic are provided in the simulation toplevels csimul and xes.

If the Esterel program declares constants of type NEW TYPE, the actual C
definitions for these constants can be provided in the file prog.h after the
definitions generated by sametype.

As a summary, in the simple case where no procedure or function is
declared in the Esterel program, the file prog.h has the following contents
(assuming OLD TYPE is not a user-type):

prog.h

#include <csimul.h>
/* Definitions associated to NEW_TYPE
* and generated by sametype */

typedef OLD_TYPE NEW_TYPE;
_NEW_TYPE(x,y) NEW_TYPE* x; NEW_TYPE y; {_OLD_TYPE(x,y);}
boolean _eq_NEW_TYPE(x,y) NEW_TYPE x; NEW_TYPE y; { ...
boolean _ne_NEW_TYPE(x,y) NEW_TYPE x; NEW_TYPE y; { ...
NEW_TYPE _cond_NEW_TYPE(x,y,z) boolean x; NEW_TYPE y; ...
char* _NEW_TYPE_to_text(x) NEW_TYPE x; { ...
boolean _check_NEW_TYPE(x) char* x; { ...
_text_to_NEW_TYPE(x,y) NEW_TYPE* x; char* y; { ...
/* Other type and constant definitions */
...

If the Esterel program declares procedures or functions, the definition of
NEW TYPE generated by sametype should be added in the header file prog.h
while the definitions of the functions generated by sametype should be added
in a C file, prog data.c, that also includes the header prog.h (using a
#include directive). For that purpose, the following commands can be
entered:
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sametype NEW_TYPE OLD_TYPE | head -1 >> prog.h
smetype NEW_TYPE OLD_TYPE | tail -7 >> prog_data.c

Then the C definitions of the Esterel procedures and functions must be
added in the file prog data.c.

Then, the files prog.h and prog data.c have the following contents:
prog.h

#include <csimul.h>

/* Definition of NEW_TYPE generated by sametype */
typedef OLD_TYPE NEW_TYPE;

/* Other type and constant definitions */
...

prog data.c

#include "prog.h"

/* Functions associated to NEW_TYPE and generated
* by sametype */

_NEW_TYPE(x,y) ...
boolean _eq_NEW_TYPE(x,y) ...
boolean _ne_NEW_TYPE(x,y) ...
NEW_TYPE _cond_NEW_TYPE(x,y,z) ...
char* _NEW_TYPE_to_text(x) ...
boolean _check_NEW_TYPE(x) ...
_text_to_NEW_TYPE(x,y) ...

/* Other hand-written functions associated to Esterel
procedures and functions */

...

WARNING: The type string cannot be used as OLD TYPE
for variable allocation problems. It is conveniently replaced by
the type symbolic which behaves like the string type. The type
symbolic is useful for Esterel user-types which do not have any
real contents like protocol messages.
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Chapter 5

Building Esterel Simulators

5.1 Introduction

The Esterel v5 system contains two tools for interactive or batch simulation
of Esterel programs: the xes graphical simulator, which includes source-
code debugging facilities, and the csimul stream-based interactive or batch
simulator.

The xes simulator requires a graphical workstation (X-window based for
Unix versions, or PC NT). Events are entered by clicking on buttons, and
additional debugging information is displayed directly on source code.

The csimul simulation toplevel provides the user with a purely tty or
file stream-based interface. In interactive mode, the user repeatedly enters
an input event and the simulator replies by printing the associated output
event and possibly additional informations about the internal state, signal
and variable values, and external tasks current state. In batch mode, events
and commands are read from files.

Using its session recorder/player, the xes simulator can also write and
read simulation files in the same format as csimul.

This chapter explains how to build Esterel simulators. Chapter 6 ex-
plains how to use the xes simulator, while Chapter 7 is devoted to the
csimul simulator

For simplicity, we assume that the Esterel program is in a single file
prog.strl.
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5.2 Building a Simulator

For both tools, the simulated code is the C code obtained by compiling the
Esterel program with the -simul option:

esterel -simul prog.strl

The simulation code can be generated with any of the code generation op-
tions of the esterel command. To have full source code debugging in xes,
we advise to use the -I option:

esterel -I -simul prog.strl

However, constructiveness will not be checked beforehand since it is only
checked in each reaction, see Section 3.2.3. Use esterel -Icheck to check
it beforehand.

Compared to the normal embeddable generated code, the simulation
code in prog.c has handles to be used by simulator toplevels to pass events
and to retrieve debugging information such as values of signals and variables.
This code must be linked to a simulation toplevel library and possibly to
data-handling code written as explained in Chapter 4. Executable simula-
tion files are called simulators.

WARNING: Only C code generated with the -simul option
can be used for Esterel simulation. The linking phase will fail
otherwise.

5.3 Simulating Simple Programs

A source Esterel program that involves no user-defined types, constant, func-
tions, or procedures can be simulated right away without writing any other
C code. This is true even if the Esterel program executes external tasks,
since task execution is interactively simulated under user control. The sim-
plest way to run a simulation is to compile the C file and to call the xes
command:

cc -c prog.c
xes prog.o

The graphical simulation process proper is described in Chapter 6.
To build a csimul simulator, link the generated C file with the libcsimul.a

simulation library to be found in the Esterel tape:
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prog.strl

?
esterel -simul prog.strl

prog.c
�
�

�
�

?
cc -c prog.strl

prog.o�

prog
�� �

�
libcsimul.a�

Figure 5.1: Building a simple Esterel simulator

cc -o prog prog.o -lcsimul

provided that the library is in your library load path. The library file can
also be passed explicitly:

cc -o prog prog.o /usr/local/lib/esterel/libcsimul.a

Figure 5.1 summarizes the building of a simulator from the prog.strl file
using the library. Only prog.strl is written by the user. Arrows denote
compilations and lines denote the UNIX loader ld.

5.4 Simulating Programs with User-Defined Data

For programs that involve user-defined data objects, the data-handling C
code described in Chapter 4 must be provided by the user. If the program
involves user-defined types, these types must be defined in a prog.h file. The
data operation must be defined in one or more C files. In particular, the
conversion functions from types to string must be provided to print values,
and the reverse conversion and checking functions from string to types must
be provided for types for which values can be entered as values of input
signals or sensors. These conversions are described in Section 4.3.4. Here
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Figure 5.2: Building an esterel simulator using external data types

we assume that all data operations are in prog data.c. The xes simulator
is started as follows:

cc -c prog.c
cc -c prog_data.c
xes prog.o prog_data.o

To avoid typing a long xes command, one can save the graphical simulator in
a fast-loadable file and feed this file later on into xes to run the simulation:

xes -o xprog prog.o prog_data.o
xes xprog.exe

Notice the exe suffix, necessary for compatibility between Windows NT and
Unix.

The csimul simulator is built as follows:

cc -c prog.c
cc -c prog_data.c
cc -o prog prog.o prog_data.o -lcsimul

provided that the library is in your library load path. The library files can
also be passed explicitly:
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cc -o prog prog.c prog_data.c \
/usr/local/lib/esterel/libcsimul.a

Figure 5.2 illustrate this case. As in Figure 5.1, only files of which the names
are enclosed in rectangular boxes are written by the user. In our example,
there are three such files: the Esterel source file prog.strl, the C header file
prog.h that contains the type definitions and the C file prog data.c that
contains the data-handling code. Thin lines illustrate C #include directives.
Thick arrows denote compilations and thick lines denote the UNIX loader.

5.5 Multi-Module Files

The generated code file can contain several Esterel root modules, i.e. modules
that are not instantiated in other modules. At present, only the csimul
simulation toplevel is able to operate on all the root modules contained in
the C code file. The xes simulation toplevel only operates on the first root
module found in the code file. Use option -main of esterel to guarantee
that there is only one compiled module, see Section 3.6.3.
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Chapter 6

The xes Graphical Simulator

The xes graphical simulator is the main tool to exercise and debug Esterel
programs. It offers source code animation and displays a lot of information
on the source code using colors. It makes it possible to record simulation
sessions, and to set breakpoints. However, it works in read-only mode. It
is impossible to dynamically change the value of an object without using
the reactive interface, unlike in conventional C code debuggers. This would
indeed be incompatible with the Esterel semantics and would be very un-
controllable since Esterel is a concurrent language.

6.1 Starting an xes Simulation

Let us consider the WATCH example explained later in Section 8.3 (in this
section, there is no need to understand what the watch is doing). The
watch is made of the watch.strl file containing the Esterel source code,
the watch.h file that defines the user-type TIME, and the watch data.c file
that contains the data-handling C code. As explained in Chapter 5, the
simulator is started by executing the following shell commands:

esterel -I -simul watch.strl
cc -c watch.c watch_data.c
xes watch.o watch_data.o

The xes simulator starts by displaying two windows, as shown on Figure 6.1.
The main panel is used to drive the simulation. It is always present on the
screen. The main panel consists of several parts, one for each of the Esterel
interface objects: input signals, sensors, output signals, and tasks. The input
and output parts in turn split into a pure subpart and a valued subpart (not
all Esterel programs have all the interface object kinds; therefore, the main
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Figure 6.1: The xes simulator
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panel may not contain all the parts). The main source window displays
the Esterel source code of the program main module. It provides symbolic
debugging at source code level, and can be unmapped if necessary.

It is possible to save a simulator for further use, thus avoiding typing
many .o names on the xes command line and bypassing the time needed to
link the simulated modules with the simulation master code. This is done
using the -o option as follows:

xes -o xwatch watch.o watch_data.o

This builds a file called xwatch.exe, which can be fast-loaded by xes to run
the simulation1:

xes xwatch.exe

6.2 Performing Reactions

To perform a reaction, one must build the input event and send it to the
simulator, which replies by showing the associated output event.

6.2.1 Building The Input Event

Figure 6.2: The main panel: building input events

1The watch.exe file is indeed executable, but it requires some libraries provided by the
xes command; an alternative way is to call directly xwatch.exe with the ESTEREL source
variable set to the Esterel distribution directory, see the xes man page.
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The input signal part is made of buttons, one per input signal. Each
button is labeled with the name of the signal. On the left of each button,
there is a little checkbox whose role will be explained in Section 6.2.5. Fig-
ure 6.2 shows the main panel of WATCH, which has three pure input signals
named SECOND, SET HOUR, and SET MINUTE.

When the mouse pointer is moved over an input signal name, the back-
ground of the button background gets darker. To set the input present, click
with the left mouse button. The color of the button label then changes from
blue to red. Clicking on a signal which was set present sets back the signal
absent (blue). On Figure 6.2, SET HOUR is set present in the current input
event, while SECOND and SET MINUTE are absent.

Figure 6.3: The main panel: valued input signals and sensors

Valued input signals are put together in a separate part of the main panel
in order to associate each input signal button with a one-line text editor,
as shown in Figure 6.3. The associated editor enable the user to input the
signal value. Editor commands are Emacs-like. A summary of the main
commands is given below.

CTRL-A or HOME Move to beginning of line.

CTRL-E or END Move to end of line.

CTRL-F or RIGHT Move forward one character.

CTRL-B or LEFT Move backwards one character.

DEL Delete the character before the cursor.
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CTRL-D Delete the character after the cursor.

CTRL-K Kill to end of line.

Arrows and function keys can also be used if present on the keyboard.

WARNING: Changing the value of an input signal does not set
the signal present. For this, one must click on the signal button.

The syntax of input values is as usual for values of predefined types,
except that float values do not need a trailing ‘f’, unlike in Esterel, since
their type is already known. For user types, the syntax is defined by the
user-provided string conversion functions, see Section 4.3.4.

Sensors are gathered in a separate part that looks like the valued input
signal part. Each sensor name is associated with a one-line text editor that
enables the user to input the sensor’s current value. Unlike for signals, sensor
names are simply labels with no button semantics since sensors do not have
a presence status.

6.2.2 Sending the tick

Figure 6.4: The main panel: performing a reaction

Once the desired input event is built, one triggers the reaction by clicking
the big tick button. A double-click with the left button on an input event
button also signals an implicit tick and triggers a reaction. Clicking on
tick with all inputs blue provokes a blank event, i.e. an event where no
signal is present.
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The input event is first checked for consistency. In case of an error, such
as an incorrect value or a violated input relation, a message box pops up
to give information about the error, and the reaction function is not called.
The simulation can be resumed from the current state by acknowledging the
message. The input event remains as it was before clicking the tick button,
and it must be corrected before retrying.

6.2.3 The Output Event

After the reaction function is called, the output signals emitted by the pro-
gram’s reaction are displayed in red, together with their values for valued
signals. Figure 6.4 shows that the output signal TIME was emitted in the
reaction.

In case of an access to an uninitialized variable during a reaction, no
output is performed, an error occurs, and a message pops up. The simulation
must be reset since it is impossible for the current version of xes to rebuild
the previous state.

6.2.4 Building the Next Event

Once a reaction is performed, the input event is reset to all signals absent,
unless the Keep Inputs option was selected from the Commands menu or xes
was called with -ki option. When the Keep Inputs option is selected, the
input event defaults to the previous event. It can be modified as before.

6.2.5 High/Low Inputs

To selectively keep some signals present by default (active low) instead of
absent by default (active high), input switches are provided on the left of
input buttons. The switches are activated only if the High/Low Inputs
option is selected from the Commands menu or xes was called with -hl option.
There is one high/low switch per input signal, as shown on Figure 6.4.
The switches can take two different positions: the default low blue position
and the high red position. When a switch is on its high red position, the
corresponding input signal is set present by default. It can be set absent by
clicking on its name.

The High/Low option is different from the Keep Inputs option. The
switches allow the user to select input signals that will remain present by
default, whatever their value in the previous reaction was. The Keep Inputs
option tells the simulator to start from the previous input event for the next
reaction.
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6.2.6 Resetting the Program

The main panel provides a reset button to bring the Esterel program back
to its initial state, i.e. to the state it had when the simulator was started.
Variables and signals are reset to the ‘-*-’ uninitialized value, or to their
initial values.

6.2.7 Handling exec Statements

Figure 6.5: The main panel: handling exec statements

The handling of exec statements is put apart in the main panel, see
Figure 6.5. The simulation of exec statement is entirely under the user’s
control and there is no proper task code to be simulated. The user is told
when the task starts and with which parameter values. The user signals
task return by explicitly inputting the return signal and setting the return
values of reference parameters.

Each exec statement is displayed on a single line. To avoid lines becom-
ing too long, reference and value argument lists are replaced by a phantom
dot between parentheses. The actual argument values are popped when
clicking on the phantom. The return signal is displayed on the right of the
statement, after a right-arrow. There is a one-line value editor if the signal
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is valued.
The name of the return signal is a button since a return signal is a

particular input signal that notifies the completion of an exec statement.
However, the button is active only if the exec statement it is associated
with is active. In Figure 6.5, R1 is a pure return signal while R2 is a valued
one.

The status of an exec statement is shown by the color of the task name:

black the statement is not active,

red the statement is active,

orange the statement is suspended.

In addition, a flag on the left of the task name indicates whether the task
was started or killed in the reaction:

red the statement was started in the previous reaction,

black the statement was killed and not restarted in the previous reaction,

black and red the statement was killed and restarted right away.

This is illustrated in Figure 6.6, where T1 and T2 are active and were started
in the reaction.

To simulate the completion of an active exec statement, i.e. task return,
click on the return signal name. If the signal is valued, a value must be
provided beforehand using the appropriate one-line text editor. If the task
has reference arguments, a window pops up when the return signal is set
present to specify the return values for these arguments. Double-clicking on
a return signal is not usable if there are reference arguments to update. In
Figure 6.7, the user has selected the R2 return signal, and has to provide a
value to update the X variable.

6.3 The Main Panel Menus

The main panel has three menus labeled Commands, Fonts, and Windows.
A menu is opened by clicking the left mouse button. It can be torn off by
clicking on its first dashed line item.
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T1 and T2 are started and running

T1 is suspended and T2 is running

Figure 6.6: The main panel: status of exec statements
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Figure 6.7: The main panel: completion of exec statements
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6.3.1 The Commands Menu

The Commands menu has the following items:

Signal Browser When selected, this checkbutton enables the signal brows-
ing facility, see Section 6.4.4. Notice that signal browsing is inactive
by default.

High/Low Inputs If this toggle is false, which is the default, the active
high/low switches on the left of the input buttons are deactivated. If
true, the switches are activated, see Section 6.2.5. The toggle can be
initialized to true by setting the -hl option of the xes command

Keep Inputs If this toggle is false, which is the default, selected inputs
are unselected after a reaction. If true, selected inputs remain selected
for the next reaction. It can be initialized to true by setting the -ki
option of xes.

Clear Inputs Reset all preselected inputs to their default state, i.e. absent
for the next event in default mode, or to the current high/low status
if High/Low Inputs is activated.

Remove Breakpoints Removes all breakpoints in the program, see Sec-
tion 6.4.

Recorder Pops up a tape player/recorder allowing Esterel session saving
and playback, see Section 6.5.

Quit Ends the simulation.

6.3.2 The Fonts Menu

The Fonts menu controls global font sizes. Separate control is given on the
font size of the panels (main panel, locals, traps, variables) and on the font
size of the source and program tree windows. A local font size control is
also available on each window.

6.3.3 The Windows Menu

The Windows menu controls the other simulation windows:

Program Tree Displays the whole tree of the main module and submod-
ules of the Esterel program, see Section 6.4.3. The source code of a
submodule can be popped up by clicking its name in the tree. Colors
in the program tree are explained in Section 6.4.3.
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Locals Pops up a window containing the local signals, which are shown
in red when emitted in the last reaction. The same information is
available on the source code, see Section 6.4.

Traps Pops up a window containing the trap names, which are shown in
red when exited in the last reaction.

Variables Pops a window containing the variable names and values.

Source Windows The last items of the Windows menu are the names of
current source file windows, see Section 6.4.

The Locals, Traps, or Variables windows are not available if the program
does not use local signals, trap statements, or variables.

6.4 Symbolic Debugging

6.4.1 Finding the Source Code

At startup time, xes looks for the source code of the Esterel program in the
current working directory or in the directory specified by the the -D source
directory option of the xes command. If the source code is not found in that
way, the user is prompted for the correct pathname of the source directory.
If still no source code is found, source debugging cannot be performed but
the rest of the simulation works normally. If the source files are found, the
source Esterel code of the main module pops up in a source window whose
name is added to the main panel Windows menu.

6.4.2 Source Windows

Figure 6.8 shows an example of a source window. Each submodule appears
in a separate window. A submodule’s window is popped either by clicking
on the run (or copymodule in old syntax) statement in the father’s source
window, or by clicking on the module name in the Program Tree window.
When a source window pops up for the first time, its name is added to the
main panel Windows menu. If a single submodule is run several times, its
instances are distinct in the tree and they appear in distinct windows.

The Father button in a source window menubar pops the father’s mod-
ule source code. The Main Panel button pops the main panel and the
Program Tree button pops the program tree. This is useful when these
windows ared buried under source windows.
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Closing a source window using its Close button removes the window
from the screen, but not from the source window list in the main panel’s
Windows menu. It can be recovered from there or from the program tree
window.

Figure 6.8: Symbolic debugging: a source window

6.4.3 The Program Tree

The program tree window is pictured in Figure 6.9. It is raised by clicking
on the Program Tree entry of the Windows menu in the main panel. The
program tree shows the module instantiation structure defined by the nested
run Esterel statements. A given module appears as many times as it is
instantiated in a program. Different occurrences are identified by different
numbers appearing after the ‘#’ character. The + or - symbol on the left of
a module name controls the opening and closing of the subtree it controls.



74 CONTENTS

Figure 6.9: The Program Tree
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Click on the numerical buttons on the top of the program tree window to
open the tree up to a given level. Clicking on a module name opens a source
code window for this module occurrence. The instance number appears in
the window’s title.

Each program tree line is composed of two parts: the head, which con-
tains the module name and the blank character before it, and the tail, which
contains the module number and the character before it. Various informa-
tions are displayed in the head and tail parts using the color codes explained
below. Information displayed in the head is called direct information; it is
about the module code proper. Information displayed in the tail is called
inherited information; it is about the submodules of the considered module.
An example of direct information is module activity: the foreground color of
the head is read if the module is active. An example of indirect information
is submodule activity: the tail foregroung color is red if there is an active
submodule. The same principle holds for any color code.

Foreground and background of each module name displays an informa-
tion which is inherited from the corresponding source window or the source
windows of its sub-modules. Foreground colors may be red or blue. A back-
ground color may be green, pink, grey, orange, or the default color of the
tree window itself.

Foreground is red (resp. blue) if the module is currently active (resp.
inactive), i.e. some (resp. no) haltpoints in the module are currently active.

The program tree is fundamental for browsing. When interested by a
particular aspect related to a color code, inspect the program tree to find
where objects of this color appear in the head or tail and click on the module
names to open the corresponding source windows. Folding and unfolding the
tree may be necessary for big programs.

6.4.4 Signal browsing

In the Commands menu, the ”Signal browser” checkbutton enables a signal
browsing facility, which is available only for programs compiled with the
-I option. To see where a particular signal is declared, emitted, accessed,
or displayed, just click with mouse-button 3 on its name in a panel (main
panel or locals or traps) or in its declaration in a source code, or on the blue
or red keyword of instruction referencing this signal (emit, await,...). All
occurences of the signal name in all the sub-windows of xes start blinking in
an orange color background, together with the names of the modules where
the signal appears (run instructions in source windows, lines in the program
tree instances). Blinking is a bit heavy on the eye, but it is useful since the
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current colors of objects still appear in the non-orange phase. To stop signal
browsing, unselect the ”Signal browser” checkbutton.

WARNING: the Esterel code must be compiled with the -I option.

6.4.5 Colors in Source Windows

Colored foregrounds and backgrounds are used to decorate the source code
and the program tree, and some keywords also appear underlined. Colored
items are selectable by the mouse, and the effect depends on the type of
object.

The declaration point of a signal appears in blue if the signal was ab-
sent in the last reaction and in red if the signal was present. In either case,
clicking on the signal name in the declaration pops the current signal value.
Notice that interface signals of copied submodules remain black: these are
not real objects since they are replaced by actual signals in the father mod-
ule.

Clicking on a variable at its declaration point pops its value. Similarly,
the value of a count expression appearing in a delay expression or in a repeat
loop can be displayed by clicking on it. For example, click on the constant
expression 2 in the statement “every 2 I do” to see the current value of
the associated counter variable.

Keywords of statements that contain a haltpoint appear in blue or red
foreground. These keywords are pause, halt, await, every, each, exec,
and immediate in “suspend...when immediate S”, which has a haltpoint
to wait for the first non-occurrence of S. They appear in red if the previous
reaction has precisely stopped at that point. For example, “await S” is red
exactly when one is waiting for S there. An every or each statement is
red if and only if its body is terminated; one is then simply waiting for the
corresponding event. The immediate keyword in an immediate suspension
is red while waiting for the first instant where S is absent. Since Esterel is
a parallel language, several concurrent haltpoints can be red at the same
time, see Figure 6.8.

In the program tree, the head (module name) is in red foreground if at
least one haltpoint is red in the module own body, the tail is red if at least
one submodule has an active haltpoint.

All statements that involve a preemption are underlined in either blue
or red. These statements are abort, every, each, suspend and upto. The
keyword is underlined in red if preemption is currently possible, i.e. if there
is an active (red) control point in the statement body.
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6.4.6 Breakpoints

Clicking on a haltpoint keyword sets or removes a breakpoint. Breakpoints
set are shown using an grey background for the first character of the keyword.
For example, a breakpoint is set on the first every statement in Figure 6.8.
In the program tree, the head space before the module name is in grey
background if there is at least one breakpoint in the module proper. The
tail space after the module name is in grey background if there is at least
one breakpoint in a submodule.

When the program reaches a breakpoint, an alert message window pops
up and all keywords corresponding to reached breakpoints appear on grey
background for all their characters instead of just the first one. In the
program tree, the full module head is on grey background if there is at
least one breakpoint reached in the module proper, the full tail is on grey
background if there is at least one breakpoint reached in a submodule.

To remove a single breakpoint, click on it. To remove all breakpoints in
a module instance, click on the Remove entry of the Breakpoints menu of
the module source window. To remove all breakpoints in a module and in
all its submodules, click on Remove recursively entry of the Breakpoints
menu of the module source window. To remove all breakpoints in the whole
program, click either on the Remove recursively entry of the main mod-
ule source window on the Remove Breakpoints entry of the main panel
Commands menu.

6.4.7 The Control Path

When a program is compiled with the -I constructive interpretation option,
some source keywords are displayed with a green background as shown on
Figure 6.10. They correspond to the statements executed in the previous
reaction. This control path feature makes it possible to find out what the
Esterel program actually did in the reaction. In the WATCH example of Fig-
ure 6.10, a SET MINUTE signal was received in the previous reaction while
the program was stopped on the await-case statement.

In the program tree, the head is on green background if there is at least
one executed statement in the module proper, the tail is on green background
if there is at least one executed statement in a submodule.

Red foreground and green background can coexist. For example, consider
the WATCH example. In the reaction, the await keyword appears in red
foreground on green background, since the implicit halt statement in the
await-case statement has been reached (green background) and control has



78 CONTENTS

stopped on it (red foreground). The previous emit statement and the TIME
variable declaration are displayed on a green background too, since they
were executed first in the reaction. The declaration of the output signal
TIME is also on a green background to mean that the signal was emitted in
the reaction.

In the second reaction, if neither of the three signals, SECONDS, SET HOUR,
and SET MINUTE is present, the await keyword remains in red over green
meaning that control stays in the await statement, and the case keywords
change to green background meaning that the implicit present tests were
performed.

Figure 6.10: Symbolic debugging in interpretation mode

If, instead, the SET MINUTE signal is present in the second reaction, only
the first two case keywords change to green background. The third case is
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not reached since the second one is successfully checked and the correspond-
ing do statement is executed. The second emit statement is then executed
and the await statement is started anew by the loop statement. All this is
clearly shown by the green background on Figure 6.10.

Complex reincarnations are not shown in a fully satisfactory way, see
Section 8.3.

6.4.8 Causality Errors

When a program is compiled with the -I option, causality problems may
occur at run-time. When a causality error occurs, a dialog box pops up and
the error is displayed on the source code and program tree using green and
pink backgrounds. The interpretation of these color codes conforms to the
constructive semantics used in the Esterel v5 compiler and described in [2].

A statement is shown on a green background if it must be executed in the
transition. Statements that cannot be executed remain on standard back-
ground. Statements for which it is impossible to prove either that they must
be executed or that they cannot be executed appear on a pink background.
The same backgrounds are used for signals at their declaration point.

In the program tree, the head is on green (resp. pink) background if
there is at least one green (resp. pink) statement in the module proper, the
tail is on green (resp. pink) if the same holds for a submodule.

When faced with a causality problem, first identify the current state by
finding keywords written in red foreground. Then, look for pink signals,
since they are the ones with undetermined status. Finally, look for places
where background changes from green to pink, since they are tests for un-
determined signals. Browse modules using the program tree.

Let us consider the P3 non-constructive program studied in [2]. Fig-
ure 6.11 shows the simulation windows after the user has clicked on the
tick button to get the first reaction. The present statement must be ex-
ecuted, hence the present keyword is on a green background. But it is
impossible to determine whether the else branch of the present statement
should be executed or not using the constructive semantics. Therefore, the
else keyword, the emit keyword, and the O interface signal declaration are
displayed on a pink background.

Because of instantaneous loops in Esterel, the pink and green back-
grounds may collide. For instance, it may happen that a statement within
a loop must be executed, which results in a green background, and that it is
undefined whether or not the statement must be instantaneously executed
anew (i.e. reincarnated) by the loop, which results in a pink background.
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Figure 6.11: Causality errors
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In such a case, the statement is initially displayed with a pink background.
The causality error alert box contains two auxiliary buttons that allow to
selectively hide or show green and pink backgrounds. When showing a back-
ground color afresh, the color takes precedence over the other color. This
makes it possible to analyze causality errors in a finer way. A statement
that should be both pink and green is first shown on a pink background
and is then shown on a green background if the green background option is
selected.

6.5 The Session Recorder

The session recorder / player is pictured in Figure 6.12. Il deals with event
input files, which we call tapes. Its window splits in two parts: the lower
part is for saving the current simulation session in tapes, the upper part is
for playing already recorded tapes.

A tape is a file which contains recorded events in csimul format. The
file name has special extension .esi for Esterel Simulation Input, but the
old extension .csimul used prior to version v5 91 is still recognized by the
tape browser.

6.5.1 Recording a Tape

The current session input sequence is automatically recorded in a recording
buffer, which can be reset to the empty state by clicking on the Erase
button. A reset command entered either from the input panel or from an
input tape generates a !reset simulation command in the recording buffer.
A counter counts the number of entries in the recording buffer.

At any time, the current contents of the buffer can be saved in a tape by
clicking the “Save as” button in the bottom recording part of the recorder
window. A browser makes it possible to define the directory and file names,
which are the current directory and the name untitled by default. The file
name appears in the filename display, and the full file path can be popped
up by clicking in the name window. The Save button rewrites the current
session in the currently selected file, overwriting its previous contents. The
file name is blue if the contents of the file matches the contents of the
recording buffer, and becomes red as soon as the recording buffer is modified.

WARNING: the save operation is performed only when you click on the
Save or “Save as” buttons. If you quit without saving, you are asked for
confirmation.
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Figure 6.12: The Session Recorder
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6.5.2 Playing a Tape

To play an existing tape, click on the Load button. You are asked for a file
name by the browser. The name of a currently loaded tape appears in blue
in the name display. The full path of the corresponding file may be popped
up by clicking on the name display. When loaded, a tape can be played
step by step with button Step or continuously with button Play or button
“Silent play”. An event counter is displayed. The tape automatically
stops when reaching its end or if you click the Stop button. The playing
speed can be tuned with the slider.

In Step or Play mode, a graphical update of the whole simulator is
performed at each tick (emitted signals, nets, values, etc.), as if the event
had been entered by hand. In “Silent play” mode, transitions of the
automaton are performed without any graphical update except for the last
one, making it possible to quickly reach the final state. A currently stopped
tape (name in blue) or the last fully played tape (name in grey) can be
repositionned at its beginning by clicking the Reload button. When loading
or reloading a tape, automatic reset of the automaton is performed if the
check button Reset on loading” is selected, which is the default. A !reset
command is then added to the recording buffer, and the recording event
counter is incremented.

6.5.3 Saving Conflicts

A read/write conflict occurs when trying to save the current recording in
the tape that is currently loaded for playing. In this case, you are asked to
choose between the following:

• eject the tape from the player and proceed with saving, overwriting
the previous tape contents

• same, but immediately reload the tape in the player

• abort the save operation

6.5.4 The untitled Tape

The default untitled tape is handled in a special way. It obeys the same
read/write rules as other named tapes, except that, if untitled is selected
for recording, you are not asked for saving confirmation at the end of the
session, even if your session is not totally saved. Since event recording is
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always on, this avoids a systematic confirmation click if the recorder is never
invoked.

The untitled tape is convenient for fast recording / playing. For example,
if you want to take a snapshot of the current session and replay it right away,
click on Save in the recording subwindow, and click immediately on Reload
in the playing subwindow.

6.6 Options of the xes Command

The options of the xes command are listed when typing
xes -help

The main options are:

-version

Displays the version number.

-info

Displays more extended identification of xes.

-access Displays the access rights to xes.

-o name

Builds a fast loadable simulator called name.exe, without running it.
Run this simulator by “xes name.exe”.

-script script

Loads a tcl script file to change some of the xes resources. This may
be useful for some X-window systems where xes looks ugly for reasons
we cannot deal with! The default resource file is provided under the
name xes res.tcl in the Esterel distribution (subdirectory lib/xes).
Change it according to your needs.

-display display

Specifies the X display.

-geometry geometry

Specifies the main panel position.

-ki

Runs the simulator in keep inputs mode by default.
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-np

Suppresses source code parsing. Useful if the source language is not
Esterel proper but generates Esterel (thanks to special features un-
documented here).

-ns

Disables source code debugging.

-np

Disables source code parsing. This special feature is for people who
write Esterel super-languages for which they want the simulator not
to parse the source file (parsing is only used to underline abotrion
statements).

Please use option -info to identify your version of xes when sending a bug
report or a question.
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Chapter 7

Simulation with csimul

By executing the object simulator generated using libcsimul.a, the user
enters a csimul simulation session. The simulator repeatedly waits for an
event input command or for a control command from the following list:
!show, !trace, !reset, !help, !module, !load, and ?. An input command
defines an event to react to. The other commands control the simulator’s
behavior and various traces. The simulator can take its commands directly
from the terminal or from files.

External tasks are entirely simulated by the user. The simulator tells
when a task is started and when it is suspended or killed. The user provokes
the task return and explicitly passes return arguments. Therefore, there is
no code to write to simulate tasks.

7.1 Prompts, Help, Exit, and Interrupts

By default, the currently simulated module is the first module in the gener-
ated C file. Call it PROG. Before waiting for a command, the simulator prints
a primary prompt PROG>. There is a secondary prompt ‘>’ for commands
that spread over several lines, as in:

$ prog
PROG> I
> J
K;

Comments start with a ‘%’ character and end at end-of-line, as in Esterel.
The help command ‘?’ or !help prints a help message. The exit command
‘.’ exits the simulator. All other commands must end by a semicolon ‘;’.

87
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Any interrupt character typed when entering a command from the ter-
minal cancels the command. When reading a command file, an interrupt
character stops reading the file and processes the next possible input file.

Syntax errors in commands are recovered by typing a semicolon, the
special prompt recover> indicating that the simulator tries to recover a
syntax error.

7.2 The Input Command

The input command defines an input event for a reaction. It consists in
a blank- or comma-separated list of input signals, exec returns, or sensors
items. Values must be provided for valued signals and sensors. For a return
signal of a currently active exec statement, the reference parameters return
values must also be given as described below.

The input list is ended by a semicolon ‘;’. The given input signals are
considered as simultaneous inputs for the reaction; they are all merged into
the input event of the reaction.

When fed with an input line, the simulator checks that this line is a
valid input. If so, it performs a reaction unless the input command entirely
consists of sensor value definitions, in which case the sensor values are set
without this provoking a reaction. The simulator prints the emitted output
signals with their values, the list of tasks started, suspended, or killed, plus
other information according to the current show or trace option described
in Section 7.6. Here is a simple example:

PROG> ; % tick

--- Output:

PROG> I J;

--- Output: O

7.2.1 Input Syntax

Input event components are entered as follows:

• A pure signal is simply denoted by its name.

• A valued signal or sensor is denoted by its name followed by its value,
given either enclosed in parentheses as in I(1) or preceded by the ‘=’
sign as in I=1.
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• An exec return consists in the name of the return signal, followed by
a value if the signal is valued, the return keyword, and the list of
returned values for reference parameters. Here are examples:

R1 return ()
R2(3) return (5,6)
R3=5 return ("OK")

Values of signals, sensors, and task reference parameters are entered as
strings to be passed to the appropriate conversion functions. Strings are
enclosed in double quotes. Inner double quotes are doubled, as in Esterel.
Integer, Boolean and floating-point values can also be entered without dou-
ble quotes. For signal and sensors, the value is given after the signal or sensor
name, either enclosed in parentheses or preceded by the ‘=’ sign. For ex-
ample, assume signals I, J and K have, respectively, type integer, boolean
and user-defined TIME. Then the two following input lines are equivalent:

PROG> I(8), J(false), K(12:01:59);
PROG> I=8 J=false K="12:01:59";
PROG> I("8") J="false", K="12:01:59";

The simulation toplevel accepts floating point values in C-like format. For
example 2.5 or 4.44e-3 are valid floating point values. Floating point
values may be entered with or without double quotes as in

PROG> F(8.0), PI(3.14159), PLANCK("6.62.e-34");

7.2.2 Event generation

An input event is generated by an input command unless the command only
sets the value of sensors. An empty input command such as

PROG> ;
--- Output: O

simply generates a tick, i.e. a reaction with no input. The input command
PROG> SENSOR(1);
PROG>

sets the value of the sensor SENSOR to 1 and does not call the reaction
function. There is no output message and the simulator prompt is printed
back.

Notice that no reaction is triggered by the ending semicolon ‘;’ if there
are only sensors in the input line.

In the next example, there is a sensor and an input signal. A reaction is
performed:
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PROG> INPUT_SIG(3), SENSOR(1);
--- Output: O

7.2.3 Input Checking

An input is invalid and rejected in the following cases:

• A signal appearing in the input list is neither an input, nor an in-
putoutput, nor a return signal, nor a sensor;

• A pure signal appears with a value;

• A valued signal appears without a value;

• A valued signal appears with a value that is not of the proper type;

• For a return signal, the associated list of values for update of refer-
ence variables is either missing or incorrect (wrong number of values,
mismatched types, etc.);

• A list of values for reference variable updates appears with a signal
which is not a return signal;

• A pure signal, a single signal, or a sensor appears several times in the
input list;

• The input event violates some input relation.

If the input is invalid, the simulator prints a self-explanatory error message
and sends back a new prompt without changing state. No execution of the
reaction function is performed. The current input event is simply ignored.

7.2.4 Combined Signals in Input Events

A combined signal can appear several times in an input event. The actual
input value is computed using the signal’s combination function before the
transition. Assume for example that COMB has addition for combination
function. Then the input

PROG> COMB(1) COMB(2);

is equivalent to the input

PROG> COMB(3);
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7.3 Output Printing

The output event corresponding to an input event is printed after the Output:
keyword. Here are some examples of valid input lists and output events:

PROG> METER;
--- Output:
PROG> INTEGER_SENSOR(-4), INTEGER_SIGNAL(2001);
--- Output: TEMPERATURE(12)
PROG> FLOAT_SIGNAL(2.4E3), DOUBLE_SENSOR(2.4E3);
--- Output: AVERAGE(12.4E43) GOOD_SHOT
PROG> BOOLEAN_SIGNAL(false), STRING_SIGNAL("long-string");
--- Output: ECHO("long_string")
PROG> MS, SET_TIME("2:2:21:PM");
--- Output: TIME(2:02:21:PM) BEEP
PROG> COMBINED_INPUT(1), COMBINED_INPUT(2);
--- Output: OUTPUT(3)

For task execs, the changes in execution statuses are printed after the
Started, Suspended, and Killed keywords. A keyword is followed by the
number of exec task instances started, suspended, or killed, and by the list
of those instances. Here are some examples:

EXEC> ;
--- Output:
--- Started: 2
T1 (-*-) () return R1
T2 (-*-) () return R2
--- Suspended: 0
--- Killed: 0

EXEC> R1 return (3);
--- Output: O1(3) THE_END
--- Started: 0
--- Suspended: 0
--- Killed: 0

EXEC> SUSPEND_R1
> R2(3) return (4);
--- Output: O2(7)
--- Started: 0
--- Suspended: 1
T1 (12) () return R1
--- Killed: 0
--- Active: 0
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EXEC> KILL_R1
> R2(5) return (6);
--- Output: O2(11) THE_END
--- Started: 0
--- Suspended: 0
--- Killed: 1
T1 (6) () return R1

The ‘-*-’ symbol means undefined value, which is ok for a reference task
argument when the task is started.

More information about task statuses can be obtained by using the !show
and !trace commands, see Section 7.6.

7.4 Input and Output Streams

By default, a simulator reads commands on the standard input stream. One
can also run batch simulations by passing a list of simulation command file
names to the simulator. Furthermore, if any of the file names is replaced
by the symbol ‘-’, then the standard input is read in place of a file, up to
end-of-file (typically ^D).

For example, the call
$ prog simcom1 simcom2 -

first executes the simulation commands contained in file simcom1, then the
commands from file simcom2 and finally prompts the user for new commands
at the terminal. This is useful to bring the program to a given state before
starting interactive simulation or to set trace options. The symbol ‘-’ can
appear more than once in the file list.

A file load command can also be executed from within an interactive
or batch command sequence, up to the nesting permitted by the operating
system. The command has the following syntax

!load "file";

The !load command echoes its input commands on the standard output
stream. To reopen the standard input when reading a command file, use
the “!load -;” command.

In interactive and batch modes, the simulator echoes its input on its
standard output stream. Output also goes to the standard output. Error
messages are written on the standard error stream. To redirect the output
of the simulator, it is good practice to use the shell command

$ prog > LOG 2>&1

to get proper placing of error messages.
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7.5 The reset Command

The !reset command resets restarts the simulation of the current module
afresh. It has the syntax

!reset;

--- Automaton PROG reset

The simulator starts again and waits for input events.

7.6 The show and trace Commands

The !show command followed by an option list enables the user to see more
than just the output event of the next reaction. It has no effect other than
responding to the show request and giving back the simulator prompt. The
!show command acts for only one reaction; to render its effect permanent,
use the !trace command.

The csimul simulator recognizes fifteen basic show options:
state, halts, variables, sourcevariables, signalvariables, counters,
signals, locals, traps, awaited, execs, started, suspended, killed,
active, and the special option all that comprises all other fifteen. The
syntax of the !show command is:

!show option-list ;

where option-list stands for a non-empty list of valid !show options, for
example:

PROG> !show state signals;

7.6.1 Showing the State

The !show state command prints the current state number:

PROG> !show state;

--- Current State: 1

This is meaningful only for automaton code generated by the -A option of
the esterel command.
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7.6.2 Showing Haltpoints

The !show halts command prints the halpoints that characterize the cur-
rent control state:

PROG> !show halts;
--- Halts: 2
halt 1: line: 33, column: 7 of file: "prog.strl" (PROG#0)
halt 5: line: 67, column: 12 of file: "aux.strl" (AUX#2)

Let us explain what these lines mean. All temporal instructions like await,
upto, loop...each, every, . . . are expanded by the Esterel compiler as ex-
plained in [1]. Each expansion generates exactly one kernel pause state-
ment. An automaton state is exactly a set of such kernel pause statements
on which the control was halted in the current reaction. The above lines list
exactly these statements together with the position of the source statement
that generated them. Therefore, this list of positions is exactly a represen-
tation of the current state in the source program. The ‘#’ character after
the module name defines the instance number of the module in the program
tree, see Section 6.4.3.

7.6.3 Showing Variables

The !show variables command prints the variables of the module. Each
variable is identified by its C name and by its source name whenever possible,
as in the debug format.

Variable values are converted to strings before being printed, using the
output conversion functions described in Section 4.3.4. Variables that are
not yet initialized are printed out as ‘-*-’. There are three sets of variables:

• Source variables, declared by the user in the Esterel program.

• Signal variables, associated with valued signals.

• Counter variables, associated with repeat statements and signal oc-
currence delays such as “await 3 S”.

Here is an example of “!show variables” output:

PROG> !show variables;
--- Source Variables:
V3 = 0 (source variable VAR1)
V4 = -*- (source variable VAR2)
--- Signal Variables:
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V1 = -*- (value of signal I1)
V2 = 10 (value of signal I2)
V5 = 20 (value of sensor S)
--- Counters:
V6 = 2 [line: 16, column: 13 of file: "prog.strl" (PROG#0)]

The !show sourcevariables command only prints the variables that are
explicitly declared by the user in the Esterel program:

PROG> !show sourcevariables;
--- Source Variables:
V3 = 0 (source variable VAR1)
V4 = -*- (source variable VAR2)

The !show signalvariables command only prints the variables that hold
the values of valued signals:

PROG> !show signalvariables;
--- Variables:
V1 = -*- (value of signal I1)
V2 = 10 (value of signal I2)
V5 = 20 (value of sensor S)

The !show counters command only prints the variables that hold the values
of counters:

PROG> !show counters;
--- Counters:
V6 = 2 [line: 16, column: 13 of file: "prog.strl" (PROG#0)]

Counters are variables of type integer. They are associated with repeat
statements and temporal statements that use count delays.

7.6.4 Showing Signals

The !show signals command shows three sets of signals: the set of local
signals emitted in the previous reaction, the set of traps exited in the previ-
ous reaction, and a set of signals “awaited” by the program before the next
reaction. The set of awaited signals is meaningful only for automaton code
(-A option of esterel): the presence / absence status of a non-awaited
signal cannot influence the next reaction (but its value can). Here is an
example:

PROG> !show signals;
--- Local: A_LOCAL_SIGNAL
--- Trap: ALARM
--- Awaited: GO_BUTTON SECOND OTHER_BUTTON
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The interpretation of the output of the “!show signals” command can lead
to rather intricate discussions on the execution of the reaction. A local signal
declaration can be reincarnated any given number of times in a reaction [2].
Moreover, each incarnation can have its own fate, i.e. during its (short)
life, it may or may not be emitted, independently of other incarnations; if
it is valued, an incarnation may be emitted with any value, independently
of other incarnations. In such a case the “!show signals” command is
clearly not sufficient to track the control flow through all the incarnations.
An interpreter which could execute the reaction step-by-step and point back
at each step to the corresponding source code instructions would be needed.
See Section 8.3 for an example.

The output of the “!show signals” command collapses all the incarna-
tions of a given signal in the following way:

• The signal is printed as “emitted” as soon as one of its incarnations
has been emitted.

• The displayed value is the value of the most recent emitted incarna-
tion, in constructive order, i.e. the one that corresponds to the last
declaration entered in the reaction.

The !show locals command only prints the local signals:

PROG> !show locals;
--- Local: A_LOCAL_SIGNAL

The !show traps command only prints the exited traps:

PROG> !show traps;
--- Trap: ALARM

The !show awaited command only prints the awaited signals:

PROG> !show awaited;
--- Awaited: GO_BUTTON SECOND OTHER_BUTTON

7.6.5 Showing Tasks and Execs

Four options show the current statuses of executed tasks The !show started
command lists the exec statements started in the previous reaction:

PROG> !show started;
--- Started: 2
T1 (6, 0) (5, "foo") return R1
T2 (-*-) (5) return R2 : integer
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The !show suspended command lists the exec statements suspended in the
previous reaction:

PROG> !show suspended;

--- Suspended: 1

T3 () () return R3

The !show killed command lists the exec statements killed in the previous
reaction:

PROG> !show killed;

--- Killed: 1

T4 (2) () return R4

Finally, the !show active command lists the currently active exec state-
ments:

PROG> !show active;

--- Active: 3

T1 (6, 0) (5, "foo") return R1

T2 (-*-) (5) return R2 : integer

T3 () () return R3

This option is particularly useful since active tasks are not printed by default.
The “!show execs” command prints all the available information about all
the exec statements of the module. For example:

PROG> !show execs;

--- Started: 2

T1 (6, 0) (5, "foo") return R1

T2 (-*-) (5) return R2 : integer

--- Suspended: 1

T3 () () return R3

--- Killed: 1

T4 (2) () return R4

--- Active: 3

T1 (6, 0) (5, "foo") return R1

T2 (-*-) (5) return R2 : integer

T3 () () return R3
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7.6.6 The trace Command

The !trace command is just a “permanent !show” command. A !show is
executed after each reaction until an !untrace command is issued. There
are again sixteen basic forms:

!trace state
!trace halts
!trace variables
!trace sourcevariables
!trace signalvariables
!trace counters
!trace signals
!trace locals
!trace traps
!trace awaited
!trace started
!trace suspended
!trace killed
!trace active
!trace execs
!trace all

The arguments can be put in a single list, as in
PROG> !trace state variables;
PROG> !untrace variables signals;

In addition, one can type !trace alone to display the trace options currently
in use:

PROG> !trace;
Enabled trace options: variables state

7.7 The module Command

When running the simulator, the current module is the first one in the C
file. To change the current module, use the !module command with the new
module name as argument; the prompt changes to indicate the new current
module

PROG1> !module PROG2;
PROG2>

With no arguments, the !module command lists all modules that can be
simulated:

PROG1> !module;
--- Modules: PROG1 PROG2
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7.8 Simulation Errors

This section lists all the error messages that may appear during a simulation
session. Error messages are printed on the standard error stream of the
simulator.

7.8.1 Module Error

... unknown module: symbol

symbol is not the name of a module that can be simulated. Re-
member that only “root” modules in the module hierarchy can
be simulated.

7.8.2 File Error

... cannot open: file

file cannot be opened; check file names and access rights.

7.8.3 Command Errors

... unknown show option: symbol

symbol is not a valid !show option. The simulator recognizes the
following !show options: state, halts, variables,
sourcevariables, signalvariables, signals, locals, traps,
awaited, started, suspended, killed, active, and the special
option all.

... unknown trace option: symbol

symbol is not a valid !trace option. The options are the same
as for !show.

7.8.4 Input Errors

... not an input: symbol

symbol is not the name of either an input signal, an inputoutput
signal, or a sensor.

... single signal input more than once: signal

A single signal cannot appear more than once in an input event.
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... signal signal should have a value of type type

A valued signal is written with no value or with a value of the
wrong type.

... pure signal signal should have no value

A pure signal appears with a value.

... implication violated: ImplicationRelation

The input event violates an implication relation.

... exclusion violated: ExclusionRelation

The input event violates an exclusion relation.

7.8.5 Variable Access Error

... variable read before being written: variable (comment)

A variable is read before being written. This points out a serious
error in the Esterel program. The simulator will accept no further
input unless the user performs a !reset command.

... no input until reset (see previous errors)

The simulator waits for a !reset command before accepting new
inputs.

7.8.6 Task Errors

... Reference argument #n of task task (terminated by signal)
should have a value of type type

The value for updating the nth reference argument of task task
is not of the appropriate type type.

... Task task (terminated by signal) has n reference arguments

The number of values given for updating reference arguments of
task task does not correspond to the actual number of reference
arguments of task task.



Chapter 8

Simulation Examples

All the examples described in this chapter can be reproduced by the user
on his/her own machine using xes and csimul, as a good introduction to
the use of the Esterel C simulator. We give listings of csimul simulation
sessions.

8.1 The Counter Example

We start with a small Esterel example whose simulation needs no user-
written C code.

8.1.1 The Esterel source program

module COUNTER:

input I: integer, J: integer;
output O: integer;
relation J => I;

signal S := 0 : integer in
every I do

emit S(pre(?S) + ?I)
end every

||
every 2 I do

present J then
emit O(?S + ?J)

else
emit O(?S)
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end present
end every

end signal
end module

Here, I and J are two integer-valued input signals. The signal J can appear
only together with I, as specified by the implication relation J => I.

The first branch of the parallel statement waits for each occurrence of
I and broadcasts the sum of the values received so far to the other branch
using the local signal S.

The second branch controls the emission of the output signal O every
other occurrences of I. Its value is the sum of I’s values if J is not present.
If J is present the value of O is incremented by the value of J.

8.1.2 Building the simulator

Assume that the Esterel source program is in file counter.strl. The es-
terel command is invoked with the -simul option to produce a simulation-
instrumented counter.c file This C file is compiled and linked with the Es-
terel toplevel simulation library libcsimul.a to obtain a simulator named
counter. The -l option of the UNIX cc command is used to search for and
link with the Esterel simulation toplevel library, provided that it has been
properly installed.

$ ls counter*
counter.strl
$ esterel -simul counter.strl
$ ls counter*
counter.strl counter.c
$ cc -o counter counter.c -lcsimul
$ ls counter*
counter.strl counter.c counter

8.1.3 Running the simulator

The simulation session is started by running counter. We begin by a blank
input event to perform initializations.

$ ./counter
COUNTER> ;
--- Output:
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Then, we input I with different values; the signal O is output only on even
occurrences of I. Its value is the sum of all the previous values of I.

COUNTER> I(1);
--- Output:
COUNTER> I(2);
--- Output: O(3)

The !show variables option allows us to see the values of all the variables.
Notice the “-*-” to show that signal J is not yet initialized. Variable V7
contains the implicit occurrence counter for the “every 2 I ...” instruc-
tion.

COUNTER> !show variables;
--- Source Variables:
--- Signal Variables:
V0 = 2 (value of signal I)
V2 = -*- (value of signal J)
V4 = 3 (value of signal O)
V5 = 3 (value of signal S)
--- Counters:
V7 = 2 [line: 13, column: 13 of file: "counter.strl" (COUNTER#0)]

Let us try some other !trace options. The signals option shows the
awaited signals (i.e. those whcih can influence the current reaction), and
the local signal emissions.

COUNTER> !trace signals;
--- Awaited: I J

The signal I is mandatory to obtain a non-empty reaction, then J can be
significant. Let us try a couple of values of I with J present; J is only
significant in even occurrences of I.

COUNTER> I(1), J(2);
--- Output:
--- Local: S(4)
--- Trap:
--- Awaited: I J
COUNTER> I(1), J(2);
--- Output: O(7)
--- Local: S(5)
--- Trap:
--- Awaited: I J



104 CONTENTS

Let us try some erroneous inputs (remember that J is integer-valued and
can only be present if I is).

COUNTER> J("error");
*** Error: signal J should have a value of type integer
COUNTER> J(1);
*** Error: implication violated: J => I
COUNTER> I(1), K(2);
*** Error: not an input: K
COUNTER> =-=-=-=-=
*** Syntax error: last token read: = -- recovery on ‘‘;’’
or EOF
recover> sdfgjhjkfgdshkjdfgs
recover> ;
*** Syntax error recovered on ‘‘;’’

Finally we terminate the session and return to the shell

COUNTER> .
$

8.2 The Watch Example

This more elaborate example involves data-handling code. It is a simplified
version of the full wristwatch program to be found in the Esterel distribution.

8.2.1 The Esterel source program

The WATCH module describes a basic timekeeper that maintains a time vari-
able. It reacts to a periodic (quartz) signal SECOND and to two update
commands SET HOUR and SET MINUTE. The internal time value is broadcast
at each change via the output signal TIME. Here, we use a time-holding vari-
able instead of the pre(?S) operator, to give an alternative programming
example. The code of the WATCH module is given hereafter:

module WATCH:

type TIME;
constant INITIAL_TIME : TIME;
constant ONE_SECOND, ONE_MINUTE, ONE_HOUR : TIME;

% The INCREMENT procedure is used for time arithmetics
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% The RESET_SECONDS procedure sets seconds to zero.

procedure INCREMENT (TIME) (TIME),
RESET_SECONDS (TIME) ();

% SECOND is the watch internal quartz
% SET_HOUR is the hour update button
% SET_MINUTE is the minute update button

input SECOND, SET_HOUR, SET_MINUTE;

% Broadcasts the updated time value.

output TIME: TIME;

% All external events are supposed to be exclusive

relation SECOND # SET_HOUR # SET_MINUTE;

% We keep the current time value in the TIME variable

var TIME := INITIAL_TIME : TIME in
% Emission of the initial time value
emit TIME (TIME);
loop

await
case SECOND do

call INCREMENT (TIME) (ONE_SECOND)
case SET_MINUTE do

call RESET_SECONDS (TIME) ();
call INCREMENT (TIME) (ONE_MINUTE)

case SET_HOUR do
call INCREMENT (TIME) (ONE_HOUR)

end await;
% Emission of the updated value of TIME
emit TIME (TIME)

end loop
end var
end module
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8.2.2 The Data-Handling Code

Since the module uses one user-type, the simulation requires the definition
of the type and of the required data-handling functions. The TIME type is
defined in file watch.h as a structure:

typedef struct
{

int hours;
int minutes;
int seconds;
int am_pm_flag;

} TIME;

Assignment, output conversion, constants and procedures are written in
watch data.c. There is no need for input string conversion and checking
since we do not input times. Nevertheless, the corresponding functions are
defined in the Esterel distribution file watch data.c to serve as examples
for the user.

#include "watch.h"
/* Assignment */
_TIME(tp, t)

TIME *tp;
TIME t;

{
tp->seconds = t.seconds;
tp->minutes = t.minutes;
tp->hours = t.hours;
tp->am_pm_flag = t.am_pm_flag;

}
/* Output Conversion : pretty-printing TIME objects */
char *_TIME_to_text (time)

TIME time;
{

static char outbuf[13]="";
sprintf(outbuf, "%02d:%02d:%02d::%s",

time.hours,
time.minutes,
time.seconds,
(time.am_pm_flag ? "AM" : "PM"));

return(outbuf);
}
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/* Constants and Procedures */
TIME INITIAL_TIME = {1,2,3,0};
TIME ONE_SECOND = {0,0,1,0};
TIME ONE_MINUTE = {0,1,0,0};
TIME ONE_HOUR = {1,0,0,0};
INCREMENT(tp, t)

TIME *tp;
TIME t;

{
tp->seconds += t.seconds;
if (tp->seconds >= 60) {

tp->seconds -= 60;
tp->minutes++;

}
tp->minutes += t.minutes;
if (tp->minutes >= 60) {

tp->minutes -= 60;
tp->hours++;

}
tp->hours += t.hours;
if (tp->hours > 12) {

tp->hours -= 12;
tp->am_pm_flag = !tp->am_pm_flag;

}
}
RESET_SECONDS(tp)

TIME *tp;
{

tp->seconds = 0;
}

One could also inline the definitions of assignment and constants in watch.h
as explained in Section 4.3.

8.2.3 Building the simulator

The simulator is built from the files watch.strl, watch.h and watch data.c.
The -l option of the UNIX cc command is used to search for and link with
the Esterel simulation toplevel library, provided that it has been properly
installed.

$ esterel -simul watch.strl
$ cc -o watch watch.c watch_data.c -lcsimul
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8.2.4 Running the simulator

The user executes the watch simulator and enters a simulation session.

$ ./watch
WATCH> ;
--- Output: TIME(01:02:03::PM)

WATCH> !trace all;
--- State: 2 of 3
--- Halts: 1
halt 1: line: 35, column: 7 of file: "watch.strl" (WATCH#0)
--- Awaited: SECOND SET_HOUR SET_MINUTE

WATCH> SECOND;
--- Output: TIME(01:02:04::PM)
--- Local:
--- Trap:
--- Source Variables:
V4 = 01:02:04::PM (source variable WATCH.TIME)
--- Signal Variables:
V3 = 01:02:04::PM (value of signal TIME)
--- Counters:
--- State: 2 of 3
--- Halts: 1
halt 1: line: 35, column: 7 of file: "watch.strl" (WATCH#0)
--- Awaited: SECOND SET_HOUR SET_MINUTE

WATCH> SET_HOUR;
--- Output: TIME(02:02:04::PM)
--- Local:
--- Trap:
--- Source Variables:
V4 = 02:02:04::PM (source variable WATCH.TIME)
--- Signal Variables:
V3 = 02:02:04::PM (value of signal TIME)
--- Counters:
--- State: 2 of 3
--- Halts: 1
halt 1: line: 35, column: 7 of file: "watch.strl" (WATCH#0)
--- Awaited: SECOND SET_HOUR SET_MINUTE
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WATCH> SET_MINUTE;
--- Output: TIME(02:03:00::PM)
--- Local:
--- Trap:
--- Source Variables:
V4 = 02:03:00::PM (source variable WATCH.TIME)
--- Signal Variables:
V3 = 02:03:00::PM (value of signal TIME)
--- Counters:
--- State: 2 of 3
--- Halts: 1
halt 1: line: 35, column: 7 of file: "watch.strl" (WATCH#0)
--- Awaited: SECOND SET_HOUR SET_MINUTE

WATCH> !untrace state;

WATCH> SECOND SET_MINUTE;
"stdin", line 13: *** Error: exclusion violated: SECOND
# SET_HOUR # SET_MINUTE

WATCH> !untrace variables;

WATCH> SECOND;
--- Output: TIME(02:03:01::PM)
--- Local:
--- Trap:
--- Halts: 1
halt 1: line: 35, column: 7 of file: "watch.strl" (WATCH#0)
--- Awaited: SECOND SET_HOUR SET_MINUTE

WATCH> SET_HOUR;
--- Output: TIME(03:03:01::PM)
--- Local:
--- Trap:
--- Halts: 1
halt 1: line: 35, column: 7 of file: "watch.strl" (WATCH#0)
--- Awaited: SECOND SET_HOUR SET_MINUTE

WATCH> .
$
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8.3 Local Signal Reincarnation

We now present the rather intricate example of a program in which a local
signal is reincarnated several times in the same reaction. This section may
well be skipped at first reading. Its purpose is to highlight the problems in
the tracing of local Esterel objects.

module M:

input S;
output O: combine integer with +;

loop
var X := false : boolean in

trap T in
await S do

exit T
end await

||
loop

emit O(1);
signal L : boolean in

emit L(X)
end signal ;
X := true;
await S

end loop
end trap

end var
end loop
end module

In the first instant, the program initializes variable X to false, emits O(1)
and L(false)), and sets variable X is to true. The output event is O(1).
The program is then stopped on the two “await S” statements:

$ ./local
M> ;
--- Output: O(1)

M> !show locals sourcevariables;
--- Local: L(false)
--- Source Variables:
V3 = true (source variable M.X)
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Here is a microstep-by-microstep description of how the reaction proceeds
upon the next event with S present:

• The first branch of the parallel exits T.

• In the second branch, S causes the termination of the inner loop body,
which is immediately restarted. Then O(1) and L(true) are emitted.
Notice that variable X is still equal to true at this stage. The second
branch stops on the new instantiation of the “await S” statements.

• The parallel exits the “trap T” block. The outer loop is restarted and
it resets X to false.

• The first branch of the new parallel incarnation stops on the “await S”
statement.

• The second branch emits O(1) and L(false).

Therefore, the output event is O(2) because of O’s combination function.
In this reaction, two incarnations of L were brought alive, logically simulta-
neously but causally in succession. One was emitted with value true, the
other with value false.

The output of the simulator is the following one. In the first instant, the
program emits O(1) and, internally, L(false). Then, as explained above,
when S is present, two O(1) emissions are executed. After combination, this
yields O(2). The !show signals command only prints L as emitted with
value false, i.e. the last incarnation. The incarnation with value true is
lost.

M> !reset;
--- Automaton M reset

M> ;
--- Output: O(1)

M> !show signals;
--- Output: O(1)
--- Local: L(false)
--- Trap:

M> S;
--- Output: O(2)



112 CONTENTS

M> !show signals;
--- Output: O(2)
--- Local: L(false)
--- Trap: T

Source code debugging in xes would also hide the true incarnation of L.



Chapter 9

Constructive Cyclic
Programs

We now present the way in which Esterel v5 91 handles cyclic programs.
Here are the three basic facts to remember:

• For Pure Esterel programs, there is no limitation and the class of ac-
cepted programs is exactly the class of constructive programs described
in [1, 2].

• For plain Esterel programs with values, all constructive programs are
correctly handled when using the -I interpretation option. If a pro-
gram is non-constructive for a state and an input, this fact is found
at run-time and reported either by a −1 error return code in em-
bedded code or by an error message in xes or csimul simulation.
The -Icheck option performs a complete compile-time constructive-
ness analysis, which guarantees that the program will never encounter
a constructiveness error at run-time.

• For plain Esterel programs, the -causal option performs the same con-
structiveness analysis as -Icheck and generates sorted circuit code in
ssc format for a (useful) subclass of programs, composed of programs
where the computing actions can be statically ordered without requir-
ing duplication. The other programs cannot be handled yet and must
be compiled by the -I option, which generates less efficient code.

In the sequel, we detail the different options and the way unsorted circuit
code is generated. The basic examples of non-constructive programs pre-
sented in [2] can be found in the Esterel v5 91 distribution tape.
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9.1 A Non-Trivial Non-Constructive Program

Consider the following Pure Esterel program, also to be found in the distri-
bution tape:

module NonConstructive :
input I1, I2;
output O1, O2;
pause;
[

present [O1 and I1] then
emit O2

end present
||

present [O2 and I2] then
emit O1

end present
]
end module

The NonConstructive program is constructive at first instant, since it only
executes “pause”, but it is non-constructive at second instant if the input
signals I1 and I2 are both present. In that case, one cannot determine
whether the signals O1 and O2 must or cannot be emitted since the program’s
body reduces to

present O1 then
emit O2

end present
||

present O2 then
emit O1

end present

which is a typical example of a non-constructive program, see [2].

9.1.1 Checking for Constructiveness

Type the following command:
esterel -Icheck non-constructive.strl

This prints a message on stderr and pops an error box. The error message
contains an input sequence that leads to a non-constructive state. Here, the
sequence is
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;
I1 I2;

It is formed by the empty event followed by the event where both I1 and
I2 are present. The input sequence is printed in a format that can be read
by the xes and csimul simulators.

To view the source of the error, click on Show. This pops a window which
displays the source of the program using a color code that emphasizes the
problem just as for option -I:

• The keywords written in red foreground identify the (reachable) state
in which the error occurs.

• The statements that must be executed and the signals that must be
present are shown on a green background. In particular, the present
input signals appear on green background at their declaration point.

• The statements that cannot be executed and the signals that cannot
be present remain on standard background. In particular, the absent
input signals remain on standard background.

• The statements and signals for which we cannot prove either must or
cannot are shown on a pink background.

To identify the problem, look at the current state and at the boundary
between green and red backgrounds.

For NonConstructive, the current state is identified by the red fore-
ground color of “pause”. The input signals I1 and I2 are shown on green
background since they are present, and the first present statement is also
on green background since it must be executed. The rest is shown on pink
background. Click on the Help button for a more detailed explanation.

9.1.2 Adding Relations for Constructiveness

In NonConstructive, one can forbid simultaneous presence of I1 and I2 by
asserting the relation I1#I2. The program becomes:
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module Constructive:
input I1, I2;
relation I1 # I2;
output O1, O2;
await tick;
[

present [O1 and I1] then
emit O2

end present
||

present [O2 and I2] then
emit O1

end present
]
end module

The constructiveness analysis takes care of relations and the Constructive
program is found constructive by the -Icheck option.

Notice that both Constructive an NonConstructive are statically cyclic
and are rejected by the default sorted-circuit generation option of the esterel
command. When using the -I option, NonConstructive will return an er-
ror code −1 if fed with a blank event and then with the event “I1, I2”.
In Constructive, the relation states that the user guarantees that such a
second event cannot be generated. The satisfaction of relations is taken
for granted by the generated code. It is not checked at run-time, unless in
simulation mode (-simul option). If the run-time input event violates the
relation, unspecified behavior can occur.

9.1.3 Generating Sorted Circuit Code

The -Icheck option told us that the code generated with option -I is run-
time safe and will behave correctly provided that the relations are satisfied.
However, this code is not very efficient, and unsorted circuit code should be
preferred whenever possible to embed the program. This code is generated
as follows:

esterel -causal constructive.strl

The generated file constructive.c can be used just as any other C file
generated by the Esterel compiler (for acyclic programs, the -causal op-
tion only performs a topological sorting just as a standard option). The
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-causal option is compatible with the other Esterel options. However, op-
tion -causal is submitted to some restrictions for programs that handle
data. These restrictions are described below.

Notice that only the constructivity check is performed by default by
the -causal option. The check that single signals are emitted only once is
additionnally performed if the -single option is given to esterel command:

esterel -causal -single constructive.strl

9.2 Data Handling in Cyclic Programs

Plain Esterel involves data handled by valued signals, variables, etc. To
explain how valued signals are handled, we first show the translation of a
simple Esterel instruction into low-level code. The instruction is

emit X(1)

||

emit Y(?X+1)

The semantics is that X is emitted with value 1 and Y is emitted with value 2.
Clearly, the emission of X must precede that of Y since Y reads the value of X.
In the low-level (ic) code, we add Updated and Access auxiliary statements
to enforce the constructive order. Call VS and VY the low-level variables that
hold the values of X and Y. The translation is:

VX := 1;

Updated VX;

Emit X

||

Access X;

VY = VX+1;

Updated VY;

Emit Y

The law is that an Access statement (reader) can be executed only if all
Updated statement (writers) for the same variable that can be executed in
the same reaction have already been executed. This is necessary to ensure
uniqueness of the signal values. For example, the following sequence is
correct since it respects the constraint:
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VX := 1;
Emit X;
VY = VX+1;
Emit Y

Valued signals can lead to data-dependency cycles that make it impossible
to find an execution order. The simplest example is

emit S(?S+1)

The low-level code is
Access VS;
VS := VS+1;
Update VS;
emit S(VS)

There is no way to respect the execution ordering constraint. Here, prob-
ably, a pre(?S) operator is missing, and the correct code should be emit
S(pre(?S)+1).

9.2.1 Static vs. Dynamic Ordering

When compiled with the -I option, the order in which action execution
occurs is found dynamically and may differ for each input and each state.
If there is an order that respects control propagation and correct access
to signal values, the interpreter will find one. Therefore, all constructive
programs can be executed with option -I.

However, when compiled with the -causal option that generates sorted
circuit code, we currently look for a input-independent and state-independent
static ordering of the data actions and tests in the program. This ordering
does not only depend on the program’s control, it also depends on data
dependencies in actions.

Let us say that two data actions or data tests A and B are in potential
conflict if the following conditions are met:

• There is a static instantaneous cycle through control and signals that
passes by A and B.

• Either one action writes a variable that the other one reads or one
action is a test.

Clearly, two actions that are not in potential conflict commute and can be
arbitrarily ordered. The actions are in real conflict when not in one of the
following cases:
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• The actions belong to the same computation thread, which implies that
there is no way to execute them in parallel. There are two subcases:

– One of them can follow the other one instantaneously in the pro-
gram’s control flow, in which case the control flow order must be
preserved. Notice that there can be no reciprocal dependency,
otherwise there would be an instantaneous loop and the program
would have been rejected beforehand.

– They respectively appear in the then and else branches of a test,
or they are separated by some delay statement, in which case the
order can be arbitrary since at most one of them can be executed
in an instant.

• The actions are in different threads but cannot be executed in the same
instant, in which case the order can be arbitrary. If needed, this is
checked using a full state reachability analysis, which can be expensive.

• One of the actions is the emission of a signal and the other one reads
the signal’s value. In this case, as seen above, the emitter must appear
before the reader.

If these rules are met, then option -causal generates correct code. Other-
wise, an error message is generated.

9.2.2 A Cyclic Program accepted by sccausal

Here is a fairly tricky program for which sccausal can generate code (since
this version v5 91). The example is extracted from a real program written
at Dassault Aviation.

module BAR :
output O : integer;
signal S1 := 1 : integer, S2 := 1 : integer in

loop
pause;
emit O(?S1)

end loop
||
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loop
pause;
emit S1(?S2);
pause;
emit S2(?O)

end loop
end signal
end module

There is a cycle through “emit O(?S1)”, which reads S1 and writes O,
“emit S1(?S2)”, which reads S2 and writes S1, and “emit S2(?O))”, which
reads O and writes S2. The data actions are respectively A0 : VO:=VS1,
A1 : VS1:=VS2, and A2 : VS2:=VO. The actions A1 and A2 are in potential
conflict since A1 reads VS2 and A2 writes VS2. However, A1 and A2 cannot
be performed in the same reaction since they are separated by pause state-
ments. Therefore, their order can be arbitrary in the sorted circuit code.
Because of the data dependencies, A1 must precede A0 and A0 must precede
A2. The sorted circuit code can be generated with the order A1, A0, A2.

9.2.3 Malik’s Counter Example

An example of a constructive program that cannot be compiled using -causal
is an Esterel rephrasing of Malik’s example in [4]:

module MalikExample :
input I;
input X : integer;
output O : integer;
signal F : integer, G : integer in

var XF, XG : integer in
present I then XF := ?X else XF := ?G end;
emit F(XF/2)

||
present I then XG := ?F else XG := ?X end;
emit G(XG+1)

||
present I then emit O(?G) else emit O(?F) end

end var
end signal
end module

In the first instant, assume the input is X=6 and I. The low-level computation
action order found by option -I is:
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XF := 6; (V X)
VF := 3; (XF/2)
XG := 3; (V F )
VG := 4; (XG + 1)

and the result is 4 = (6/2)+1. Consider now X=6 with I absent. The action
order is:

XG := 6; (V X)
VG := 7; (XG + 1)
XF := 7; (V G)
VF := 3; (XF/2)

and the result is 3 = (6 + 1)/2. Since the addition and division can be
executed in any order, they cannot be statically ordered as required by sorted
circuit code and only the -I option can handle the program. Generation
of sequential code would require some action duplication, which is not yet
implemented.

When called with the -causal option on MalikExample, the Esterel
compiler prints the following error message:

*** sccausal: Cyclic dependency between read/write actions:
- malik.strl, line 11, col 22, MalikExample#0;
- malik.strl, line 12, col 7, MalikExample#0;
- malik.strl, line 8, col 36, MalikExample#0;
- malik.strl, line 9, col 7, MalikExample#0;
- malik.strl, line 11, col 22, MalikExample#0;

*** sccausal: Error #25.4.5:
Can not find a static order for these read/write

actions.

9.2.4 An Example With Tests

The following example involve data tests:
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module CyclicActions :
input I;
signal S1, S2 in

present I then
emit S1

else
emit S2

end
||

present S1 then
if true then emit S2 end

end
||

present S2 then
if true then emit S1 end

end
end signal
end module

This example is somewhat artificial because of the true tests, but it also
illustrates the fact that the contents of data action is not taken care of in
the analysis. A meaningless true test is handled symbolically, exactly as a
meaningful ‘X>0’ test, since no partial evaluation is performed on data.

Here, there is a cyclic dependency between the control signals S1, S2,
but the program is constructive because the presence test for I always cuts
the cycle in one way or another. This is easily checked using option -I.

However, the data actions that compute the test values cannot be stati-
cally ordered. Each of them depends on the other one by an instantaneous
path. For example, the second test depends on the first one through the
then part of the first test, the emission of S2, and the test for S2. There-
fore, the second test should be executed after the first one. Conversely, the
first test should be executed after the second one because of S1, and option
-causal cannot generate code. Here also, more clever action handling would
be necessary. The error message printed by the Esterel compiler is:

*** sccausal: Error: Cyclic dependency between data test
actions:

- CyclicActions.strl, line 13, col 7, CyclicActions#0;
- CyclicActions.strl, line 17, col 7, CyclicActions#0;
- CyclicActions.strl, line 13, col 7, CyclicActions#0;

*** sccausal: Error #25.4.5:
Can not find a static order for these data test

actions.
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