
CAMA: Cache-Aware Memory Allocation
for WCET Analysis

Jörg Herter
Department of Computer Science

Saarland University, Germany
Email: jherter@cs.uni-sb.de

Jan Reineke
Department of Computer Science

Saarland University, Germany
Email: reineke@cs.uni-sb.de

Reinhard Wilhelm
Department of Computer Science

Saarland University, Germany
Email: wilhelm@cs.uni-sb.de

Abstract—Current WCET analyses do not support dy-
namic memory allocation. This is mainly due to the un-
predictability of the cache performance if standard memory
allocators are used. We present a novel dynamic memory
allocator that makes cache performance predictable and
(de)allocates memory in constant time. It thereby enables
WCET analysis in the presence of dynamic memory alloca-
tion.

I. INTRODUCTION

At present, static worst-case execution time (WCET)
analyses exist exclusively for programs with static memory
allocation. However, supporting dynamic memory alloca-
tion as well would be desirable for a number of reasons:

• It often allows to save memory space, e.g. by im-
mediately reusing the newly available space when
converting one data structure into another.

• It is sometimes more natural to use, i.e. it gives a
clearer program structure.

Why is dynamic memory allocation not supported by cur-
rent WCET analyses? In order to give safe and reasonably
precise estimations of the WCET, analyses have to derive
bounds on the cache performance. They have to be able
to statically classify most memory accesses producing
cache hits during program execution as such. For standard
malloc implementations this is impossible. Since these do
not provide information about the addresses of allocated
memory. In particular, a cache analysis does not know
which cache sets allocated memory will map to. To obtain
guarantees on the cache performance, an analysis would
need to know which blocks of data compete within the
cache, i.e. which blocks may evict each other from the
cache. In addition, memory allocators cause cache pollu-
tion themselves. Maintaining and traversing their internal
data structures, they influence the cache contents in an
unpredictable way. Another somewhat less severe problem
with standard malloc is that its execution time cannot be
easily bounded.

This work is supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS)
and the German-Israeli Foundation (GIF) in the “Encasa” project.

Our novel dynamic memory allocator alleviates these prob-
lems:

• It allocates and deallocates memory in constant time.
• It causes only a small, constant amount of cache

pollution, completely predictable in the sense that one
can statically determine which cache sets are affected.

• Allocation to cache sets can be controlled by an
additional parameter.

We describe the main ideas of the new memory allocator
and possible challenges in its implementation. Then we
discuss how its properties can be exploited to obtain safe
and precise WCET estimations.

A. Previous and Related Work

Dynamic memory allocators with bounded worst-case
execution times have been investigated for many years.
The binary buddy system is a long-known allocation
algorithm whose WCET can be calculated. However,
it suffers from a relatively high internal fragmentation
of about 28% [9]. Ogaswara proposed the – to our
knowledge – first constant time allocation algorithm ([7];
as cited by Wilson et al. [13]) besides simple segregated
lists which produce very high fragmentation. However,
its fragmentation is still high compared to other existing
allocators. TLSF [5], a dynamic memory allocator for
real-time systems, achieves constant run times while
producing tolerable fragmentation. For real-life programs,
fragmentation produced by TLSF is similar to that caused
by Doug Lea’s memory allocator [4], currently considered
to be the best general allocator available [6]. Our allocator
was greatly influenced by TLSF. In fact, it can be regarded
as a cache-conscious modification of TLSF.
Chilimbi et al. proposed a cache-conscious memory
allocator (ccmalloc) in order to improve program
execution times [2]. Compared to malloc, Chilimbi’s
ccmalloc takes as an additional argument a pointer to an
existing data structure/object that is likely to be accessed
contemporaneously (or at least contemporary) with the
element to be allocated. ccmalloc achieves its goal by
trying to allocate the newly requested storage next to the
one pointed to by its second argument. As a result, newly



Sets

Lines

Fig. 1. Possible mapping from list elements to cache sets of a 4-way
set-associative cache with 4 cache sets.

allocated storage is often located in the same cache set as
the referenced one.

II. CACHES, CACHE ANALYSIS, AND
DYNAMIC MEMORY ALLOCATION

Caches are used to bridge the increasing gap between
processor speeds and memory access times. A cache is a
small, fast memory that stores a subset of the main memory
contents. It is located at or near the processor. Due to
the principle of locality, most memory accesses can be
serviced by the cache, although it is much smaller than
main memory, thereby drastically improving the average
latency of memory accesses. In order to give safe and rea-
sonably precise estimations of the WCET, cache analyses
[3] have to derive tight bounds on the cache performance.
In modern processors, turning off the cache easily causes
a thirty-fold increase in execution time [8]. Conservatively
classifying each memory access as a cache miss is thus
not an option. To classify memory accesses as hits, the
cache analysis needs to know the mapping of program
data to cache sets. Otherwise, it does not know which
memory blocks compete for cache lines. See the example
of a linked list in Figure 1. In the example, the elements of
the dynamically-allocated linked list map to the cache sets
very unevenly. Five of the six list elements map to one
of the four cache sets. While traversing the list, one of
the list elements is already being evicted, although the list
is much smaller than the cache. If the LRU replacement
policy would be employed, a subsequent second traversal
of the list would result in only one cache hit. With a
standard malloc, a cache analysis would not even be able
to guarantee this single hit: it has no knowledge of the
mapping to cache sets. Furthermore, all knowledge of the
cache analysis about previous cache contents would be lost
while traversing the list.
We propose to extend the malloc-routine by an addi-
tional parameter that constrains allocation to a specific
cache set. malloc(size, set) shall then return memory at
an address that maps to the cache set set. Given this
routine it is easily possible to allocate memory rela-
tive to a given address in the cache. A second routine
malloc(size, pointer, rel distance) shall return memory
at an address rel distance cache sets away from pointer.
Using the latter, one can construct a list, allocating con-
secutive list nodes to consecutive cache sets and thereby

evenly distributing the list in the cache in a predictable
manner. Another possibility would be to allocate all list
nodes in the same cache set. This scheme minimizes cache
damage to other structures as only one cache set is affected,
independently of the size of the list.
This approach breaks with the philosophy of caches be-
ing transparent to the programmer. However, we may
automatically generate the additional parameters. Only
the two schemes – distributing the elements of a data
structure evenly in the cache and allocating all elements
of a structure to the same cache set – seem reasonable to
preserve cache predictability. Once decided which scheme
to employ, we merely need to associate calls to malloc
with data structures. The latter can be obtained from a
shape analysis [11].

III. CACHE-AWARE MEMORY ALLOCATION

A memory allocator manages free and in-use blocks of
memory. Allocators must satisfy two conflicting demands:
they should have fast response times to (de)allocation
requests and minimize fragmentation, i.e. the amount of
free memory not usable to satisfy requests1. For a memory
allocator used in real-time systems, the demand for con-
stant response times arises. We also need our allocation
algorithm to be able to allocate memory blocks mapped to
a given cache set. A survey on existing dynamic memory
allocators can be found in [13].
In general, allocators strive to minimize fragmentation by
applying some placement choice, i.e. decide where to allo-
cate new blocks in order to keep fragmentation low. Split-
ting techniques to satisfy requests for smaller blocks and
coalescing techniques to serve larger blocks supplement
the set of main techniques utilized by allocators. We follow
Wilson et al. by viewing allocators as a mechanism that
implements a placement policy, motivated by a strategy
for minimizing fragmentation [13]. The overall strategy
determines acceptable, implementable policies for placing
blocks in memory. These policies are then implemented
by a set of algorithms and data structures, the mechanism.
We propose the following strategy: Separately manage
regions of free blocks mapped to the same cache set.
Within those memory regions select a suitable free block
whose size may be slightly larger than the requested size
if that allows for finding such a block in constant time.
The policies “manage free blocks mapped to the same
cache set in several disjoint size classes” and “always

1Traditionally, fragmentation is classed as external and internal frag-
mentation. Internal fragmentation is due only to the allocation algorithms
itself. It arises when larger blocks are served than requested. The wasted
memory then occurs internal within the block. External fragmentation is
due to an unability to serve a large contiguous block, although enough
small non-contiguous free blocks are available. External fragmentation
is caused by properties of the allocation algorithm and the sequence of
allocation/deallocation requests.



select the most/least recently freed block from the smallest
size class large enough to satisfy the request” (LIFO/FIFO
good-fit2) meet the proposed strategy. It is reasonable to
believe that the ordering of the free lists has a significant
impact on the overall fragmentation. Whether we settle for
a LIFO or FIFO good-fit policy, resulting in a most recently
freed and least recently freed ordering, respectively, will
be determined by a series of experiments using real-life
programs3. These policies can be implemented as follows.
Logically, we may think of the available memory as a
partition of n disjoint regions where n is the number of
cache sets. Each region is mapped to a distinct cache set.
We can further partition those regions into memory blocks
of distinct size classes. That is, for each cache set, we
obtain a set of size classes consisting of memory blocks
whose sizes are within that size class. The free memory
blocks of a single size class can be managed and organized
in a simple linked list (free list). We can further store
pointers to the heads of all such free lists in a consecutive
memory area, for example an array. This way, we reduce
the problem of finding a suitable free block satisfying an
allocation request to computing the index within that array
where the address of an appropriate free list is stored.
When a suitable free list is found, we simply return the first
element of that list. If a memory block is to be deallocated,
we compute the index of an appropriate free list into which
to reinsert this block. We may then either add the free block
as first or last element of that list, resulting in either a most
or a least recently freed ordering on the list.
We can think of the array storing all addresses of free lists

as a three-dimensional construction as depicted in Figure 2.
The first layer encodes to which cache set the memory
block shall map. In the second layer, neighboring partitions
of memory blocks constitute size classes a power of two
apart. That is, at index i on the second layer, a third layer
containing all free lists for blocks of sizes in [2i, 2i+1−1]
mapped to the same cache set is referenced. Hence, the
second layer constitutes a simple segregated list for size
classes of powers of two. To diminish the fragmentation

2Given a linked list of free memory blocks, a first fit algorithm would
select the first block, starting from the head of the list, that is large enough
to satisfy the allocation request. A best fit would select a smallest free
block of the list large enough to satisfy the request, a worst fit would
select a largest free block (given that this block is large enough to satisfy
the request). A good fit selects the best (i.e. smallest) block chosen from
some subset of fitting blocks. Hence, good fits in general are a tradeoff
between best and first fit. They avoid an exhaustive search of the whole
free list but might not select an optimal block.

3Similar experiments conducted by Weinstock [12] and more recently
by Wilson et al. [14] showed that first fit with an address-ordered
list produces significantly less fragmentation than LIFO-ordered first
fit. Although a FIFO ordering for first fit has not been considered
as thoroughly, there exist results suggesting that FIFO produces less
fragmentation than LIFO; maybe as little as address-ordered first fit [14].
We believe that similar results will be obtained for our FIFO and LIFO
good-fit policy.

1 2 k n − 1 n 1st layer

1 . . . i . . . I 2nd layer

0 . . . j . . . 2L − 1 3rd layer

. . .

︸
︷︷

︸

free list containing all memory blocks mapped to

cache set k whose sizes are in
ˆ
2i + 2i−L, sj+1,i

´
where sj+1,i =


2i+1 − 1 if j = 2L − 1
2i + 2i−L · (j + 1) otherwise

Fig. 2. Logical view on the partitioning of the memory.

that such a single segregated list would cause, we add
a third layer in which size classes increase linearly. If
all layers are organized in a single array by flattening
their hierarchical structure, the corresponding index of the
desired free list within that array can be computed in
constant time by a mapping function M : N3 7→ N.
A request to deallocate a memory block will determine an
appropriate free list for the given block and append it either
to the head or the tail of this list, depending on our ordering
strategy. While response times will be exceptionally good
for our allocator, fragmentation might be a problem. We
reduce fragmentation by a preanalysis of the program
code in order to determine a safe approximation of the
sequence of requests, both for allocation and deallocation,
presented to the allocator during program execution. This
information can be used to model the second and third
layer of the allocator such that fragmentation is minimized.
Hence, we first analyse the memory allocation behavior
of the program, adjust the allocator accordingly, and then
estimate the WCET. We will further investigate how well
allocation behavior of real-life programs can be statically
analyzed. This may result in a mechanism automatically
selecting the best allocator for a program during compile
time.
There are still some questions not answered in detail, most
of them implementation specific. How can requests for
blocks larger than one cache line be efficiently handled,
what is a good initial partitioning into size classes, and
how much of a problem is fragmentation in real-life pro-
grams? We are currently evaluating the following approach
regarding requests for blocks larger than a single cache
line. Requests for large blocks are in general very rare
[13]. We may therefore allocate blocks destined to hold a
large atomic object in a non-cached area of memory with-
out significally increasing execution times. Large records
(structs) can usually be split into smaller records that each
fit into a cache line.



Sets

Lines

Fig. 3. Shape of a linked-list structure obtained from a shape analysis
and its mapping to cache sets of a 4-way set-associative cache with 4
cache sets.

Before

After list traversal

After further accesses

most-recently-used

least-recently-used

most-recently-used

least-recently-used

most-recently-used

least-recently-used

Fig. 4. Effect of traversing the linked list of Fig. 3 on static cache
knowledge. Boxes shaded in dark gray indicate information about cache
contents other than about list elements. Boxes shaded in light gray
indicate information about list elements in the cache.

IV. WCET ANALYSES

How does a cache analysis exploit the properties of
our new memory allocator? The main idea is as follows.
Suppose, we have information about the shape of the
dynamically-allocated data structures including the relative
distances of objects in the cache. Such information can
be obtained from a shape analysis. Consider, for example,
a linked list as shown in Figure 3. If all six objects
organized in that list are mapped to cache sets in such
a way that neighboring elements are mapped to sets of
relative distance 1, then traversing the list affects at most⌈

6
n

⌉
cache lines per cache set, where n denotes the number

of cache sets. The number of cache lines per cache set
affected by a traversal of a data structure can be used to
(a) bound the information loss caused by that traversal and
(b) infer hits for a second traversal. Figure 4 depicts this
for our list example. In the example, we assume least-
recently-used (LRU) replacement. Cache lines are sorted
from most- to least-recently-used. Upon a cache miss, the
least-recently-used element is evicted. Dark-gray-shaded
boxes represent knowledge of a must-cache analysis [3].
For instance, a dark-gray-shaded box in the third line of
a set indicates that the analysis “knows” that a certain
memory block is in line 1, 2 or 3. Thus, dark-gray-shaded
boxes represent upper bounds on positions in the LRU-
stack. Traversing the list evicts at most 2 lines from each
cache set. The analysis can thus safely infer that the two
most-recently-used elements of each cache set are still
contained in the cache (row 2), after list traversal. The
upper bound on the position in the LRU-stack is increased
by two. If the list is traversed again later in the program,
it is also possible to safely predict cache hits for this
traversal.

V. SUMMARY AND CONCLUSIONS

Our work is aimed at developing a static program
analysis for determining WCET bounds for programs
performing dynamic memory allocation. To enable such an
analysis, we propose to replace the used memory allocator
of the program by a predictable, cache-aware allocator and
use this allocator to guide memory allocation with respect
to the cache set mapping. Constant execution times are
achieved by relying on segregated lists which is a common
practice with real-time allocators [1], [5]. We combine a
shape analysis with a WCET analysis to obtain WCET
bounds for the analyzed programs. The shape analysis
is necessary to compute heap shapes that contain infor-
mation about the data structures arising during program
execution. This information relates individual parts of the
data structures to cache sets, allowing for a cache hit/miss
classification of accesses to components of data structures
as well as bounding the loss of information about contents
of cache sets when loading structures into the cache.

REFERENCES

[1] D. F. Bacon, P. Cheng, and V.T. Rajan, “A Real-Time
Garbage Collector with Low Overhead and Consistent Uti-
lization,” SPNOTICES: ACM SIGPLAN Notices, 2003.

[2] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Making
Pointer-Based Data Structures Cache Conscious,” Computer,
vol 33(12):67–75, 2000.

[3] C. Ferdinand and R. Wilhelm “Efficient and Precise Cache
Behavior Prediction for Real-Time Systems,” Real-Time Sys-
tems, 17(2-3):131–181, 1999.

[4] D. Lea, “A Memory Allocator,” Unix/Mail, 6/96, 1996.
[5] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “TLSF: A

New Dynamic Memory Allocator for Real-Time Systems,”
IEEE Computer Society, ECRTS, 2004.

[6] M. Masmano, I. Ripoll, A. Crespo, J. Real, and A. J.
Wellings, “Implementation of a Constant-Time Dynamic
Storage Allocator,” Software: Practice and Experience, 2008.

[7] T. Ogasawara, “An Algorithm with Constant Execution Time
for Dynamic Storage Allocation,” 2nd Int. Workshop on Real-
Time Computing Systems and Applications, 1995.

[8] M. Langenbach, S. Thesing, and R. Heckmann “Pipeline
Modeling for Timing Analysis,” Proceedings of the Static
Analyses Symposium (SAS), volume 2477, 2002.

[9] J. L. Peterson, T.A. Norman, “Buddy Systems,” Communi-
cations of the ACM, 20(6):421-431, 1977.

[10] M. Rezaei, K. M. Kavi, “Intelligent Memory Manager:
Reducing Cache Pollution Due to Memory Management
Functions,” Journal of Systems Architecture, 2006.

[11] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric Shape
Analysis via 3-valued Logic,” ACM Transactions on Pro-
gramming Languages and Systems, Vol. 24, No. 3, Pages
217–298, May 2002.

[12] C. B. Weinstock, “Dynamic Storage Allocation Tech-
niques,” PhD thesis, 1976.

[13] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dy-
namic Storage Allocation: A Survey and Critical Review,”
International Workshop on Memory Management, 1995.

[14] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles,
“Memory Allocation Policies Reconsidered,” technical report,
1995.


