
1

The Design Principles of Object-Oriented VRML*

Sungwoo Park, Taisook Han
Distributed Computing Laboratory SERI**, Department of Computer Science KAIST***

{gladius,han}@compiler.kaist.ac.kr

Abstract
We present a new 3D scene description language, Object-Oriented VRML, to show how VRML can be
extended to incorporate object-oriented design principles. Object-Oriented VRML supports the creation of
objects in an object-oriented style. It is based on a safe object type system in which runtime type errors are not
generated. It facilitates the efficient implementation of virtual environment systems by making event
transmissions unnecessary in most situations. We give the syntax with examples and explain the design criteria.

1 Introduction
The Virtual Reality Modeling Language [1], VRML1, is a file format for describing interactive three-dimensional virtual worlds. It has
evolved from a simple 3D scene description language to a more sophisticated 3D modeling language capable of expressing behavior of
nodes and supporting various interactions.
VRML is intended to be an object-oriented system. Object-oriented features of VRML are such as prototype extension mechanism,
event passing between nodes, and the behavior associated with nodes. However, some of the language features violate the general
object-oriented design principle. For example, adding behavior to a node is accomplished by exploiting Script nodes and routes that
are not a part of the node; the behavior of the node is controlled not by it own elements but by other independent nodes, namely
Script nodes in conjunction with routes. Further object-oriented extensions to VRML are possible in many ways. Some extensions
to VRML are found in [2,3].
In this paper, we present a new object-oriented 3D scene description language, Object-Oriented VRML (OO-VRML), which is a
derivative of VRML. OO-VRML supports the creation of objects in an object-oriented style as the name suggests. It also supports a
safe object type system which does not generate runtime type errors. Event transmissions become unnecessary in most cases by
employing a new kind of content for attributes. The primitive version of OO-VRML is found in [4].
Characters in OO-VRML files are shown in fixed width font. Reserved words are shown in bold fixed width font.
Non-terminals are enclosed in angle brackets <> and shown in italic font. Regular expressions are used in the grammar specification.
We use [] to denote an optional symbol, []* to denote zero or more occurrences, []+ to denote one or more occurrences of a symbol.
{} is used to collect several symbols. | is used to denote a choice among several symbols.

2 Objects
Objects are fundamental components constituting OO-VRML files. They are abstractions of various real-world objects and concepts.
An object itself cannot be represented in the virtual world; instead, it serves as the basis for instances, which are represented concretely
in the virtual world. OO-VRML defines an object as a collection of attributes and eventIns with associated event handlers. The
attributes and eventIns are specified by the object type; objects of the same type have the same set of attributes and eventIns.

2.1 Attributes
Attributes are parameters which distinguish one object from another of the same type. They correspond to data members of objects in
general object-oriented systems. Every attribute has a content which should be of the attribute type. The content is given when the
object is created. It is used to determine the content of the corresponding attribute of instances which are derived from the object. That
is, the contents describe the method of specifying the values of attributes of instances. Since an object serves as the basis for instances,
the contents of the attributes cannot be modified after the object is created.
OO-VRML provides three kinds of attribute: field, exposedField, and eventOut. Fields store various kinds of data which determine the
characteristics of objects. They specify geometric properties of objects, control dynamic behavior, and establish relations with other
objects. A field has a content which should be of the field type. ExposedFields are a special kind of field. They provide an access
mechanism by which an exposedField may be related with fields of other objects through constraints. As with VRML, an exposedField
P declares implicitly an eventIn P.SET and an eventOut P.CHANGE through which other objects communicate with P by means of
events. Hence declaring an exposedField P by

exposedField <type> P
is equivalent to

eventIn <type> P.SET
field <type> P
eventOut <type> P.CHANGE

, where P can be accessed from the outside. When the eventIn P.SET receives an event, the value of the incoming event is assigned to
the exposedField P by the event handler associated with P.SET; the functionality of the event handler may be redefined. When a
value is assigned to the exposedField P, the eventOut P.CHANGE becomes activated and generates zero or more new events according
to the number of eventIns contained in P.CHANGE.

* This work was supported by MICRK, Ministry of Information and Communication Republic of Korea.
** System Engineering Research Institute, 1 Ueun-dong Yusung-gu Taejon Korea 305-333
*** Korea Advanced Institute of Science and Technology, 373-1 Gusung-dong Yusung-gu Taejon Korea 305-701
1 VRML stands for VRML 2.0 or VRML97 in this paper.

2

In both VRML and OO-VRML, eventOuts serve as gates through which outgoing events are transferred. The key difference is that
eventOuts of OO-VRML have contents which are used in specifying the destinations of the outgoing events, while eventOuts of
VRML only create such gates and the destinations are determined by routes associated with them. Conceptually both eventOuts and
routes of VRML are incorporated into eventOuts in OO-VRML. The content of an eventOut is composed of references to eventIns and
eventOuts of the same type as the eventOut. When a value is written to the eventOut, it is activated and sends an event constructed
from the value to every eventIn connected with it.

2.2 EventIns and Event Handlers
EventIns in conjunction with event handlers correspond to methods or member functions in conventional object-oriented systems. An
eventIn and its associated event handler may be regarded as the method declaration and the method body, respectively; when events
are delivered to the eventIn, the event handler is invoked to process them. The value of incoming events is used for the argument of the
event handler. During its execution, the event handler may assign new values to some attributes.
The event handler associated with an eventIn must have the same name as the eventIn except for eventIns accompanied by
exposedFields, whose event handlers may have the same name as the exposedFields, not as the eventIns. For example, an
exposedField P declares implicitly an eventIn P.SET. In order to override the event handler associated with P.SET, we only have to
attach a new event handler P to the object. An event handler P.SET is, of course, also a valid event handler for the exposedField P.
In VRML, the processing of incoming events is always done in a fixed way; their values are assigned directly to the relevant
exposedFields without modification and new events are generated via the eventOuts connected with the exposedFields. Usually the
complicated processing of events would be achieved in Script nodes, which are in themselves complete and independent objects.
Hence, in order to modify the behavior of a node with respect to a certain eventIn, one should examine all Script nodes that are
connected with the eventIn through routes. In other words, the behavior of an object may be controlled by other independent objects,
Script nodes, in VRML.
In OO-VRML, event handlers carry out such works as Script nodes of VRML perform. They describe the actions taken when
events are delivered to objects via eventIns. Since they are a part of objects, we may say that the behavior of an object is completely
described by its own components, which makes every object behaviorally autonomous. This conforms to the design principles of
object-oriented systems. With this object-oriented scheme for event handlers, we could build or reconstruct virtual worlds in an object-
oriented style. Analyzing virtual worlds would also be easier than with VRML because we only have to concentrate on each object
itself, not the relationships between objects.

2.3 Types for Attributes and EventIns
Field types are divided into two general categories: those for fields containing a single unit and those for fields containing multiple
units. A single unit may be an integer, a vector, an image, and so on. A type specifier is composed of two parts: a category specifier
and an element specifier. The category specifier SF and MF are used for single unit fields and multiple unit fields, respectively. The
element specifier determines the type of units contained in a field. The category specifier and the element specifier are separated by a
period. If the category specifier is omitted, the default category specifier SF is used.
A field should be of one of the following types. The right-hand side denotes the actual content structure of fields of the left-hand field
type. A non-terminal with a field type in the angle brackets indicates a single unit of the specified field type.

SF.Bool { TRUE | FALSE }
SF.Color <SF.Float> <SF.Float> <SF.Float>
SF.Float <single-precision floating point number>
SF.Image <SF.Int32> <SF.Int32> <SF.Int32> [<SF.Int32>]*
SF.Int32 <32 bit integer value>
SF.<class name> <reference to an object>
SF.Rotation <SF.Float> <SF.Float> <SF.Float> <SF.Float>
SF.String <valid UTF-8 string enclosed in double quotes>
SF.Time <double-precision floating point number>
SF.Vec2f <SF.Float> <SF.Float>
SF.Vec3f <SF.Float> <SF.Float> <SF.Float>
MF.Color { [[<SF.Color>]*] }
MF.Float { [[<SF.Float>]*] }
MF.Int32 { [[<SF.Int32>]*] }
MF.Rotation { [[<SF.Rotation>]*] }
MF.String { [[<SF.String>]*] }
MF.Vec2f { [[<SF.Vec2f>]*] }
MF.Vec3f { [[<SF.Vec3f>]*] }
MF.<class name> { [[<SF.<class name>>]*] }

The content structure of MF.<type> fields is composed of a list of units for SF.<type>. Object reference types SF.<class name>
and MF.<class name> are used for fields whose contents give a reference or a collection of references to objects, respectively. All
these objects must be of types which are convertible to the type of the object <class name>.
The semantics of eventOut types is that all the eventIns referenced from an eventOut, which is actually a multiple unit attribute, must
be either of the same type as the eventOut or convertible to the eventOut type. The type of an eventIn specifies the type of events
delivered to the eventIn. For example, the content of every event delivered to an SF.Int32 eventIn must be convertible to an integer.
Compared with VRML, OO-VRML presents an enhanced model of object reference type by enabling an object reference type to
accept only objects of the specified type. In VRML, SFNode and MFNode are employed on behalf of all node reference types,
irrespective of their semantics. For instance, the definition of the Shape node of VRML would be as follows.

3

Shape {
exposedField SFNode appearance NULL
exposedField SFNode geometry NULL

}
According to the specification of the Shape node, the field appearance must contain an Appearance node which specifies the
visual attributes to be applied to the geometry. However, the node reference type SFNode is irrelevant because it allows any node to
be contained in the field appearance. In contrast, OO-VRML would write the definition of the object Shape as follows.

Shape {
exposedField SF.Appearance appearance NULL
exposedField SF.Geometry geometry NULL

}
The field appearance now accepts only references to SF.Appearance objects, and objects whose types are incompatible with
the object reference type SF.Appearance cannot be used for the field appearance. Thus, the contents of object reference fields
are always guaranteed to be semantically correct in OO-VRML.
Although VRML does not enforce correct contents upon node reference types in the language semantics, most VRML systems
perform a semantics check on node reference types. Hence the new model of object reference type in OO-VRML would not bring a
significant improvement on the type safety of attributes over VRML node reference types if only constants were used for the contents
of attributes. However OO-VRML introduces a new kind of attribute content, namely paths, in addition to constants. Paths make it
inevitable to employ such an enhanced model of object reference type as to support robustly the type safety of attributes containing
paths. Paths are explained in detail in Section 3.2.2.

2.4 Creating New Objects
Attributes of objects are divided into two groups: internal attributes and external attributes. External attributes are those whose
contents may be specified at the time of creating objects. Objects of the same type have the same set of external attributes and they are
differentiated upon their characteristics by the contents of the external attributes. For this reason, every object usually has at least one
external attribute. Internal attributes serve to maintain the internal operations of objects. Objects of the same type have the same set of
internal attributes. Furthermore each internal attribute has the same content in these objects; it cannot be assigned a new content when
objects are created. In order to catch the behavior of an object, one only has to understand the purpose of each external attribute and
the operation of each event handler; internal attributes are not necessarily required to be examined.
A new object is created from an existing source object. The grammar for creating objects is as follows.

<object> ::=
[DEF <new object identifier>] [MULTIPLE | SINGLE] <source object identifier>
{
[

<field identifier> <field content> |
<eventOut identifier> <eventOut content>

]*
} <handler declaration>

The new object may be given its own name by the keyword DEF. The properties SINGLE and MULTIPLE are used when instances are
derived from the object, that is, it is instantiated. The default property is SINGLE. The property SINGLE or MULTIPLE of the source
object is inherited to the new object if not overridden. The new object may override event handlers of the source object by presenting
new definitions for them. New event handlers with corresponding eventIns, however, cannot be added to the new object.
The source object and the new object have the same set of attributes and eventIns. The new object may override the contents of
external attributes of the source object. If a new content is not provided for an external attribute, its inheritance mode, which is
explained in Section 3.1, is employed in order to specify how its content is obtained. The new content must be of a correct type.
Otherwise, it is replaced by an undefined content. Internal attributes cannot be provided with new contents; they continue to have the
same contents as the internal attributes of the source object.
The two objects have the same object type mutually. For example, if a new object B is created from a source object A, both SF.A and
SF.B are legal object reference types for A as well as B. Note that the name of any object can be used for object types such as
SF.Obj and MF.Obj. Thus creating an object supplied with a name provides an additional way to refer to a certain object type, but
does not introduce a new object type.
In the viewpoint of OO-VRML, every field of nodes of VRML is regarded as an external attribute in that it may be given a new
content overriding the default content. That is, every field is available to VRML users and there is no hidden field. All fields are
directly employed in controlling the behavior of nodes. In contrast, objects of OO-VRML may have internal attributes which are
invisible to users but still take part in determining the behavior of objects. An external attribute may be used for the contents of internal
attributes or other external attributes. In this way, OO-VRML supports a more sophisticated mechanism for creating objects than
VRML does for creating nodes.

3 Attributes
OO-VRML provides fields and exposedFields to specify the properties of objects as VRML does for nodes. However, the contents of
fields and exposedFields of OO-VRML may contain paths in addition to constants, while only constants are available in VRML.
Moreover, OO-VRML treats even eventOuts as attributes, a kind of data member of objects, which have contents. In this section, we
explore the differences between VRML and OO-VRML in assigning contents to attributes.

3.1 Inheritance Modes for Attributes
When a new object is created from a source object, it is usually provided with specific contents for its attributes so that it may have

4

different properties from other objects of the same type. If an attribute is not given a content, its inheritance mode in combination with
the content of the attribute in the source object determines its content in the new object. The inheritance mode controls how the content
of the attribute in the source object is exploited for the attribute of the new object. Therefore OO-VRML does not maintain default
contents for attributes as VRML does for fields; the content of an attribute in a source object does not serve as the default content for
the same attribute of all objects created from the source object.
OO-VRML supports three inheritance modes: inherit, copy, and local. Suppose that a new object B is created from a source object A
and that the content of an attribute f is not specified in B. If the inheritance mode of the attribute f is copy, which is the default
inheritance mode, the content of f of the object A is copied to f of the object B. In this case, the attribute has the same content in the
two objects. If the inheritance mode is inherit, the attribute f of the object B has a path which references the same attribute of the
source object A. The inheritance mode inherit presents the result that the content of an attribute in a source object is shared by the same
attribute of other objects created from the source object. The final inheritance mode is local. In this case, the content of the attribute f
in the object B is UNDEFINED, which is a special content. UNDEFINED is converted to a constant according to the attribute type. In
another point of view, the content of an attribute with the inheritance mode local becomes never available to other objects; every object
must provide a unique content of its own for such an attribute.
Every attribute has an inheritance mode whether it is internal or external. However, the actual inheritance mode of internal attributes is
always copy regardless of their nominal inheritance modes. For this reason, objects of the same type have the same contents for all the
internal attributes, and only the contents of external attributes of an object determine its properties different from other objects of the
same type. This strategy for internal attributes gives natural results in creating objects. Likewise the inheritance mode of eventOuts is
always copy and cannot be specified otherwise.

3.2 Contents of Attributes
The contents of attributes are built on constants and paths. Various types of attribute contents are constructed with constants and paths.

3.2.1 Constants
Constants are fundamental expressions used for contents of attributes. A constant is an expression whose value is determined statically
and does not depend on contexts or environments. OO-VRML supports seven types of constants. The counterparts of all these
constants are found in VRML as well.
l boolean constants
l 32bit integers
l single-precision floating point numbers
l double-precision floating point numbers
l UTF-8 strings
l references to objects
An object reference X is regarded as an SF.X constant.
l NULL
NULL is used for empty multiple unit attributes, in which case it may be used interchangeably with []. It is also used to denote null
references to objects.

3.2.2 Paths
Paths are another kind of fundamental expression used for contents of attributes. A path used in an object references an attribute either
in the same object or in other objects. Unlike constants, the evaluation result of a path depends on contexts or environments.
Paths begin with an object specifier. An object specifier is one of the following: SELF, SOURCE, PARENT, CURRENT, and object
references. It is followed by a series of attribute pointers or the object specifier PARENT. In cases that a path does not begin with an
object specifier, SELF is employed as the default object specifier. Each element of a multiple unit attribute can be accessed by
indexing the attribute, while eventOuts cannot be indexed. Only integer constants may be used for indices.

<path> ::=
{ <object identifier> | <attribute pointer> | SELF | SOURCE | PARENT | CURRENT }
[. { <attribute pointer> | PARENT }]*
<attribute pointer> ::=
<attribute identifier> [[<SF.Int32>]]

The object specifier SELF references the object in which the path appears. It is attached to every path which begins with not an object
specifier but an attribute pointer. For example,

DEF A Transform {
center 0 0 0
translation center

}
the final content of the attribute translation becomes SELF.center, and SELF in this path references the object A. Object
references are another kind of object specifier. An object reference Obj references the object with its identifier Obj. An object
reference may not appear in the middle of paths. The object specifier SOURCE is used only for attributes whose inheritance mode is
inherit. When an attribute f with the inheritance mode inherit is not given a new content, its content is set to SOURCE.f, where
SOURCE references the source object. Therefore, the object specifier SOURCE is not available to OO-VRML users. The object
specifier PARENT is the only object specifier which may appear in the middle of paths. PARENT in an object Obj references the
parent object which makes it necessary to instantiate Obj; the parent object must have an attribute which references the object Obj.
For example,

DEF Child ClassChild {
q PARENT.p

5

}
DEF Parent ClassParent {

p 10
child Child

}
the attribute q of the object Child comes to reference the attribute p of the object Parent because PARENT in Child points to
Parent in the above context; instantiating the object Parent entails the instantiation of the object Child. Several attributes in
different objects may reference one common object. In such cases, PARENT in the common object may not be fixed to reference a
certain object and the evaluation result of PARENT in an object may vary depending on the context in which the object is instantiated.
CURRENT is a special object specifier. It is used to directly import the contents of attributes in the source object. An attribute may
contain a path beginning with CURRENT, but the path is converted to a new content. Consider the following example.

DEF Q P {
children [CURRENT.child R]

}
The content of the attribute children of the object Q depends on both the inheritance mode and the content of the attribute child
of the object P, the source object of Q. If the inheritance mode is copy, CURRENT.child is converted to the actual content of the
attribute child of the object P, that is, the content of child of P is directly copied to into the attribute children of the object Q. If
the inheritance mode is local, CURRENT.child is converted to UNDEFINED because the attribute child of the object P should not
be available to any other object. If the inheritance mode is inherit, CURRENT.child is converted to SOURCE.child; the
conversion conforms to the design principle of the inheritance mode inherit. In this example, SOURCE in the object Q points to the
object P. Hence the attribute child of the object P is to be used for the attribute children of the object Q. In this way, any path
beginning with CURRENT is converted to another appropriate content.
The design principle of the object specifier CURRENT should be distinguished from that of the inheritance mode inherit. The
inheritance mode inherit is employed only for attributes whose contents are not provided. In contrast, a path beginning with CURRENT
is converted to a new attribute content and the conversion is controlled primarily by the inheritance mode of the attribute which
follows the object specifier CURRENT. This kind of path is useful for multiple unit attributes whose contents are constructed by
appending additional contents to their contents in the source object.
Paths beginning with object specifiers SOURCE and CURRENT cannot contain more than one attribute pointer. This type of path is
called single level paths, which contain only one attribute pointer. Multilevel paths take more than one attribute pointer. Object
specifiers such as SELF, PARENT, and object references can be used to construct multilevel paths.
Given the enhanced model of object reference types, OO-VRML makes it straightforward to examine the validity of a path and obtain
all possible attribute types represented by the path. An object specifier is always resolved to a set of objects. For example, PARENT
used in an object presents all other objects that entail the instantiation of the object. SELF and SOURCE present the object itself and
the source object, respectively. Hence it is statically known whether these objects contain the attribute designated by the attribute
pointer following the object specifier. If the attribute is of an object reference type, it is also statically known which attributes are
expected to follow if any. If an unexpected attributes is encountered, the path becomes invalid and is replaced by UNDEFINED. This
process goes on until the last attribute pointer in the path is examined. In this manner, all possible attribute types represented by the
path are collected and its type correctness can be checked.
As an example, consider a path expression Obj.f.g.h where Obj is an object reference. The type of the object referenced by Obj is
determined statically. Hence, it is also statically determined whether the object has the attribute f or not. If the attribute exists, it must
be of an object reference type which contains the attribute g. The attribute h which appears last in the path does not need to be of an
object reference type. However, it must have the attribute type of which the path is expected to be. Thus it can be checked if the path is
valid or not.
The contents of eventOuts are composed of only paths, excluding constants. These paths reference either an eventOut or an eventIn.
Suppose that such a path references an eventIn. In this case, the attribute pointer which appears last in the path is not related with an
attribute. Rather it is related with an eventIn, which is not an attribute. This shows the only exception to the definition of paths, in
which paths should reference only attributes. In another point of view, however, eventIns may be looked upon as a special kind of
attribute with no content. Then the above definition of paths would be applied to those for eventOuts without any difficulties.
VRML employs routes in order to deliver the value of one exposedField to others. The value is transmitted via routes according to the
VRML event transmission mechanism. In this way, the relationships between exposedFields are established. In OO-VRML, a path
establishes a relationship between two independent attributes. In this sense, paths are said to declare one-way equality constraints
between attributes. In most cases, event transmissions become unnecessary if paths are substituted for them. Without paths, much more
event transmissions would be inevitable. The support of paths in OO-VRML is a significant enhancement over VRML with respect to
both the language semantics and the system performance.

3.2.3 Accessibility
Since paths can reference attributes across objects, OO-VRML provides a data hiding mechanism which prevents some attributes of an
object from being accessed by other objects. ExposedFields can be read by other objects, but they cannot be written to. Unlike
exposedFields, fields and eventOuts may not be accessed by other objects. However, eventOuts accompanying exposedFields are
accessible. For example, if an exposedField P is given, P.CHANGE may be referenced by other objects. Note that the accessibility of
attributes is irrelevant to whether they are external or internal.
EventIns of an object may be accessed by other objects. Since eventIns correspond to the member function of objects in object-
oriented systems, the references to eventIns are available only to eventOuts; they cannot be used for the contents of fields or
exposedFields. Inside an object, all the attributes and eventIns are freely accessible.
The only exception to this accessibility policy is found in fields which are referenced by path expressions beginning with the object

6

specifier SOURCE. Given a path SOURCE.f, f may be either a field or an exposedField. Since such a path is not given by OO-VRML
users but generated by the OO-VRML system, the accessibility policy about the object specifier SOURCE does not weaken the data
hiding mechanism.

3.2.4 Specifying Contents of Attributes
The content of a single unit attribute is a constant, a path, or a fixed number of constants and paths. If a path is given, it must be a
reference to another single unit attribute of the same type. Parentheses may be inserted to avoid ambiguous expressions. The following
example demonstrates three cases for the contents of SF.Color fields.

A {
p 0 0 0 # SF.Color
q p # SF.Color
r 0 # SF.Float
s (r 0 0) # SF.Color

}
The content of a multiple unit attribute is a path, NULL, or a list of contents for single unit attributes. It may also contain as one of its
elements a reference to another multiple unit attribute of the same type. For example,

DEF A Transform {
children [P Q R] # exposedField

}
DEF B Transform {

children [A.children S]
}

the content of the attribute children of the object B is [P Q R S] in the current context. If a path is given for the content, it
must be a reference to another multiple unit attribute of the same type as with single unit attributes.

4 Classes
Object-oriented systems are divided into two broad categories: object-based systems and class-based systems. In object-based systems,
new objects are created by modifying or extending the characteristics of existing objects. This kind of system does not maintain classes
separately from objects. In class-based systems, a class introduces a new domain of objects which have common properties. An object
is created by instancing a class, which determines the type of the object. Thus, classes and objects are two disparate concepts which are
not compatible.
OO-VRML is a hybrid system incorporating both approaches. It supports classes as well as objects, but the semantics of classes is
different from what is expected in class-based systems. OO-VRML is regarded as an object-based system with respect to object
creation. New objects are created from source objects. Classes are a kind of object and not distinguished from objects. Thus, OO-
VRML presents conceptually only one mechanism to create objects, which manages classes in the same way as objects. OO-VRML is
also regarded as a class-based system with respect to object typing. The type of an object specifies its general characteristics, and only
classes introduce new object types. Every object created from a class has the same type as the class. Interfaces provide a mechanism to
add new object reference types to field types.

4.1 Defining Classes
Defining a class is actually creating a new object from a source object, which is called superclass. Ordinary objects as well as classes
may be used for the superclass. New attributes and event handlers can be added, the type of the attributes in the superclass can be
refined, and the inheritance mode of the attributes may be modified.

<class> ::=
[MULTIPLE | SINGLE] CLASS <class identifier> EXTENDS <superclass identifier>
[IMPLEMENTS <interface identifier> [, <interface identifier>]*]
[
<external declaration>
]
<body>
<handler declaration>

A class definition is composed of four parts: header, external declaration, body, and handler declaration. The header states the name of
the new class, or the subclass. It also specifies the superclass and optional interfaces which the subclass should implement. The
properties MULTIPLE and SINGLE specify whether or not the new class can be instantiated more than once. The default option is
SINGLE, which implies that it can be instantiated at most once. The property SINGLE or MULTIPLE in the superclass is inherited to
the subclass if not overridden. More than one interface may be given, and the new class must satisfy the specifications of each
interface.
The subclass inherits all attributes and event handlers of the superclass. The external declaration enumerates all the external attributes
of the subclass with their contents. The external attributes are either those inherited from the superclass or new attributes introduced in
the external declaration for the first time. The body assigns new contents to internal attributes of the subclass which are external in the
superclass. The handler declaration may add new event handlers or override the event handlers of the superclass.
The relationship between the subclass and the superclass on the attributes is shown in Figure 1. Every attribute is first introduced to a
class as an external attribute. Once the attribute becomes an internal attribute, it cannot revert to an external attribute in any subclass.
External attributes can still remain external in subclasses. In this way, a class can refine the behavior of its superclass by introducing
additional new external attributes and exploiting them in specifying the contents of internal attributes.

7

4.2 External Declaration
The external declaration is composed of a list of specifications on external attributes and eventIns. Since the basic behavior of a class
is controlled by its external attributes, the external declaration contains all parameters that distinguish the objects created from the class.
Every external attribute must appear in the external declaration, where all the properties of each external attribute are given. If it is a
new attribute added to the class, its inheritance mode, type, and content should be specified. Otherwise, that is, if it is shown to be an
external attribute in the superclass by the keyword TRANSPARENT, its inheritance mode, type, and content may be overridden. New
eventIns added to the class appear in the external declaration with their types. The old eventIns of the superclass can refine their types
in the external declaration.

The syntax for the external declaration has three elements: the element for fields and exposedFields, the element for eventOuts, and the
element for eventIns.

<external declaration> ::=
[

[TRANSPARENT] [<inheritance mode>] { field | exposedField } <field type>
<field identifier> [<field content>] |
[TRANSPARENT] eventOut <eventOut type> <eventOut identifier> [<eventOut content>] |
eventIn <eventIn type> <eventIn identifier>

]*
<inheritance mode> ::=
INHERIT | LOCAL | COPY

Consider a field or exposedField declaration. If the keyword TRANSPARENT is not given, the field or exposedField is a new external
attribute. In this case, a content must be provided for the attribute. The inheritance mode is one of local, copy, and inherit. It is optional
and the default inheritance mode is copy.
If the keyword TRANSPARENT is given, the field or exposedField is not a new external attribute but an external attribute of the
superclass. In this way, OO-VRML achieves the mechanism by which a subclass directly inherits external attributes from its superclass
without changing them into internal attributes. The inheritance mode is optional, and it is not altered if a new inheritance mode is not
specified. The field or exposedField must be of a subtype of its field type in the superclass. That is, the field type can only be refined.
It cannot be set to another completely different field type; hence, if its field type in the superclass is not an object reference type, the
same field type must be used again in the external declaration. The field content is optional. If a new content is not given, the content
of the attribute is determined according to its inheritance mode.
A field or exposedField in the external declaration contains constants and valid paths of the correct type. The paths should reference
either external attributes in the external declaration or attributes in other objects which are permitted to be accessed; paths in the
external declaration cannot reference internal attributes. The object specifiers SOURCE and CURRENT used in the external declaration
have the same semantics as they have in creating objects. Suppose that a class B is defined from a superclass A. Defining the class B is
actually creating an object from the superclass A. Hence SOURCE in the class B references the superclass A. The superclass A is also
employed to resolve paths beginning with CURRENT into new attribute contents.
EventOuts are a special kind of attribute. The semantics of eventOuts in the external declaration is exactly the same as that of fields
and exposedFields except that the inheritance mode is not stated; the inheritance mode of eventOuts is always copy. EventIns of OO-
VRML correspond to methods or member functions in object-oriented systems. They are accumulated in subclasses and accessible
from the outside of classes. EventIns are used in the external declaration either when they are first added to classes or when their types
are refined. If an eventIn is not given its associated event handler, every event sent to it is ignored.
An exposedField P in the external declaration accompanies implicitly the declaration of an eventOut P.CHANGE and an eventIn
P.SET of the same type as P. The eventOut P.CHANGE has the content NULL by default. It may be given a new content in the
external declaration. Both the eventOut P.CHANGE and the eventIn P.SET can refine their types in the external declaration.
All attributes and eventIns of a class must have unique names; they share a common name space within the class. Hence, the names of
the new attributes and eventIns in the external declaration must be chosen so as to cause no name conflict.

4.3 Body
External attributes of a superclass turn into internal attributes in its subclasses unless they are explicitly declared external attributes
again in the subclasses. The contents of these internal attributes are specified in the body.

new external attributes
of the subclass

subclass external attributes

subclass internal attributes

superclass external attributes

superclass internal attributes

Figure 1. The relationship between the subclass and the superclass on the attributs

8

<body> ::=
{
[

<field identifier> <field content> |
<eventOut identifier> <eventOut content>

]*
}

As in the external declaration, internal attributes in the body may contain paths. The difference is that paths in the body can reference
these new internal attributes as well as those attributes which paths in the external declaration can reference.

4.4 Handler Declaration
A handler declaration consists of zero or more event handler declarations.

<handler declaration> ::=
[<event handler declaration>]*
<event handler declaration> ::=
HANDLE <eventIn identifier> {
[<field type> <field identifier> <field content>]*
url <SF.String>
[<field type> <field identifier> <field content>]*
}

In an event handler declaration, a new event handler is defined or an old event handler of the superclass is redefined. An event handler
is composed of three components: an associated eventIn, local fields, and behavior code. It enters into execution when the associated
eventIn receives events. If the class does not have the eventIn, the event handler declaration is ignored. Local fields are conceptually
the same as the fields of classes except that they have no inheritance mode and that their contents may have only constants. Paths
cannot be used for the local fields. The local fields are available only to the event handler to which they belong. The field url
specifies a URL (Uniform Resource Locator) for the behavior code. It must be an SF.String constant. When the event handler is
invoked, the behavior code is executed. The behavior code may access external attributes and local fields. However, it cannot access
internal attributes. The above rules for handler declarations are applied in the same manner to handler declarations in object creation.
When a new object is created from a source object, the two objects have the same set of event handlers. If the new object does not
override any event handler of the source object, their behavior for any eventIn is also the same. An object maintains its own local
fields for each event handler; the local fields cannot be shared.

4.5 Core Attributes
Core attributes of a class are the external attributes of its topmost superclass which is provided by the OO-VRML system. The topmost
superclass is said to be the basis class of the class. If the contents of all core attributes are specified, the class can be instantiated. The
objects created from the class have the same set of core attributes as the class. Non-core attributes are usually exploited in order to
determine the contents of core attributes. Consider the following example.

CLASS Cube EXTENDS Box [
exposedField SF.Float extent 2

] {
size (extent extent extent)

}
Since the class Box is provided by the OO-VRML system, it is the basis class of the class Cube. The class Cube has two attributes:
an external attribute extent and an internal attribute size which is a core attribute. The content of the external attribute extent is
used for the core attribute size.
The division criterion for internal attributes and external attributes is irrelevant to core attributes; a core attribute may be internal or
external. For instance,

CLASS TransformGroup EXTENDS Group [
TRANSPARENT exposedField MF.Transform children

] {
}

the attribute children of the class TransformGroup is an external attribute and still a core attribute. The only change in the
attribute children is that its type is refined from MF.Node to MF.Transform.

4.6 Interfaces
An interface is used to state explicitly the properties of classes. An interface is a collection of specifications on attributes and eventIns.
When a class satisfies all these specifications, it is said to implement the interface. A class can implement several interfaces if there
arise no conflicts between the interfaces. An interface declaration consists of zero or more fields, exposedFields, eventOuts, and
eventIns with their types. Attributes in an interface declaration do not have contents.

<interface> ::=
INTERFACE <interface identifier>
[
[

{ field | exposedField } <field type> <field identifier> |
eventOut <eventOut type> <eventOut identifier> |
eventIn <eventIn type> <eventIn identifier>

9

]*
]

Suppose that a class A implements an interface B. For an attribute f in the interface B, the class A has the same attribute f of a correct
type. It does not matter whether the attribute f of the class A is internal or external; both internal attributes and external attributes are
employed in implementing interfaces. Likewise, for an eventIn g in the interface B, the class A also has an eventIn g of a correct type.
An interface introduces a new object type. For example, if an interface A is declared, SF.A and MF.A are valid types for attributes and
eventIns. Classes implementing the interface A are regarded as objects of the type SF.A. Since a subclass inherits all the attributes and
eventIns of its superclass and the types of the attributes and eventIns can be only refined, it also implements every interface that the
superclass does.

5 Locales
An OO-VRML file can describe more than one independent virtual world, which is called locale. Locales are composed of objects,
classes, and interfaces. Each locale maintains a local coordinate system. With respect to the coordinate system, it does not share any
portion of the world with other locales. An object is visible, or can be used as a source object in object creation, only in the locale to
which it belongs. COMMON blocks, a special kind of locale, contains objects visible in all other locales.

<oovrml> ::=
[

COMMON { [<element >]* } |
[DEF <locale identifier>] LOCALE { [<element>]* }

]* |
[<element>]*
<element> ::=
<object> | <class> | <interface>

The locale created finally in an OO-VRML file is the main locale, which becomes active first when the OO-VRML system runs. If no
locale is created, the objects constructs a main locale with no name.

6 Instantiating Objects
A VRML file describes a virtual world by enumerating nodes, which are the fundamental element of VRML. The nodes construct the
scene graph for the virtual world. The values of fields are always constants. Therefore, nodes can be directly used in rendering the
virtual world. The fundamental element of OO-VRML is objects, which are the counterpart of nodes of VRML; both nodes of VRML
and objects of OO-VRML represent real world objects and concepts. In contrast to nodes of VRML, objects of OO-VRML cannot be
directly used in rendering the virtual world because the contents of their attributes may be paths as well as constants. They are first
instantiated to derive their instances. The resultant instances are then employed to render the virtual world by the OO-VRML system.
Every instance has a basis object from which it is derived. It has the same set of attributes and eventIns as the basis object. The
attributes have the same contents as those of the basis object except that object references in constants and paths are converted into
instance references. As the values of attributes are calculated from their contents, the OO-VRML system continues to render the virtual
world.
An object can derive more than one instance, depending on its property. If it has the property SINGLE, only one instance is derived. If
it has the property MULTIPLE, more instances can be derived. An object is instantiated to create new instances when it is referenced
by attributes of other objects. The attribute must be of an object reference type. If the object has the property SINGLE and it has no
instance yet, a new instance is derived. If it has already derived an instance, this instance is used for the object afterwards. Hence, only
one instance is maintained for an object with the property SINGLE. An object with the property MULTIPLE creates new instances
whenever it is referenced in other objects. The instances derived from the same object are differentiated by their environments.
The environment of an instance stores the context where it is derived. It is composed of three instance pointers, or environment
variables, SELF, PARENT, and SOURCE. They are used for resolving object specifiers SELF, PARENT, and SOURCE in paths. The
instance pointer SELF references the instance itself. The instance pointer PARENT references the most recent instance of the parent
object which entails the instantiation of the basis object. It may be null if the basis object is not referenced by other objects but
instantiated by itself. The instance pointer SOURCE references the most recent instance of the source object. For example,

DEF P Q {
}

the instance pointer SOURCE in the instance of the object P references an instance of the object Q. When the object P is instantiated,
the source object Q may have more than one instance if it has the property MULTIPLE. In such a case, its most recent instance is
employed for the instance pointer SOURCE.
After the environment of every instance is computed, an attribute whose content contains paths can calculate its value. The structure of
paths is built by a sequence of object specifiers and attribute pointers. Therefore, a path can be evaluated to a specific value by
substituting instance pointers of environments for object specifiers in it. Since paths declare one-way equality constraints between
attributes, they are semantically re-evaluated at every iteration of the rendering process by the OO-VRML system, where various
optimization techniques could be applied. In contrast to paths, constants are evaluated only once when objects are instantiated; the
evaluation results may be replaced with new constant values by event handlers. In this way, the OO-VRML system calculates the value
of each attribute and renders the virtual world.
The idea of instancing in VRML allows a node to be shared by other nodes. In OO-VRML, the instantiation mechanism allows the
definition of an object with the property MULTIPLE to be shared in deriving its instances. The instance derived from an object with
the property SINGLE can also be shared by other instances. Thus, the two mechanisms can be considered to have the same design
purpose basically.

10

7 Conclusion
We have shown how VRML can be extended to incorporate object-oriented design principles. The new language, OO-VRML, is an
extension of VRML toward object-orientation. It also adopts other concepts such as paths and locales to support the efficient
implementation of virtual environment systems. We have developed a prototype of the OO-VRML system. We are testing the utility of
the language by running the OO-VRML system on a number of examples. The future works include the development of a full OO-
VRML system containing a browser. The support of general constraints for the contents of attributes is also to be considered.

Acknowledgments
The main design ideas of OO-VRML should be ascribed to VRML Object-Orientated Extensions Working Group. We would like to
thank the members of the working group, especially Stephan Diehl and Jean-Francis Balaguer.

References
[1] The Virtual Reality Modeling Language, International Standard ISO/IEC 14772-1:1997.

http://www.vrml.org/Specifications/VRML97, 1997.
[2] Stephan Diehl. VRML++: A Language for Object-Oriented Virtual Reality Models. In Proceedings of the 24th International

Conference on Technology of Object-Oriented Languages and Systems, Beijiing, China, 1997.
[3] Stephan Diehl. Extending VRML by One-Way Equational Constraints. 1997.
[4] Sungwoo Park and Taisook Han. Object-Oriented VRML for Multi-user Environments. In Proceedings of the Second

Symposium on the Virtual Reality Modeling Language, Monterey, USA, 1997.
[5] VRML Object-Oriented Extensions Working Group. Discussion mails. http://www.cs.uni-sb.de/RW/users/diehl/ooevrml/, 1997.

