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Chapter 1

Introduction

I
n traditional compiler design the work of a compiler is divided into several phases:
lexical, syntactical and semantical analysis, optimizations and code generation. For
several of these phases generators exist { most prominently LEX and YACC for gener-

ating lexical and syntactical analyzers. A common feature of all generators is that the phase
in the compiler is described using a meta-language (e.g., regular expressions or context-free
grammars) and that the generator produces the related compiler module. There exist several
good textbooks on compiler design [ASU86, WM92, Lem92]. However, all of these books
present ready made mappings from source language constructs to target language constructs,
the so called translation schemes, instead of deriving them. Hence, the reader is expected
to learn how to design code generators by analysing translation schemes as opposed to from
�rst principles. The same is true for abstract machines. Abstract machines are virtual target
architectures which support the concepts of the source language. Typically abstract machines
are presented together with translation schemes from the source language to the abstract ma-
chine language. There is only little work on how translation schemes and abstract machines
are designed.

The aim of our work is to detect underlying principles that relate abstract machines to
programming language semantics, and to automate part of the design process for abstract
machines. Thus, we need to ensure that the behaviour of a source program will be maintained
by translating it into the abstract machine language, and then applying the abstract machine.
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source program
compiler -
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The behaviour of a program will depend on it's semantics. Often this aspect of a programming
language is only described in natural language which is both ambiguous and vague. We shall
use formal techniques to describe the meaning of programs in a particular language and to
prove that our transformations are correct. There are various semantic formalisms which are
discussed in Chapter 2. In the rest of the thesis we concentrate on natural semantics, but we
also address action semantics.

Outline of Thesis

In this thesis we will give an answers to the question, how one can generate translation schemes
and abstract machines. It is based on pass separating a natural semantics speci�cation. A
second answer was presented in [Dieb]. One requirement of a compiler is, that it is complete
in the sense that every correct program can be compiled. The second approach is not fully
automatic and does not guarantee completeness. The approach presented in this thesis both
guarantees completeness and is fully automatic. As far as we know, our generator is the �rst
running implementation of a system which fully automatically produces both compilers and
abstract machines from a semantics speci�cation.

This thesis contains

an overview of semantics formalisms: We illustrate several semantics formalisms and
discuss their appropriateness for semantics-directed compiler generation.

an overview of existing work: Work in semantics-directed compiler generation and deriva-
tion of abstract machines is based on many formalisms and methods. We elaborate on
some fundamental techniques and classify many existing systems and approaches by
several criteria. Although such an overview justi�es itself, it should also help the reader
to classify and appreciate our work.
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a generator for abstract machines based on natural semantics: From a natural se-
mantics speci�cation the generator automatically produces a compiler and abstract
machine. Whereas all existing semantics-directed compiler generators use partial eval-
uation or a direct translation into a �xed target language, we chose pass separation as
the key transformation of our system.

an experimental evaluation of the generator: We tested the generator with semantics
speci�cations of two toy languages (SIMP and Mini-ML ) and a speci�cation of Action
Notation. For Mini-ML we got an abstract machine which is very close to the CAM, an
abstract machine used for e�cient implementations of ML.

a correctness proof of the generator without optimizations: First we present a se-
mantics for our meta-language, then we use it to prove the correctness of several trans-
formations.

an interesting application of the generator: By generating a compiler based on a nat-
ural semantics speci�cation of Action Notation we get an action semantics-directed
compiler generator.

The main novelty of our generator is that it generates compilers and abstract machines.
The execution times of the abstract machine programs produced by our generated compiler
compare to those of target programs produced by compilers generated by other semantics-
directed generators. The generated speci�cations of compilers and abstract machines are
suitable as a starting point for handwriting compilers and abstract machines. Our generator
is fully automated and its core transformations are proved correct.
In our work, composing source-to-source transformations plays a central role. This divide-and-
conquer approach to compiler generation has some advantages over a more direct approach.
Each transformation introduces a new property, it transforms one kind of representation into
a more restricted kind. As a consequence the transformations can be developed, debugged,
and replaced separately and to a certain extent each transformation can be understood and
proved correct in isolation. Composing several transformations leads to a modular structure
of our system. This modular structure facilitates to extend the system over time to include
more powerful analysis and transformation methods.
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Chapter 2

Comparison of Semantic Formalisms

\The programming language Tower of Babel is well known. Less discussed is the
Tower of Metababel, symbolic of the many ways that programming languages are
described and de�ned. The methods used range all the way from natural language
to the ultramathematical."

[MLB76]

5



6 CHAPTER 2. COMPARISON OF SEMANTIC FORMALISMS

I
n this chapter we illustrate several semantic formalisms and discuss their appropri-
ateness for semantics-directed compiler generation. As a running example we use a
simple imperative language. Neither do we intend to cover all aspects of the for-

malisms, nor can we provide an introduction to programming language semantics here. The
semantic formalisms are merely described to illustrate some of our critiques.

2.1 The Importance of Doing Formal Semantics

To de�ne a programming language, one has to de�ne what programs in that language look
like,i.e., the syntax of the language, and what the meanings of such programs are,i.e., the
semantics of the language. To de�ne such meanings, we can use natural language. But often
ambiguities arise in natural language descriptions. Thus we need a precisely de�ned formal
notation. Such notations are often called semantic formalisms. The formal description of the
semantics of a programming language can for example be used

� as a basis for implementing interpreters or compilers for that language,

� to verify programs,i.e., to prove whether a program meets the speci�cation of its be-
haviour,

� to prove the equivalence of programs, e.g., of a transformed program and its original
form.

If one develops or evaluates a semantic formalism, one has to keep in mind, that there is
a variety of concepts in programming languages, which might have to be described by the
formalism. Such concepts include variables, control structures, procedures, dynamic storage,
data structures, side e�ects, types, polymorphism, pattern matching, dynamic vs. static
binding, call-by-name, call-by-value, call-by-need, higher order functions, logical variables,
uni�cation, backtracking, nondeterminism, concurrency, inheritance, objects, messages etc.
In [Mos92] P.D. Mosses describes several requirements for language descriptions from di�erent
view points. Language designers need modi�able, extensible and reusable descriptions. For
implementors the descriptions should be unambiguous and complete. Programmers, who are
going to use the language, prefer easy to understand descriptions, which they can relate to
familiar programming concepts. Finally for theoreticians the descriptions should support
program veri�cation and have clear and elegant foundations.
Now the question is, what requirements should a language description have from a semantics-
directed compiler generation point of view. We will try to answer this question by describing
di�erent semantic formalisms and focussing on their appropriateness for automatic generation
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of compilers. Although the critiques are partly subjective, other researchers draw similar
conclusions [Mos92, Pal92a, Tof90, Lee89, Mou93].

2.2 The Syntax of SIMP

In text books on programming languages often toy languages are presented and used as
running examples. Such languages include IMP in [Win93], PROSA in [LMW86] and GRAAL
in [Mey90] . For our purposes here we will use a simple imperative language called SIMP
which is similar to these.

PROGRAM ::= STATEMENT j STATEMENT ; PROGRAM

STATEMENT ::= ASSIGNMENT j LOOP
ASSIGNMENT ::= V AR := EXPRESSION
EXPRESSION ::= V AR j INT j EXPRESSION - EXPRESSION

LOOP ::= while BOOLEXP do PROGRAM od
BOOLEXP ::= EXPRESSION > EXPRESSION

A program in this language is f.e.:

X:=10;

while X>0 do X:=X-1 od

2.3 Operational Semantics { the SIMP-Machine

Following the approach taken in [LMW86] 1 we de�ne a mathematical machine 2 to give the
semantics of SIMP. Basically the SIMP machine consists of con�gurations and the transition
function.

MSIMP = (K;Kf ; PROGRAM; �)

A con�guration is a pair of a program rest and a binding of variables.

K = PR�B

1Since SIMP is much simpler than the language described there, we do not need to consider an explicit
store and input and output values.

2Some authors use the term `abstract machine' instead, but we use the term `abstract machines' for an
intermediate target language for compilation.
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PROGRAM is the set of well-formed programs and Kf � K is the set of �nal con�gura-
tions,i.e., when a compuation reaches a con�guration inKf then it terminates. The transition
function � maps con�gurations to successor con�gurations. It is de�ned by rules like the fol-
lowing ones, where I(b;E) is the interpretation of the expression E in the binding b:

p is of the form n := E; p0 where n is a variable name, E an expression and p0 a
program rest.
Then (p; b)) (p0; b[I(b;E)=b[n]]),
if I(b;E) is de�ned.

p is of the form while B do p1 od; p0 where B is a boolean expression, p1 a program
and p0 a program rest.

Then (p; b))

(
(p1; p; b) if I(b;B) = true
(p0; b) if I(b;B) = false

A computation step is de�ned as follows:

Let k; k0 2 K
k � k0 , �(k) = k0

A computation is a possibly in�nite sequence 
 = (k1; k2; :::) of con�gurations where:

ki � ki+1 for all i

Finally a terminating computation is a sequence 
 = (k1; k2; :::; kn) of con�gurations where:

k1 � k2 � : : : � kn, 8i < n : ki =2 Kf and kn 2 Kf

The semantics of a program p is the set of all computations (k1; k2; : : :) where k1 = (p; ;) and
; is the empty binding.

Pragmatic Considerations: De�ning the operational semantics using mathematical ma-
chines does not provide for abstractions and modules. In other words the problem is how to
combine mathematical machines. Also the meta-language seems to be ad-hoc and would need
to be de�ned precisely. There are also no widely accepted notations and conventions for this
way of specifying semantics.
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2.4 Structural Operational Semantics and Natural Se-

mantics

Structural Operational Semantics has been proposed by Plotkin [Plo81]. A special style of
SOS has become known as Natural Semantics [Kah87].
If we represent con�gurations as terms, then the semantics of SIMP can be given by inference
rules.

(b;E)!V
(n:=E;p0; b)!(p0; b[V=n])

This rule means: if E in the binding b evaluates to V , then there is a transition from the
con�guration (n := E; p0; b) to (p0; b[V=n]).

(b;B)!true
(while B do p1 od;p0; b)!(p1;while B do p1 od;p0; b)

(b;B)!false
(while B do p1 od;p0; b)!(p0;b)

The semantics of a program p is the set of all pairs (b; b0) where (p; b) ! (�; b0) is provable.
Note, that if a program p does not terminate for a given binding b, one cannot prove (p; b)!
(�; b0) for any b0.
The above rules de�ne a small-step semantics of SIMP,i.e., they de�ne transitions from con�g-
urations to successive con�gurations. We can also de�ne a big-step semantics, which de�nes
transitions from con�gurations to the environment, they will eventually evaluate to, e.g., :

(b;B)!true (p1;while B do p1 od;p0;b)!b0

(while B do p1 od;p0;b)!b0

(b;B)!false (p0;b)!b0

(while B do p1 od;p0;b)!b0

Big-step semantics is often called Natural Semantics and we will use this term throughout
this thesis. We will discuss Natural Semantics later in more detail (see Chapter 4).
Pragmatic Considerations: SOS is in general not compositional. Compositionality would
allow for generating di�erent parts of a compiler independently. Moreover SOS does not
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enforce determinism or con
uence. This might be helpful to specify nondeterministic or
concurrent languages, but can be a hinderance when de�ning deterministic languages. SOS
speci�cations are not very maintainable, e.g., if we want to add a new component to the
program state, we have to change the state in all rules. Despite of all pragmatic defects of
SOS semantics, they have been used quite a lot, e.g., to specify type systems or semantics of
programming languages, most notably ML [MTH90].

2.5 Evolving Algebras

Since evolving algebras are a relatively new formalism not covered in most books on program-
ming language semantics, we will give a more detailed description here.
Evolving algebras (EvAs) have been proposed by Gurevich in [Gur91] and used by Gurevich
and others to give the operational semantics of languages like C, Modula-2, Prolog and Occam.
B�orger and Rosenzweig's proof of the correctness of the Warren Abstract Machine is based on
a slight variation of evolving algebras ([BR92]). An evolving algebra may be tailored to the
abstraction level necessary for the intended application of the semantics, e.g., we might have
a hierarchy of evolving algebras, each being more concrete with respect to certain aspects of
the semantics.
For our purposes here, we need a precise de�nition of what an EvA is, and what a compu-
tation of an EvA looks like. Given a setM we de�neM� =M [(M�M)[(M�M�M)[ : : :

De�nition: An evolving algebra 	 is a quadruple < �;S; T;I0 > where

� � is a signature,i.e., a �nite set of function names with associated arity

� S is a nonempty set, called the superuniverse3

� T is a �nite set of transition rules

� I0 : � ! (S� ! S) is the initial interpretation of functions in �,i.e., I0 maps every
function name f of arity n to an interpretation function I0(f) : Sn ! S.

Transition rules4 are of the form:

function update: f(t1; :::; tn) := t0
where f 2 �, n � 0 is the arity of f and the ti are terms

3We will assume ftrue; falseg � S
4We will only consider �nite terms and �nite transition rules.
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guarded update: if b then C
where b is a term and C is a set of transition rules

A term t is an element of S or has the form f(t1; :::; tn), where f 2 �,n � 0 is the arity of f
and the ti are terms.

We will use the notation I
	
! I 0 to indicate, that I 0 is the result of simultaneously applying

the transition rules of 	 to I. We will call this a step of the evolving algebra. Before we can
de�ne a step of an EvA, we have to introduce some notation:

eval(f(t1; :::; tn);I) = I(f)(eval(t1;I); :::; eval(tn;I)) for n � 0
eval(f(t1; :::; tn) := t0;I) = f(eval(t1;I); :::; eval(tn;I)) := eval(t0;I) for n � 0

updates(T;I) = feval(u;I)ju 2 T ^ u is a function updateg
[ updates(

S
if b then C 2 T

^ eval(b; I) = true

C;I)

(2.1)

Let M be a set of evaluated function updates, then M denotes the set of all greatest subsets

A of M , such that if f(t1; :::; tn) := t0 in A then there is no update f(t1; :::; tn) := t00 in A

where t0 6= t00. The relation
	
! is de�ned as follows:

I 	! I 0 ,

9U 2 updates(T;I) 8~a 2 S�; f 2 � :

I 0(f)(~a) =

(
t if f(~a) := t 2 U

I(f)(~a) otherwise

Note, that if updates(T;I) is not a singleton, then from every set of con
icting updates only
one member is chosen nondeterministically.

A computation of an evolving algebra 	 is a sequence 
 =< I0;I1; :::;Ik >, such that

I0
	
! I1

	
! :::

	
! Ik. If updates(T;Ik) = ; then 
 is a terminating computation.

Here are some transition rules of an EvA for SIMP. In contrast to other semantic formalisms,
there is no pattern matching in the transition rules of an evolving algebra. Instead we have
to de�ne accessor functions like hd which returns the �rst element of a list and tests like
is assignment, which is true, if its argument is a representation of an assignment. If its
argument is an assignment then left val yields its left hand side, and right val its right hand
side.
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if is_assignment(hd(pr)) then

{ b(left_val(hd(pr))) := eval(b,right_val(hd(pr))),

pr := tl(pr)

}

if is_loop(hd(pr)) then

{ if eval(b,condition(hd(pr)))=true then

{ pr := cons(body(hd(pr)),pr)

}

if eval(b,condition(hd(pr)))=false then

{ pr := tl(pr)

}

}

In this EvA pr and b are dynamic functions,i.e., are modi�ed by function updates, whereas
hd, tl,cons,is_loop, : : : are static functions. The semantics of a program p is the set of all
computations where p is the initial value of pr and the value of b is a binding.
A pass separation transformation is presented and proved correct in [Die95a] and can be seen
as a �rst attempt towards SDCG based on evolving algebras.
Pragmatic Considerations: All rules can be applied at the same time, so one has to
make sure by nested guarded updates, that the right update is executed. As a result the
rules get long and complicated. Furthermore Evolving Algebras are not yet widely used. On
the other hand speci�cations are usually very operational and thus might lead to e�cient
implementations.

2.6 Denotational Semantics

Denotational Semantics maps each program construct to a mathematical object, its denota-
tion. The mapping is de�ned by semantic equations. In our example the denotations are
functions form bindings to bindings.

C[[c0; c1]] = C[[c1]] � C[[c0]]

C[[X := a]] = �b:b[v=X]) where v = E[[a]]b

Now the denotation of the WHILE loop has to be a function, too. But the existence of such
a function is not obvious at all. Analoguous to the de�nitions in the previous sections we
de�ne the semantics of the WHILE loop by copying a part of the program text:
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C[[while e do c od]] = �b:if E[[e]]b = true then C[[c;while e do c od]]b else b

But is this well-de�ned ? Unfolding C[[c;while e do c od]] yields C[[while e do c od]] � C[[c]]
and thus the above de�nition is recursive. If we read the de�nition as an equation, then the
question arises whether it has a solution: What values  of C[[while e do c od]] satisfy the
equation. Here denotational semantics resorts to �xed-point theory. It can be shown that
the smallest �xed-point of the following function is the most general,i.e., least informative
solution, of the above equation.

�( ) = �b:if E[[e]]b= true then ( � C[[c]])b else b

and thus

C[[while e do c od]] = fix(�)

The semantics of a program p is simply C[[p]],i.e., a function mapping bindings to bindings.
Pragmatic Considerations: The basic operations of �-notation (e.g., abstraction, applica-
tion, tupling) do not correspond to fundamental concepts of programming languages These
basic operations are suitable for functional languages, but they lead to much overhead when
specifying imperative or logical languages. This point is discussed at length by Mosses [Mos92]
and has been a motivation for the development of Action Semantics. Another problem with
denotational semantics is that there are too few basic operations, such that speci�c transfor-
mations and optimizations are di�cult. In [Lee89] Peter Lee gives a more detailed critique
of denotational semantics, e.g., he discusses its lack of separability,i.e., the intertwining of
model-dependent details and the actual semantics. As an example he mentions that many
denotational semantic speci�cations dictate the structure of environments, but in the seman-
tics we only need their functionality. If we could describe their functionality independently,
then we could replace environments by di�erent structures. This leads to another weakness
of denotational semantics, namely its lack of modularity.

2.7 Axiomatic Semantics

Axiomatic semantics use partial correctness assertions of the form fAg c fBg. The interpre-
tation of such an assertion is: \If property A holds before the execution of program c and
the execution of c terminates, then property B holds after its execution." The semantics of
SIMP is described by the following inference rules:
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fAg c0 fBg fBg c1 fCg
fAg c0;c1 fCg

fB[a=X]g X := a fBg

fA^bg c fAg
fAg while b do c od fA^:bg

An important, language independent rule, also known as rule of consequence, is:

(A)A0) fA0g c fB0g (B0)B)
fAg c fBg

It states that less informative properties can be deduced from ones that carry more informa-
tion. The semantics of a program p is the set of all pairs (P;Q), where fPgSfQg is provable
by means of the axioms.
Pragmatic Considerations: Usually axiomatic semantics is designed to prove properties
of programs, but does not necessarily provide enough information to implement a language
based on the speci�cation. The actual semantics of the programming language is only one
model for the given axiomatic semantics. There are many other models,e.g., the semantics
which diverges (does not terminate) for every language construct. This is due to the fact that
axiomatic semantics focusses on partial correctness, only. It is also not clear, what language
should be used to write properties. Often concepts from the programming language are lifted
into the properties,e.g., program variables are used to represent the values they are bound to:
fx < 0g x := x � x fx > 0g

2.8 Action Semantics

Research in the �eld of denotational semantics has lead to the development of action seman-
tics [Mos92]. Originally combinators, i.e., macros for �-expressions, have been used to make
denotational semantics descriptions more readable. In High-Level Semantics [Lee89] opera-
tors have been added to the formalism. The semantics of those operators are given by an
interpretation,i.e., a mapping of the operators to functions.
In [Mos83, Mos84] Peter Mosses introduces abstract semantic algebras to allow for opera-
tions in semantic descriptions which correspond to fundamental concepts of programming
languages. In action semantics, these operators are called actions and action combinators,
and their semantics is given by SOS rules5. Similar to denotational semantics, the action
semantics of a programming language is given by semantic equations:

5Actually Peter Mosses de�ned these actions algebraically in [Mos92].
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(1) execute[[ X ":=" E ]] = evaluate E
then store the value in the cell bound to X

(2) execute[[ "while" E "do" C "od" ]] = unfolding
evaluate E

then
execute C then unfold

else
complete

Although the right hand sides of these equations look like English phrases, they are written
in a formal language called action notation.
The formal de�nitions of some of the actions and action combinators in the above action
semantic description are given below. Here t; t0; ti are bindings for transient data, b; b0; bi are
bindings of scoped data and s; s0; si are stores. Execution of an action can complete or fail,
this is indicated by the outcome status o; o0.

(t;b;s!a[unfolding a=unfold]))(o0;t0;b0;s0)
(t;b;s!unfolding a))(o0;t0;b0;s0)

unfolding a proceeds by replacing every occurence of unfold in the action a by unfolding a
and then executing the resulting action notation term.

(fg;b;s!a1))(o1;t1;b1;s1)
(f0)trueg:t;b;s!a1 else a2))(o1;t1;b1;s1)

(fg;b;s!a2))(o2;t2;b2;s2)
(f0)falseg:t;b;s!a1 else a2))(o2;t2;b2;s2)

If the �rst transient given bz the action a1 is true, then the result of performing a1 is the
result of performing a1 else a2. Otherwise, if the �rst transient is false then the result is that
of performing a2.

Using the semantics equations a program p is transformed into an action notation term t.
One can regard this action notation term as the semantics of the program p. Alternatively,
one could also de�ne the semantics of the term t with respect to the above SOS speci�cation
as the semantics of p. We will give a more detailed introduction to Action Semantics in
Section 7.1 and a SOS speci�cation of Action Semantics in Appendix B.
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Pragmatic Considerations: Action notation is a rich, abstract, modular, and composi-
tional language. Its operations are close to the concepts of existing programming languages
(mostly functional, imperative, and concurrent languages). A major drawback is that it is
not that easy to learn, since for each action one has to know exactly what its e�ects are, e.g.,
how it modi�es transients, bindings and the store. Although action semantics speci�cations
are very readable, one has to be aware of what happens below the surface.
Since Action Semantics is still in its infancy, it is not yet widely used and it is only fair to
say that up to now one cannot seriously predict its success.

2.9 Translational Semantics

The semantics of a programming language can be de�ned by translating its constructs to
constructs in another programming language with a given semantics. A special case of this
approach is to de�ne new constructs by constructs of the same language, which have already
been de�ned (bootstrap method). We will use h: : :i as a constructor for instruction lists and
the dot as an in�x operator for appending such lists.

trans[[X 00 :=00 E]] = trans[[E]]:hSTORE Xi

trans[[00while00 E 00do00 C 00od00]] =
let
l1 = newlabel(); l2 = newlabel();
e = trans[[E]]; c = trans[[C]]

in
hl1i:e:hELSE l2i:c:hGOTO l1; l2i

Depending on what we need it for, the semantics of a program p is the target language
program trans[[p]] it is translated to or the semantics of trans[[p]].
Pragmatic Considerations: Obviously this is the best starting point for compiler gener-
ation, because the compiler is explicitly given. But such speci�cations are hard to read and
write. Nevertheless a translational semantics can be of advantage as one stage in a semantics-
directed compiler generator. We could translate a full-
edged language into a core language
for which the semantics is given using a di�erent approach.

2.10 Conclusions

Di�erent semantic formalisms are suitable for di�erent purposes. Some programming language
concepts can be de�ned more easily in one formalism than in an other, e.g., nondeterminism
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is easy to de�ne using SOS rules, but much harder if one uses the denotational method. For
the purpose of semantics-directed compiler generation such formalisms are preferable, which
are close to real programming languages. Furthermore compositionality could enable the
generator to produce di�erent parts of the compiler independently. In summary, drawbacks of
di�erent formalisms have been that they are vague, adhoc, not compositional, lack readability,
separability or modularity and that their underlying concepts are too far from real computers.
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Chapter 3

Existing Work in Semantics-Directed
Compiler Generation

W
ork in semantics-directed compiler generation and derivation of abstract machines is
based on many formalisms and methods. We elaborate on some fundamental tech-
niques and classify many existing systems and approaches by several criteria.

3.1 Introduction

There is a huge amount of existing work in semantics-directed compiler generation (SDCG).
Our goal is to evaluate relevant work in the �eld and to show some of the fundamental
concepts. We can only consider a small part of all the existing work, but we chose more
recent, di�erent and promising approaches 1. We also address some approaches to derive
abstract machines, thus providing the background for the new approach presented in this
thesis. Finally we point out some open research problems related to SDCG.

3.2 What is SDCG ?

Let us start by giving an informal de�nition of what a semantics-directed compiler generator
is:

1Pioneer work can be found in [Jon80], an early survey is given in [Gau81]. Some systems are also surveyed
in [Sch86] and [Tof90].

19
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A semantics-directed compiler generator is an algorithm, which given a de�nition
of the semantics of a source language produces a compiler for that language.

Of course, the generated compiler should preserve the semantics of the source language in a
reasonable sense, e.g., as in the de�nition of [CJ83].
SDCG is part of the more general problem of generating programming language tools from
formal speci�cations 2:

speci�cation generated tool or compiler phase
dynamic semantics interpreter, debugger, code generator
static semantics static analyzers (e.g., type checker)
source-to-source transformations optimizer
syntax parser, pretty printer, structure editor

3.3 Advantages of SDCG

Although there has been a lot of research in that �eld, there are no widely used semantics-
directed compiler generators. The major motivation for the interest in semantics-directed
compiler generators is their advantage over handwriting compilers.

Correctness: Assuming the generator has been veri�ed, the generated compilers are auto-
matically or implicitly proved correct.

Readability: It is easier to write the speci�cation of a programming language than writing
a compiler. These speci�cations are also more readable and intelligible.

Maintainability: It is much easier to extend or change an existing speci�cation and generate
a new compiler than extending or changing an existing compiler.

Portability: By porting the compiler generator or changing the de�nition of the target
language, we can generate compilers for di�erent architectures. We don't have to change
the speci�cations of the source languages.

Insight: SDCG is often based on semantics preserving transformations. These transforma-
tions relate source language constructs to target code. Tracing these transformations,
we can explain why certain target code is produced by the generated compiler.

2In general, for a practical tool we need several such phases, e.g., an interpreter might include a parser
and a static analyzer.
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One might even argue that it is a question of personal taste, whether to use handwritten
compilers or generated ones. But there are critical applications, where correctness is a matter
of urgent necessity (e.g., nuclear power plants, automated public transportation, automated
lasers for medical treatment) and proving handwritten compilers correct is extremely di�cult
(e.g., [Rus92]). In contrast, once the compiler generator has been proved correct, all generated
compilers are correct with respect to their source language speci�cation. Unfortunately, such
proofs are rare (e.g., [Pal92a],[JGS93]).

3.4 Disadvantage of SDCG

Unfortunately, in general we cannot expect a generated compiler to be as e�cient as a hand-
written one. A compiler writer uses optimizations, which are based on experience, insight
and common sense 3. Performance results as those of the Action Semantics-directed compiler
generator OASIS [Orb94], although encouraging, have been merely possible because of the
small semantic distance of the source and speci�cation language and the use of a handwritten,
optimizing compiler for the speci�cation language. In particular, many source language con-
structs have direct counterparts in the speci�cation language. The semantic distance of the
speci�cation and the target language is much greater, but it is bridged by the handwritten
compiler.

3.5 Criteria

To evaluate the existing work, we chose criteria such as source language or transforma-
tions, which we found to be important for describing what a certain system does. First we
have to be more precise, what we mean by these criteria:

Automatable (aut) Is there a running implementation or has the method including all
heuristics been formalized to such an extent that it can be implemented?

Correctness (corr) Is there a correctness proof of the method or the system?

E�ciency (e�) If there is a system, then does it produce the compiler fast, does the compiler
compile fast and is the compiled program fast? In Tables 3.1 and 3.2 an entry such as -
,?,3 means, that the generation is ine�cient (-), we have no information on the e�ciency

3Common Sense Knowledge and Reasoning has turned out to be the hardest problem in symbolic AI
(arti�cial intelligence).
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Author Quality Languages Transformations Papers

Peter
Lee, U.F.
Pleban

aut: MESS
corr: no
e�: +,+,0

spec: High-Level Semantics
obj: Scheme
src: C, Pascal
trg: pre�x-form operator ex-

pression

Basically: unfolding and
partial evaluation of the
macro-semantics

[Lee89],
[PL88],
[PL87]

N.D.
Jones,
Mads
Tofte

aut: CERES
corr: no
e�: ?,?,2

spec: control 
ow language
with operators and in-
terpretation of these

obj: similar to speci�cation
language, but only GO-
TOs for control 
ow

src: a toy language, Prolog
trg: same as object language

composition and compila-
tion

[Tof90],
[CJ83]

Martin R.
Raskovsky

aut: ISL
corr: no
e�: ?,?,0

spec: extended typed � cal-
culus (denotational se-
mantics)

obj: subset of BCPL
src: C
trg: DEC-10 code

> 40 transformation rules [Ras82]

Richard
Kelsey,
Paul
Hudak

aut: yes
corr: no
e�: ?,+,0

spec: call-by-value � calculus
with implicit store

obj: Scheme
src: Pascal, Basic
trg: a sub-language of the

source language which
has neither calls nor
nested scoping

linearization, adding con-
tinuations and environ-
ment, register allocation

[Kel89],
[KH89]

F. Niel-
son , H.
R.
Nielson

aut: PSI
corr: yes
e�: ?,?,3

spec: denotational semantics
written in TMLS

obj: abstract interpreter
src: none
trg: code for a functional ab-

stract machine

compilation of TMLS by
abstract interpretation

[NN86]

Mads
Dam,
Frank
Jensen

aut: yes
corr: yes
e�: ?,?,-

spec: structural operational
semantics and interpre-
tation of operations

obj: translation schemes
src: a toy language
trg: imperative language

generate stack semantics,
make deterministic, de-
tect recursion, produce
schemes

[DJ86]

Comments:

CERES: First the language speci�cation is composed with a speci�cation of the translation from the speci�-
cation language to semantic expressions. Next the composed de�nition is translated to a semantic expression
and then into the object language
MESS: High-Level Semantics consists of macro-semantics (= denotational semantics with operators) and
micro-semantics (= de�nitions of operators)

Table 3.1: Approaches to SDCG (part I)
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Author Quality Languages Transformations Papers

Jens
Palsberg

aut: CANTOR
corr: yes
e�: ?,?,2

spec: action semantics speci�-
cation

obj: Scheme
src: a toy language
trg: code for an abstract

RISC machine

type analysis, compilation
(basically: unfolding of
actions)

[Pal92a]

Peter
Orb�k

aut: OASIS
corr: no
e�: +,+,0

spec: action semantics speci�-
cation

obj: Perl, Scheme, C++
src: functional, imperative

and OO languages
trg: SPARC code

type and other analyses,
compilation (basically:
unfolding of actions) and
optimizations

[Orb94]

D.F.
Brown,
H.
Moura,
D. A.
Watt

aut: ACTRESS
corr: no
e�: ?,?,2

spec: action semantics speci�-
cation

obj: ML
src: functional and impera-

tive languages
trg: C

sort checking, transforma-
tions on actions, C code
generation

[BMW92],
[MW94]

N.D.
Jones,
C.K. Go-
mard, P.
Sestoft

aut: self-applicable
partial
evaluators

corr: yes
(for some partial
evaluators)

e�: ?,?,-

spec: interpreter
in Flow Chart language,
C, Prolog or Scheme

obj: compiler
or compiler generator in
speci�cation language

src: Turing Machine, assem-
bly language, Prolog

trg: same as speci�cation
language

partial evaluation of an in-
terpreter or partial evalu-
ator

[JGS93],
[Ses86]

Charles
Con-
sel , Siau
Cheng
Khoo

aut: in part:
SCHISM = par-
tial evaluator

corr: no
e�: ?,?,-

spec: Scheme function de�ni-
tions based on denota-
tional semantics

obj: Scheme
src: Prolog
trg: Scheme (residual pro-

gram = compiler for a
query)

partial evaluation of the
Prolog program (static)
and the query (dynamic)

[CK91]

Comments:

CANTOR: In [BP93] the authors replace the handwritten action compiler of the CANTOR system by an
action compiler which was generated by partially evaluating an action interpreter written in SCHEME using
the SIMILIX partial evaluator.

Table 3.2: Approaches to SDCG (part II)
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of the compiler (?), and the compiled program is 3 orders of magnitude slower than a
program compiled by a handwritten compiler.

Speci�cation Language (spec) What language or form is used to de�ne the semantics of
the source language?

Object Language (obj) What language or form is used to represent the generated pro-
grams, esp. compilers?

Source Language (src) To which languages has the system or method been applied, esp.
for which languages have compilers been generated?

Target Language (trg) What language does the generated compiler produce code in ?

Transformations What transformations are used to generate a program (esp. compiler)
from the speci�cations of the source language?

An overview of existing systems and approaches to SDCG is given in Table 3.1 and 3.2. The
relation of the di�erent languages involved is shown below using T-diagrams4:

spec

imp

obj

src

spec

src trg

obj
source language
speci�cation

compiler generator

generated compiler

L

M depicts an interpreter written in the
language M for the language L.

L T

M depicts a compiler written in the lan-
guage M. The compiler converts programs
written in the language L into equivalent
programs in the language T.

4Here imp is the implementation language of the compiler generator.
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3.6 Speci�cation Languages

As noted by Tofte [Tof90, page 33], if a speci�cation of a language su�ces to generate a
speci�cation of a compiler for that language, then it must itself be a speci�cation of a com-
piler. The only di�erence are the languages these speci�cations are written in. Thus if the
speci�cation is f.e. written in action semantics notation, we just give the speci�cation a new
reading. Finding this new reading is what SDCG is all about. Depending on the speci�cation
language, this might be easy or not. Next we will describe, how certain speci�cation languages
have been used as a basis for SDCG.

Standard Programming Languages An interpreter is written in a programming language
and then transformed [JGS93, JS86, Kur87, Nil93, Die93]. In most of these approaches,
partial evaluation plays a central role.

Denotational Semantics Source programs are converted into �-expressions according to
the denotational speci�cation of the source language. These �-expressions are reduced
as far as possible. At runtime these reduced expressions are further reduced with respect
to the runtime input. In addition to these reductions, some approaches use techniques
like conversion to continuation-passing style and translation of the �-expressions to some
machine code [Ras82, KH89, CK91, Set82, Wan84, Sch86].

Two Level Semantics The denotational semantics is extended by operators and an inter-
pretation for those operators. Expressions are only reduced up to these operators. The
operators are implemented according to the given interpretation as in Peter Lee's High-
Level Semantics [Lee89, Wei87, Tof90, NN86]. Using e�cient implementations of those
operators and even a code generator for expressions composed of operators Peter Lee
developed a realistic compiler generator.

Action Semantics Action Semantics is close to two level semantics. The operators are
called actions here. The important point about action semantics is the clever choice of
actions provided and the algebraic laws, which apply to these actions [Pal92a, Orb94,
BMW92, MW94]. Furthermore partial evaluation has been used to compile actions
[BP93].

Structural Operational Semantics, Natural Semantics Most of the work based on this
kind of semantics is not implemented [DJ86, Han91a, HM90], instead semantics speci-
�cations are transformed by hand. In rare cases the correctness of the transformations
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is proved as in John Hannan's work 5 TYPOL (c.f. [Des84]) is an implementation of
a semantic prototyping system based on natural semantics. In [Has88] the author de-
scribes partial evaluation of TYPOL speci�cations and mentions, that it can be used
to generate compilers. Recently Pettersson developed an e�cient compiler for natural
semantics speci�cations [Pet94, Pet95]. The compiler uses continuation-passing style as
an intermediate representation and produces portable C code.

Attribute Grammars As proposed in [Knu68], attribute grammars can be used to de�ne
the semantics of programming languages and there are several compiler-generation sys-
tems based on attribute grammars, e.g., MUG2 [GRW77], GAG [KHZ82], HLP [R�ai80],
PCG [Pau82]. For an overview see [DJL88].

Other Systems Other semantic-based systems use algebraic speci�cations, e.g., Perluette
[Gau83], or as in [SV84] a special meta-language CAT is developed, which is almost the
union of all the respective source languages.

Some of the speci�cation languages are typed. Type analysis helps to �nd errors in the
speci�cation. Moreover knowing the type of a variable can remove type checks at runtime,
thus resulting in more e�cient target programs. Note that this is not the same as having a
type system for the source language.

3.7 Partial Evaluation

Assume we divide the input of a program p into two components (s; d): a static and a dynamic
one. The static data are known at partial evaluation time of the program, whereas the dynamic
data are not known before running the residual program r = peval(p; s), i.e., the result of
partially evaluating the original program. Partial evaluation replaces all expressions in the
program, which only depend on the static data, by the result of their evaluation. Finding
those expressions, which only depend on static data is called binding-time analysis. In the
following simple example we assume that y is static and its value is 3:

if y>2 then add(x,sub(y,1)) else y

5Except for his pass separation transformation all other transformations are speci�c for the natural se-
mantics speci�cation of a call-by-value �-calculus.
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Since we know the value of y, we can decide which alternative of the conditional has to
be evaluated. We can also evaluate sub(y,1), but add(x,sub(y,1)) also depends on the
dynamic data x. Thus the partial evaluation of the above expression yields:

add(x,2)

In many compiler generators unfolding and computation of functions with all arguments
known play a central role. In the following example we use a functional meta-language to
specify the semantics of SIMP. Here, � is an environment which maps variable names to
addresses in the store �.

eval(i; �; �) = i (i is an integer)
eval(x; �; �) = �(�(x)) (x is a variable)
eval(e1+ e2; �; �) = eval(e1; �; �) + eval(e2; �; �)

exec(s; p; �; �) = eval(p; �; eval(s; �; �))
exec(v := e; �; �) = �[eval(e; �; �)=�(x)]

exec(while b do c od; �; �) =
if eval(b; �; �) then
exec(while b do c od; �; exec(c; �; �))

else � fi

Let us write $n for addresses in the store. Unfolding the call exec(while x < 10 do x :=
x+ 1 od; �; �) in a static environment � = fx 7! $1g but unknown store � we get

resid(�) = if �($1) < 10 then
resid(�[�($1) + 1=$1])

else � fi

What is important about this residual program is that the while-loop has been translated
into the same language the interpreter was written in.
Partial evaluation of di�erent programming languages is covered in [JGS93]. The above
example shows two important techniques used in partial evaluators: Unfolding of function
calls, i.e., replacing a function call by the according instance of the function de�nition, and
program point specialization, i.e., de�ning specialized versions of a function and replacing
calls to the function by calls to the according specialized function.
Partial evaluation can be used in several ways in SDCG. First the generated compiler c can
just be a partial evaluator, where the program is a �xed interpreter i, the static data are the
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input programs for that interpreter and the dynamic data are the inputs for those programs:
c = peval(i; :) i.e., c(p) = peval(i; p). This way of generating a compiler is an instance of the
1st Futamura Projection [Fut71]. Second a compiler can be generated by partially evaluating
a partial evaluator with respect to an interpreter: c = peval(peval; i), which is often referred
to as the 2nd Futamura Projection 6.

3.8 Special Transformations

We show some special transformations by means of examples. These transformations have
been used by di�erent authors for di�erent speci�cation languages. Although being very
simple, the examples should convey the basic ideas.

3.8.1 Linearization

Linearization is a transformation which makes the evaluation order of arguments explicit.
The following is an example of an arithmetic expression.

add(sub(x; y);mult(v;w))

We use �-abstraction to enforce left to right evaluation of the arguments in a call-by-value
�-calculus:

(�a:((�b:add(a; b))mult(v;w)))sub(x; y)

Note that by beta-reduction we get the previous form.

3.8.2 Conversion to Continuation-Passing Style

For each basic function f we construct a new function f 0 which additionally accepts as its
�rst argument a continuation, e.g., : sub0 c (a; b) = c(sub(a; b)) or short sub0 = �c:c � sub
By id we denote the neutral continuation. Conversion of the above expression to continuation-
passing style yields:

sub0 (�a:mult0 (�b:add0 id(a; b))
(v;w))

(x; y)

6Finally the 3rd Futamura Projection tells us how to generate a compiler generator: cogen =
peval(peval; peval).
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The advantage of continuation-passing style (CPS) is that control 
ow and data 
ow are
represented in a well-de�ned, uniform way (c.f. [App89, App92]). In [Kel95] Richard Kelsey
shows that CPS can be converted into static single assignment form (SSA) and vice versa.
SSA is a program representation, which has been widely used for data-
ow analysis and
optimizations of imperative programming languages.
After some control 
ow analysis we might get target code similar to the following, admittedly
une�cient code 7:

main: load x,R1 mcont: load v,R1 acont: load a,R1

sub y,R1 mult w,R1 add b,R1

store R1,a store R1,b return

(goto mcont) (goto acont)

3.8.3 Making a Program Deterministic

We now turn our attention to a technique which has been used to transform natural semantics
or structural operational semantics speci�cations (e.g., in [HM90]). These speci�cations allow
for nondeterminism. Nondeterminism comes into play, when a conclusion depends on several
preconditions and the order to prove these preconditions is not speci�ed. To make those
speci�cation deterministic, search is made explicit by introducing a proof stack. We will
again demonstrate this technique by a simple example 8 :

eval(X;A) eval(Y;B)
eval(plus(X;Y);C) C = A+ B

This rule states, that plus(X;Y ) evaluates to the sum of A and B, if X evaluates to A and Y
evaluates to B. But there is no order on the preconditions. The above rule is now transformed
into

prove(eval(X;A)::eval(Y;B)::R)
prove(eval(plus(X;Y);C)::R) C = A + B

According to the new rule, to prove that plus(X;Y ) evaluates to the sum of A and B, we
�rst have to prove that X evaluates to A and then that Y evaluates to B 9.

7For complete and more sophisticated examples see [KH89, Kel89]. In Kelsey's PhD thesis further trans-
formations like adding environments greatly improve the quality of the generated code. Actually by the clever
choice of the intermediate language all the transformations in his thesis are source-to-source transformations.

8This transformation does not deal with another kind of nondeterminism, which arises when several rules
are applicable at a time. We attack this problem in Section 5.3.3.

9Actually all rules have to be modi�ed in a way such that their conclusions only refer to the �rst goal on
the proof stack.
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3.9 Realistic Compiler Generation

We call a compiler generator realistic, if the code produced by the generated compilers
executes almost as fast as the code produced by handwritten compilers. Among these systems
are SAM, MESS, and OASIS. Common features of these are:

� they o�er a rich set of primitive operations, or the user can de�ne new operations and
provide an e�cient implementation of these. In particular operations for environment
lookup, memory management and handling of recursion are provided.

� the generated compilers use the semantic equations to transform a source language pro-
gram into an intermediate form (e.g., action term in OASIS, pre�x-operator expression
in MESS). Then a handwritten code-generator produces e�cient target code for this
intermediate representation.

3.10 A more complete Example

In the following we will turn to Action Semantics. Our example is based on [BMW92]. We
won't explain Action Semantics here. A natural semantics speci�cation of Action Semantics
is given in Appendix B. First we give a fragment of a semantic speci�cation dealing with
arithmetic expressions.

(1) evaluate[[I:Integer]] = give IntegerValuation I

(2) evaluate[[I:Identi�er ]] = give the value bound to id I
or
give the value stored in the cell bound to id I

(3) evaluate[[O:Operator(E1:Expression,E2:Expression)]] =
evaluate E1 then give the value label #1
and evaluate E2 then give the value label #2
then apply O

(4) apply[[ADD]] = give sum(the value #1, the value #2)

Assume we want to translate the expression x+1. First we parse the expression and get the
abstract syntax tree, e.g., ADD('x',1) . For better readability we omit type information. Now
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we unfold the function call evaluate[[ADD('x',1)]] . By unfolding we mean that the call to a
function is replaced by the according instance of the function de�nition.

evaluate[[ADD('x',1)]] = give the value bound to 'x'
or give the value stored in the cell bound to id 'x'
then give the value label #1
and
give 1 then give the value label #2

then give sum(the value#1, the value#2)

There are two alternatives in the or action, namely that 'x' is bound to a cell or that it
is directly bound to a value. Assume that the expression ADD('x',1) occurs in an actual
program. Then sort analysis, as type checking of action terms is called, might detect that
'x' is bound to a cell in the declaration part of the program. As a consequence the second
alternative of or can be eliminated. Next this unfolded speci�cation is translated to C using
simple translation schemes like the following:

[[give d label #n]] ) di = [[d]] (associating n with di)
[[the value #n]] ) di (where n is associated with di)
[[the value stored in c]] ) storage[[[c]]]

Finally we get the following C code:

_d1 = storage[_BOUND("x",_b1).datum.cell];

_d2 = _MAKE_INTEGER(1); _d4 = _SUM(_d1,_d2);

3.11 Derivation of Abstract Machines

We use the term abstract machine to refer to an intermediate target language and a related
target architecture for compilation. Using an abstract machine, compilation is done in two
steps. First the source language program is compiled into a program in the abstract machine
language. Next this abstract machine program is translated into a program in the target
language or it can just be interpreted by an emulator (an interpreter for the abstract machine
language). Abstract machines simplify the design of compilers and increase portability, since
the �rst step of the compilation is independent of the �nal target language and the underlying
hardware. This also facilitates code optimizations and native code generation.



32 CHAPTER 3. SEMANTICS-DIRECTED COMPILER GENERATION

Author Quality Languages Transformations Papers

Mitchell
Wand

aut: no
corr: no

spec: interpreter written
in Scheme (continuation
semantic)

obj: abstract machine and
translation functions

src: a toy functional lan-
guage

basically folding of com-
mon patterns into new
instructions

[Wan86]

Peter
Kur-
sawe, Ulf
Nilsson,
Stephan
Diehl

aut: in part (\Design
Methodology")

corr: no

spec: interpreter written in
Prolog

obj: abstract machine and
translation schemes

src: Prolog and TFS

partial deduction, folding
and pass separation

[Kur87],
[Nil93],
[Nil92],
[Die93]

John
Hannan

aut: in part
corr: yes

spec: natural semantics speci-
�cation

obj: abstract machine and
translation schemes

src: �-calculus

pass separation, fold, un-
fold and speci�c transfor-
mations like closure intro-
duction

[Han91a],
[HM90],
[Han91b],
[Han94],
[Ses95]

Ulrik
J�rring,
W.L.
Scherlis

aut: transformations
are not precisely
de�ned

corr: no

spec: functional program of
an interpreter

obj: functional programs of
a compiler and an ab-
stract machine

src: a functional language

pass sepa-
ration, partial evaluation,
meta-transformation and
several transformations on
data structures

[JS86]

Comments:

In these approaches the target language (trg) is always the language of the derived abstract machine.
\Design Methodology" First Kursawe applied the methodology to Prolog's uni�cation, then Nilsson to
Prolog's control and �nally the current author to an extension of Prolog, namely Typed Feature Structures.

Table 3.3: Approaches to derive abstract machines
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As one of the challenging problems in partial evaluation and mixed computation, N.D. Jones
mentions the derivation of abstract machines 10. In the work shown in Table 3.3, there are
three ways to derive abstract machines.

3.11.1 A Partial Evaluation-Based Approach

The �rst approach is based on the partial evaluation of example programs and folding of
patterns in the resulting residual code. This approach was �rst used by Kursawe [Kur87]
to derive some of the instructions of the Warren Abstract Machine years after its invention.
Kursawe introduced special uni�cation predicates and used these to make uni�cation explicit
in Prolog clauses. Then he partially evaluated these clauses with respect to the de�nition
of the uni�cation predicates. Next he replaced recurring patterns in the resulting partially
evaluated clauses by "machine instructions". The following example shows this process for
the simpe case of the clause append([]; L; L) 11.

append([]; L; L):
make uni�cation explicit
?append(A1; A2; A3) :- unipp([]; A1); unipp(L;A2); unipp(L;A3):

partial evaluation
?

append(A1; A2; A3) :- (var(A1); A1 = []; [] == A1); unipp(A2; A3):
de�ne 'machine instructions'
?

append(A1; A2; A3) :- unipp constant([]; A1); unipp(A2; A3):

and the new machine instruction:

10\Can a traditional run-time architecture be derived automatically from the interpreter text?" [Jon88]
At the Dagstuhl Seminar on Partial Evaluation in February 1996 those challenging problems have been
reviewed and the above problem was considered one of the still unsolved ones.

11The uni�cation is made explicit by adding calls to a special predicate unipp. The de�nition of unipp is
given below:
unipp(S,T) :- atomic(S), (var(T),T=S ; S==T).

unipp(S,T) :- var(S), S=T.

unipp(S,T) :- struct(S), ...

In addition to the steps shown here, Kursawe also made the heap representation of terms explicit. Partial
evaluation basically unfolds the unipp predicate, i.e., a literal in the intermediate code is replaced by the
corresponding instance of the body of one or more of its de�ning clauses. More precisely, let L be a literal
and Li :- Gi all variants of clauses for L. Then replace L by the disjunction (G0

1; :::; G
0
k), where G

0
i = (t01 =

ti1; :::; t0n = tin; Gi) and L = p(t01; :::; t0n) and Li = p(ti1; :::; tin).
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unipp constant(C;A) :- var(A); A = C;C == A:

Note that the result of this method is twofold: (i) compilation of a program into machine
code, (ii) design of an abstract machine by de�ning its machine instructions.

3.11.2 A Combinator-Based Approach

In the second approach proposed by Wand 12, one starts with semantic equations of a contin-
uation semantics, i.e., a denotational semantics which models control 
ow using continuations
instead of the direct style used in the introduction in Section 2.6. Conversion to continuation-
passing style has already been discussed in Section 3.8.2.

E[[varname]] = �env:�cont:cont(env varname)
E[[exp1 + exp2]] =

�env:�cont:E[[exp1]] env (�v1:E[[exp2]] env (�v2:cont(v1 + v2)))

These equations can be read as translation rules from the source language into �-calculus.
As in the previous approach, one looks for recurring patterns. Based on these patterns
one de�nes machine instructions as combinators, i.e., �-expressions without free variables.
The motivations and insights which lead to the combinators listed below are far from being
automatable.

fetch = �varname:�env:�cont:cont(env varname)
seq0 = �e1:�e2:�env:�cont:e1 env (e2 env cont)
seq1 = �e1:�e2:�env:�cont:�x:e1 env (e2 env cont x)
add = �env:�cont:�v1:�v2:cont (v1 + v2)

Next one folds the semantic equations with respect to these machine instructions:

E[[varname]] = fetch varname
E[[exp1 + exp2]] = seq0(E[[exp1]]; seq1(E[[exp2]]; add))

As a result, the semantic equations become translation rules from the source language into the
abstract machine language. Actually if we apply these translation rules to a source language
program, we get a combinator tree. Wand proves that seqk(seqp(a; b); c) = seqk+p(a; seqk(b; c))

12Wand was one of the �rst who dealt with the question of deriving abstract machines from the semantics
of a language. In 1982 he proposed an approach based on combinators [Wan82]. To �nd suitable combinators
was not automated and was a very di�cult task. Actually the CAM was derived in a similar way [CCM85].
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and that by this equivalence, the tree can be transformed into a linear representation with
respect to the seq combinators. Here linearity means that the �rst argument to a seq combi-
nator is never a seq combinator. We can think of the seqk operator as a sequencing instruction
which passes k values in registers to the next abstract machine instruction. For this linear
representation, Wand derives rewrite rules which de�ne the abstract machine:

hseq0(fetch varname; p); env; cont; si ) hp; env; cont; (env varname); si
hseq1(fetch varname; p); env; cont; x; si ) hp; env; cont; x; (env varname); si
hseq0(add; p); env; cont; x1; x2; si ) hp; env; cont; (x1 + x2); si
hseq1(add; p); env; cont; x1; x2; x3; si ) hp; env; cont; x1; (x2 + x3); si

A few comments are in order on these rewriting rules. Looking at the de�nitions of the
combinators, we �nd that variables bound by � have become components of the states in the
above rewrite rules. An abstract machine program is a linear seqk(�; p) expression. Such a
program is executed by performing � and then executing the program rest p.

3.11.3 A Pass Separation-Based Approach

The third approach uses special pass separation transformations to split interpreters into
compiling and executing parts, the latter being the abstract machine.
The following term rewriting rules (see Section 5.1.1 for a formal de�nition of term rewriting
systems) de�ne the transitions of an interpreter for the call-by-value �-calculus for function
application 13. The rules rewrite states of the form hC;L; Si, where C is a sequence of
instructions, L is a list of environments, and S is a list of closures.

happly(M;N);C; [EjL]; Si )I hN ;M ; ap;C; [Ej[EjL]]; Si
hap;C;L; [clo(E; lam(M))j[V jS]]i )I hM ;C; [(V;E)jL]; Si
hlambda(M);C; [EjL]; Si )I hC;L; [clo(E; lam(M))jS]i

Hannan's pass separation [Han91a] transforms these term rewriting rules into the following
compiler rules which translate an instruction of the source language into a sequence of abstract
machine instructions

apply(M;N) )C push;N ;M ; ap
ap )C app
lambda(M) )C lambda(M)

13The example is taken from [Han91a] where the interested reader can �nd the whole interpreter. Hannan
didn't cope with cyclic bindings and letrec as we do for example in chapter 6.
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and the following rules de�ning an abstract machine

hpush;C; [EjL]; Si )X hC; [Ej[EjL]]; Si
happ;C;L; [clo(E; lam(C 0))j[V jS]]i )X hC 0;C; [(V;E)jL]; Si
hlambda(C 0);C; [EjL]; Si )X hC;L; [clo(E; lam(C 0))jS]i

The compiler does only computations on program structures, whereas the abstract machine
computes primarily on run-time structures. Let )� be the transitive closure of ). The
relation of the compiler and abstract machine rules to the original interpreter rules is expressed
by the following simpli�ed implication (for the correct implication see Section 9.3.6), which
says that executing the compiled program stops in an equivalent �nal state as the original
program:

If hC;L; Si )�
I hnop; L

0; S0i then C )�
C C

00 and hC 00; L; Si )�
X hnop; L0; S0i.

In the �rst approach, it is di�cult to guarantee completeness, since it is solely based on the
analysis of examples. By completeness we mean that all source language programs can be
compiled into code for the abstract machine. The second and third approach do not share
this insu�ciency.

3.12 Open Problems

Although there are lots of existing systems in SDCG, all of them are far from providing all the
advantages listed in Section 3.3. Most of the systems have been results of one-man projects
and never made it from the research prototype to a practical tool. There are still research
problems which have not even been attacked.

AI methods Handwriting a compiler is a design process di�erent from the methods used
in compiler generators. Methods like those used in AI systems for engineering design
(e.g., [TS92]) could be adapted and used in SDCG systems, thus leading us - in the
pretentious terminology of AI - to knowledge-based semantics-directed compiler design
systems.

Other Source Languages Existing SDCG systems do not address the questions of self-
modi�cation, concurrency, or parallelism in the source language.
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Target Languages Almost all existing systems produce compilers for a �xed target lan-
guage. In a real compiler generator, also the target language should be a parameter.

Abstract Machines A SDCG system could produce descriptions of abstract machines and
a compiler, which produces code for this machine. Candidates for techniques used by
such a generator have been discussed in Section 3.11. Note that none of these techniques
was fully automated.

Other Specialization Methods There are other general specialization algorithms besides
partial evaluation, which can be used for SDCG, e.g., deforestation (c.f. [Wad88]) or
supercompilation (c.f. [Tur86],[SGJ94]). These specialization methods basically di�er
from partial evaluation in the amount and quality of information that is propagated,
e.g., bindings of variables, equality and inequality of expressions.

Error Handling Generated compilers can only produce error messages in terms of their
speci�cation language. Additional speci�cation language constructs might enable the
generated compilers to use terms of the source language.

3.13 Conclusions

We classi�ed existing SDCG systems according to several criteria. We discussed some of
the criteria in more detail, namely the speci�cation languages and transformations. We
explained some of the methods used in the SDCG systems by means of examples. Although
space did not permit to discuss the advantages and disadvantages of each of the systems,
we discussed the general issues in Section 3.3 and 3.4. In Table 3.1 and 3.2 in the column
Transformations almost all entries contain partial evaluation. In most SDCG systems
partial evaluation has been extended by speci�c transformations often depending on the
ideosyncrasies of the speci�cation language transformed. Realistic compiler generators have
been possible for speci�cation languages with a rich set of basic operations. A closer look
at the tables shows that most of the systems do not have correctness proofs, but correctness
is one of the reasons why we want to use semantics speci�cations as a basis for compiler
generation. Of great importance in the context of this thesis is that so far the derivation of
abstract machines has not been automated, but only been assisted by transformation tools.
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Chapter 4

Two-Level Big-Step Semantics (2BIG)

N
atural semantics has been used by programming language researchers to specify many
aspects of programming languages, e.g., program analyses [Sch95], type systems [DM82],
translations and optimizations [Mou93], static semantics and dynamics semantics

[MTH90]. Example speci�cations of type systems, dynamic semantics and translation to
abstract machine code for Mini-ML are given in [Kah87, Des84, Des86].

In this thesis we use natural semantics to specify the dynamic semantics of programming
languages. In this chapter we de�ne our notation to write natural semantics speci�cations
and give an example speci�cation.

4.1 Introduction

After reading several papers related to natural semantics we believe that there is some con-
fusion of what natural semantics [Kah87] is and how it di�ers from structural operational
semantics (SOS) [Plo81]. In summary we found the following partly contradictory views:

1. Natural semantics is a certain style of SOS[Mos92, Win93].

2. In SOS we specify individual state transitions, whereas in natural semantics overall
results of evaluations are speci�ed [NN92]. This di�erence is also emphasized by the
terms small-step and big-step semantics [Win93] or transitional style and relational style
semantics [dS92]. At least in [NN92] the authors seem to be unaware of the fact, that
although preferring the transitional style Plotkin uses both styles in his landmark notes
[Plo81, page 40].

39
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3. In SOS an inductive system is de�ned by inductive rules [Ast91]. Properties of the
language de�ned can be proved by rule induction (see Section 4.3.1). Natural semantics
rules are most reminiscent of natural deduction rules, more precisely sequent calculus
and the semantics rules are treated as proof rules [Kah87, Des86, Pet95]. In natural de-
duction assumptions can be arbitrary formulas, whereas in natural semantics we usually
have assumptions on variables of the language being de�ned. \Furthermore, semantics
written in this style appears rather intuitive, so that natural may also be understood
in the lay-man's sense." [Des86]

4. Natural semantics is similar to relational style SOS, but it's rules can't necessarily be
given an operational reading [Ber91, Des86]. According to this view of natural semantics

cyclic dependencies are possible as for E� in
P2.[[X7!E�]jE]!E� P1.[[X7!E�]jE]!E0

letrec X=P2 in P1 end.E!E0 . The

operational reading would say that P is executed in state [[X 7! E�]jE], but E� is not
known until P is executed.

The main source of this confusion is, that neither Plotkin nor Kahn precisely de�ned their
meta-languages but directly dived into examples:

\The above rules are easily turned into a formal system of formulae, axioms and
rules. : : :However, the present work is too explorating for us to �x our ideas,
although we may later try out one or two possibilities."

{ [Plo81, page 33]

As we had to implement our meta-language and prove the correctness of transformations, it
was absolutely necessary to de�ne the semantics of the meta-language precisely. We call our
meta-language 2BIG , it is a certain style of SOS, namely big-steps semantics (see Section 2.4).
Except of not allowing for cyclic dependencies, it can also be regarded as a notation to write
natural semantics speci�cations.

4.2 Syntax

To begin with, we discuss the syntax of 2BIG, a language designed to write natural semantics
speci�cations. The language combines the structural approach of natural semantics [Kah87]
with the idea to split general and implementation details by the use of a separately given
interpretation for function symbols 1 to ease compiler generation.

1We do not use the term Two-Level in the sense of [NN86, JGS93], where programs can be annotated to
distinguish compile-time and run-time expressions, but as in in Peter Lee's High-Level semantics [Lee89]. In
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We refer to the speci�cation of the interpretation for function symbols as the second level
and the inference rules as the �rst level. All transformations are syntactical transformations
on the inference rules, the interpretations of functions remain unchanged. All compile-time
computations have to be in the �rst level, run-time aspects can be hidden in the second level.
Only the names and signatures of the function symbols are made available to the �rst level.
As we do not change the interpretation of functions, we specify functions only informally here.
In our system the user has to provide Prolog, SML or C implementations of these functions.

x variable symbol
c constructor symbol
f function name
p predicate name

T ::= f(T�) j ~T terms with functions
~T ::= c( ~T�)j x terms without functions

S ::= c(T�) . T! ~T transitions with functions
~S ::= c( ~T�) . ~T! T transitions without functions
Q ::= p(T�) j not p(T�) side conditions
J ::= S j Q judgements

R ::= J�

~S
rules

Although we de�ne terms here in pre�x notation, we will use post�x
or \mix�x" notation, if it is more convenient, e.g.,whileB do C od
instead of while(B;C).

Figure 4.1: Syntax of 2BIG

In 2BIG the dynamic semantics of a programming language is de�ned by a set of inference
rules. The syntax of such 2BIG rules is given in Figure 4.1. The following is an example of a
2BIG rule:

r =
member((X 7!Y );S) V .S!N
assign(X;V ).S!replace(X;S;N)

High-Level semantics the �rst level consists of semantics equations similar to those of denotational semantics
and is called macrosemantics. In the right hand sides of these equations operators are employed. The
interpretation of these operators is speci�ed separately and is called microsemantics.
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We will use the notational convention that meta-variables c; c0; ci; e; e0; ei; : : : denote terms. It
will be helpful to introduce some terminology about rules and their components.

Judgements are

� transitions of the form c . e1 ! e2, e.g., assign(X;V ) . S ! replace(X;S;N),

� or side conditions of the form p(t1; : : : ; tn) or not p(t1; : : : ; tn), e.g., member((X 7!
Y ); S).

We will use the term left hand side (LHS) to refer to c . e1 in a transition and the term right
hand side (RHS) to refer to e2. In a rule the judgements above the line are called precon-
ditions and the judgement below the line is called the conclusion. The variables in a term t
are denoted by V(t) and those variables which only occur once in a rule are called anonymous.
In the above example, V(r) = fX;V; S;N; Y g holds and Y is an anonymous variable. Fur-
thermore we adopt the notation for list constructors from Prolog, e.g., [1; 2; 3] = [1j[2j[3j[]]]].
We will give a meaning to the 2BIG language after the transformation of side conditions,
i.e., we regard side conditions as syntactic sugar, which can be transformed into transitions
containing the characteristic functions of the predicates as described in Section 5.3.2.
Functions (e.g., replace and the characteristic function of member) are de�ned separately,
e.g., as Prolog predicates. We refer to their de�nitions as the second level of the speci�cation.
All transformations presented here only manipulate the �rst level, i.e., the inference rules.
In a transition c . e! e0 the meta-variables c,e and e0 denote terms, thus they are not di�erent
entities. But to emphasize, that c,e and e0 occur at di�erent positions in a transition, we call
the term on the left of . the instruction, the terms on the right of . and! are called states
and we will refer to the outermost constructor of an instruction as an instruction symbol.
This convention is motivated by the way transitions are used in semantics speci�cations.
Usually a transition of the form c . e1 ! e2 is interpreted as \the execution of the instructions
c in state e1 yields state e2". By instructions we mean the constructs of the language being
de�ned and by state we mean run-time information like bindings, environments or stores.
Some authors refer to instruction-state pairs as con�gurations.
As a deviation from most work in natural semantics we use c . e instead of e ` c. As the
rules usually de�ne di�erent cases for c, not for e, we feel that our notation is more readable.

4.3 Rule Induction

Before we can de�ne the semantics of 2BIG , we have to de�ne some mathematical prelimi-
naries. The following de�nitions are based on those given in [Acz77, dS92, dS90].
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4.3.1 Inductive Systems

De�nition 4.3.1 (Inductive System) Let U be a set. An inductive rule is a pair (P; c)
where P � U and c 2 U . We call P the premises and c the conclusion. An inductive
system � is a set of inductive rules. � de�nes a subset of U .

De�nition 4.3.2 (�-Closed) A � U is �-closed i� for all (P; c) 2 � we have that P � A
implies c 2 A.

De�nition 4.3.3 (Inductively De�ned Set) The set inductively de�ned by � is de-
�ned as I(�) =

T
fAjA is �� closedg.

For example the set of all conclusions fcj(P; c) 2 �g is �-closed.

Theorem 4.3.4 I(�) is �-closed

Proof. P � I(�)
4:3:3
=) for every �-closed set A: P 2 A

4:3:2
=) for every �-closed set A: c 2 A

4:3:3
=) c 2 I(�) 2

Since I(�) is the intersection of all �-closed sets, we have that I(�) is the least �-closed set.

The in�nite, inductive system �1 = f(fm;ng; p)jn;m 2 N ; p = m � ng [ f(fg; 2)g de�nes
the set I(�1) = f2njn 2 N ; n > 0g.

Theorem 4.3.5 (Principle of Rule Induction) Let 	 be a predicate over U .
(8(P; c) 2 � : (8x 2 P : 	(x) is true)) 	(c) is true)

)
8a 2 I(�) : 	(a) is true

An inductive system is �nitary if the preconditions of all rules are �nite.

Next we formally de�ne a proof based on inductive rules as a sequence of items. Each item
is an axiom or follows by a subset of items preceding that item in the sequence.

De�nition 4.3.6 (Finite Length Proof) Given a �nitary inductive system �, a sequence
hb0; : : : ; bni is a �nite �-proof of b if bn = b and for all m � n there is a set B � fbi : i < mg
such that (B; bm) 2 �.
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Theorem 4.3.7 (proof in [dS92]) For every �nitary inductive system � we have that I(�) =
fb : b has a �nite �-proofg.

8 2 I(�1) because h2; 4; 8i is the shortest �1-proof of 8.

In a �-proof it is not obvious for an item what subset of the sequence implied it. The structure
of the proof is made explicit by �-trees.

De�nition 4.3.8 (Proof Tree) Given a �nitary inductive system �, a �-tree (or proof tree)

of b, denoted PT�(b), is an object
PT�(b1) ::: PT�(bn)

b
where there exists a rule (fb1; : : : ; bng; b) 2

�, such that PT�(bi) is a �-tree for bi and (1 � i � n).

Theorem 4.3.9 (proof in [dS92]) For every �nitary inductive system � we have that I(�) =
fb : b has a �nite �-treeg.

8 2 I(�1) because
2 2

4 2
8 and 2

2 2
4

8 are �1-trees.

Inductively de�ned sets can also be seen as least �xed-points of monotonic transformations:

Theorem 4.3.10 (proof in [Ast91]) Let 	(X) = fcj(P; c) 2 �; P � Xg.
Then I(�) is the least �xed-point of 	.

4.3.2 Relational Inductive Systems

Terms without variables are ground. The set of all ground terms over a signature 2 � is
denoted by T�. Let t 2 T�(X) and � be a substitution such that �(t) 2 T�, then �(t) is a
ground instance of t.

De�nition 4.3.11 (Relational Inductive System) A relational inductive rule is a
pair (P; c), where P is a �nite subset of T�(X), and c 2 T�(X). A set of relational in-
ductive rules is called a relational inductive system.

2For simplicity we do not consider many-sorted signatures as in [dS92] here. Admittedly they are more
adequate, since one can use the same function name for di�erent purposes in a many-sorted signature, i.e.,
they allow operator overloading.
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Using variables, we can now de�ne a �nite, relational inductive system, which de�nes the
same set as the in�nite, inductive system in the preceding examples. We use capitals for
variables: �2 = f(fM;Ng;mult(M;N)); (fg; 2)g

De�nition 4.3.12 (Evaluation of Functions) Assume there is a division of the names in
� into function names F and constructor names C, such that � = F [ C and F \ C = ;.
Furthermore let � : F ! N map each function name to its arity , m = max(f�(f) : f 2 Fg)
and let � : F ! ((TC

0[ : : :[TC
m)! (TC [f?g)) be an interpretation of the function names.

The evaluation ��(t) of a ground term t by an interpretation � is de�ned as:
Let t = f(t1; : : : ; tn),

1. f 2 F

(a) if 8i : ��(ti) 6=? then ��(t) = �(f)(��(t1); : : : ; ��(tn)).
(b) ��(t) =?

2. f 2 C

(a) if 8i : ��(ti) 6=? then ��(t) = f(��(t1); : : : ; ��(tn)).
(b) ��(t) =?

�� naturally extends to sets and tuples,e.g., let S be a set, then ��(S) = f��(x) : x 2 Sg.

The signature in the above example is � = N [ F where F = fmultg and the interpre-
tation � maps mult onto the multiplication of natural numbers.

De�nition 4.3.13 (Derived Inductive System) The inductive system � derived from
a relational inductive system � by an interpretation � is the set of all rules ��(�((fp1; : : : ; png; c))),
such that (fp1; : : : ; png; c) 2 �, � is a substitution and �(p1); : : : ; �(pn); �(c) are ground in-
stances.

The derived inductive system for our example is �2 = f(fm;ng; p)jm;n 2 N ; p = m �
ng [ f(fg; 2)g and this is equal to the inductive system �1 of the preceding example. As
a consequence we have that the set de�ned by our relational inductive system is the set
de�ned by the derived inductive system: I(�2) = I(�1) = f2njn 2 N ; n > 0g.
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4.4 Semantics of 2BIG

After transformation of side conditions into transitions (see Section 5.3.2), the 2BIG rules
are simply relational inductive rules with ordered premises where we regard ! as a ternary
constructor symbol. Let � be the set of these relational inductive rules and � be the derived
inductive rule set. The semantics of a program c in a state e is the set of all states e0, such
that c . e! e0 2 I(�), which means that there is a �-proof of c . e! e0. Note, that c,e and
e0 are �rst order terms, which we interpret as programs and states.
2BIG rules can also be given a procedural reading as in logic programming [Llo87]. Informally,
to prove that a transition c . e1 ! e2 (goal) follows from the inference rules, we unify it with
the conclusion of a rule. If it uni�es then the preconditions of that rule become our new
goals. If the rule has no preconditions, then the goal trivially follows from that rule. This
procedural reading underlies the Prolog implementation of 2BIG .

4.5 Properties of 2BIG Rules

In the sequel we assume that the preconditions of 2BIG rules are ordered sets, then we write
fracBc . e! e0 as the pair (B; c . e! e0).

De�nition 4.5.1 (Deterministic Rules) A set � of 2BIG rules is deterministic, i� (B1; c1 .
e1 ! e01); (B2; c2 . e2 ! e02) 2 �) c1; e1 and c2; e2 are not uni�able.

De�nition 4.5.2 (Determinate Rules) A set � of 2BIG rules is determinate, i� for all
pairs of rules (B1; c1 . e1 ! e01); (B2; c2 . e2 ! e02) 2 � we have that c1; e1 and c2; e2
are not uni�able or c1; e1 =� c2; e2 and B1 = fc11 . e11 ! e011; : : : ; c1m1

. e1m1
! e01m1

g,
B2 = fc21 . e21 ! e021; : : : ; c2m2

. e1m2
! e02m2

g and there exists a renaming � of variables
and an index j, such that (c1j; e1j)� = (c2j; e2j)�, e01j and e02j are not uni�able, and 8k < j :
(c1k; e1k; e01k)� = (c2k; e2k; e02k)�.
We call the smallest index j0, such that c1j0; e1j0 6=� c2j0; e2j0 the discrimination index.

De�nition 4.5.3 (De�ning Occurrence) An occurrence of a variable is de�ning, i� it is
on the left hand side of the conclusion or it is its �rst occurrence and this occurrence is on
the right hand side of a precondition. All other occurrences are using.

De�nition 4.5.4 (Well-Orderedness) A rule is well-ordered, i� every use of a variable
is preceded by a de�ning occurrence of it.
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De�nition 4.5.5 (Sequential Rules) A set � of 2BIG rules is sequential, i� (fc1 . e1 !
e01; : : : ; cm . em ! e0mg; c . e! e0) 2 � ) 81 � i < m : e0i = ei+1 and e0m = e0.

De�nition 4.5.6 (Temporary Variable) A variable x is temporary in a rule (fc1 . e1 !
e01; : : : ; cn . en ! e0ng; c . e! e0), if x 62 V(c) and there is an i such that

1. x 2 V(ci; ei), and x 2 V(e; c1; e1; e01; : : : ; ci�1; ei�1), but x 62 V(e
0
i�1)

2. or x 2 V(e0i) and x 2 V(e; c1; e1; e
0
1; : : : ; ci�1; ei�1; e

0
i�1), but x 62 V(ci; ei)

3. or x 2 V(e0) and x 2 V(e; c1; e1; e01; : : : ; cn; en), but x 62 V(e
0
n)

De�nition 4.5.7 (Allocated Rules) A set � of 2BIG rules is allocated, i� r 2 � ) there
is no temporary variable in r.

4.6 Static Semantics

Ordered Preconditions In 2BIG speci�cations there is a �xed order of preconditions.
When we model 2BIG speci�cations by relational, inductive rules we do not need this restric-
tion and write the list of preconditions as a set of premises.

Determinacy Speci�cations in 2BIG have to be determinate [dS90]. Consequently, when-
ever two rules have conclusions with uni�able left hand sides, at most one of the rules can
be successfully applied to prove a goal. The restriction to determinate rule sets is important,
because determinate rule sets can be converted into deterministic ones, i.e., at most one rule
will have a conclusion, which uni�es with a goal. Deterministic rules can be converted into
term rewriting rules and �nally these rewrite rules can be pass separated into rewrite rules for
a compiler and an abstract machine. In the next chapter, these transformations are discussed
in more detail.

Well-Orderedness Furthermore the 2BIG rules must be well-ordered, i.e., every variable
must be de�ned before it can be used. This property does not allow for cyclic dependencies
of variables and enables us to use term rewriting and not graph rewriting systems for the
generated abstract machines.

Linearity As another restriction of the rule syntax we have that a variable must not occur
twice on the left hand side of the conclusion. We need this property to ensure that the
generated term rewriting systems are linear.
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4.7 Example: A 2BIG Speci�cation

We consider a small fragment of a 2BIG speci�cation of SIMP, just enough to construct a
proof tree for the program while i>1 do i:=i�1 od.
First we specify how expressions are evaluated 3. In this example the state will be a mapping
of variable names to values. A transition of the form E . S ! V means that in state S the
expression E evaluates to V .

is id(X)
X.S!lookup(X;S)

is num(N)
N.S!N

E1.S!V1 E2.S!V2
E1>E2.S!greater(V1;V2)

E1.S!V1 E2.S!V2
E1�E2.S!sub(V1;V2)

Next the execution of assignments, sequencing and the while-loop are speci�ed. Here a
transition A . S ! S 0 means that the execution of the statement A in state S yields state S0.

E.S!V
X:=E.S!replace(X;S;V )

C1.S!S0 C2.S
0!S00

C1;C2.S!S00

B.S!false
while B do C od.S!S

B.S!true C;while B do C od.S!S0

while B do C od.S!S0

Here states are bindings. A binding is a list of associations x 7! y, i.e., the key x is associated
with the value y. In these rules the following functions have been used:

� lookup(X;S) yields the value associated with the identi�er bound to X in the binding
S.

� greater(V1; V2) yields true if the value V1 is greater than the value V2.

� sub(V1; V2) yields the di�erence of the value V1 and the value V2.

� replace(X;S; V ) yields a new binding, which di�ers from S only in that the association
of the identi�er X is replaced by an association of the identi�er X to the value V .

3Some authors prefer to distinguish syntactic representation and semantic values by using functions from
syntactic values to semantic values, e.g., valuation or token of :

is num(N)
N.S!valuation(N)

is id(X)
X.S!lookup(token of(X);S)
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And the following side-conditions:

� is id(X) is true if X is an identi�er.

� is num(N) is true if N is a number.

Using the above 2BIG rules we can now construct a proof tree4 for the program

while i>1 do i:=i�1 od

in the state [i 7! 2].

First we apply the second rule for while:

i>1.[i7!2]!true i:=i�1;while i>1 do i:=i�1 od.[i7!2]!S0

while i>1 do i:=i�1 od.[i7!2]!S0

To prove the premises of the rule we apply the rules for the > and ; operators:

i.[i7!2]!V1 1.[i7!V2]
i>1.[i7!2]!true�greater(V1;V2)

i:=i�1.[i 7!2]!S� while i>1 do i:=i�1 od.S�!S0

i:=i�1;while i>1 do i:=i�1 od.[i7!2]!S0

while i>1 do i:=i�1 od.[i7!2]!S0

If we continue this construction we �nally get the following proof tree:

true 1

i.[i7!2]!2 2

true 3

1.[i7!2]!1

i>1.[i7!2]!true 4

true 5

i.[i7!2]!2 6

true 7

1.[i7!2]!1

i�1.[i7!2]!1 8

i:=i�1.[i7!2]![i7!1] 9

true 10

i.[i7!1]!1 11

true 12

1.[i7!1]!1

i>1.[i 7!1]!false 13

while i>1 do i:=i�1 od.[i7!1]![i7!1]

i:=i�1;while i>1 do i:=i�1 od.[i7!2]![i7!1]

while i>1 do i:=i�1 od.[i7!2]![i7!1]

In the above proof, the results of evaluating functions and side conditions have been marked
by boxed numbers : : : n . Below we list these functions and side conditions.

1 is id(i) 2 lookup(i; [i 7! 2]) 3 is num(1) 4 greater(2; 1)
5 is id(i) 6 lookup(i; [i 7! 2]) 7 is num(1) 8 sub(2; 1)
9 replace(i; [i 7! 2]; 1) 10 is id(i) 11 lookup(i; [i 7! 1]) 12 is num(1)
13 greater(1; 1)

4We formally de�ned proof trees in Section 4.3.1



50 CHAPTER 4. TWO-LEVEL BIG-STEP SEMANTICS (2BIG)



Chapter 5

Generation of Compilers and
Abstract Machines

W
e present a system that generates a compiler and an abstract machine from a Natural
Semantics speci�cation of a programming language. First an overview of the system
and the transformations involved is given. There are three kinds of transformations,

those transforming inference rules, the transformation from inference rules to term rewriting
rules, and those transforming term rewriting rules. We de�ne every transformation precisely
and illustrate it by a simple example.

5.1 Introduction

Abstract machines provide intermediate target languages for compilation. First the compiler
generates code for the abstract machine, then this code can be interpreted or further compiled
into real machine code. By dividing compilation into two stages, abstract machines increase
portability and maintainability of compilers. The instructions of an abstract machine are
tailored to speci�c operations required to implement operations of a source language. The
structure of architectures called abstract machines varies widely 1. In this thesis we distinguish

1There are three levels at which one might de�ne an abstract machine:

� the way it is speci�ed (see abstract interpreter in Section 5.3.10 )

� the way it works (executes instructions and changes the state)

� the purpose it is used to (intermediate language for compilation).

51
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mathematical machines and abstract machines, the latter being very much streamlined for
compiler design. As an example we do not consider the Chemical Abstract Machine (a model
for concurrency) to be an abstract machine in the latter sense. Common to most abstract
machines seem to be a program store and a state, usually containing a stack.
For almost all kinds of languages, there exist abstract machines, e.g.:

Type of Language Abstract Machines
imperative P4 [PD82]
functional SECD [Lan64], CAM [CCM85], FAM [Car84], G-Machine [Joh84]
logic WAM [War77, AK91]
functional/logic CAMEL [M�uc92]
constraint CLAM [JSMY92]
concurrent, constraint OZAM [MSS95]

object oriented [BFHW94], JavaVM [Mic95]�

�
In JAVA, a brand new language proposed for writing applications for the world wide

web (WWW), sending abstract machine code over the network helps to cope with two new
problems: the heterogenity of the network and the security (virus protection).

As discussed in Section 3.11, abstract machines are usually designed in an ad-hoc manner often
based on experience with other abstract machines. But also some systematic approaches have
been investigated. One of those is based on partial evaluation of example programs [Kur86,
Nil93, Die93]. Another approach is to use pass separation transformations [JS86]. John Han-
nan [Han94] introduced a pass separation transformation, which splits a set of term rewriting
rules representing an abstract interpreter into two sets of term rewriting rules: the �rst set
represents a compiler into an abstract machine language, while the second set represents an
abstract machine. Since rewrite rules are a poor language to specify interpreters, Stephen
McKeever [McK94] extended Hannan's transformations to determinate inductive rules. In
McKeever's framework, the factorization algorithm of Fabio daSilva [dS90] plays a central
role. By hand, McKeever transformed a natural semantics speci�cation for an imperative
toy language with while-loops into a compiler. We formally de�ned similar transformations
and implemented them in Prolog. Applying our system to the above mentioned toy language
yields similar results. The contributions of our work are

� the formal de�nition of a meta-language and the transformations,

� the implementation of the method,

� its application to the speci�cations of realistic programming languages
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� and thus the detection of missing links (e.g., extension of factorization to more than
two rules) and insu�ciencies,

� the development of optimization transformations

� and the correctness proof of the core transformations.

Given a semantics speci�cation of a source language, current semantics-directed compiler
generators produce compilers from the source language into a �xed target language.

generator - compiler - code - output

semantics program input

? ? ?

Rather than just generating compilers which translate source programs into a �xed target
language, our system both generates a compiler and an abstract machine. The generated
compiler translates source programs into code for the abstract machine.

generator -

-

compiler - abstract machine code

abstract machine - output

semantics program

input

? ?

? ?

We chose Action Notation as an example of a realistic programming language, because it
o�ers a rich set of primitives underlying both imperative and functional programming lan-
guages. Since Action Notation is used to write Action Semantics speci�cations, we can then
combine the generated compiler for Action Notation with an Action Semantics speci�cation
of a programming language. As a result, we get a compiler from the programming language
to the generated abstract machine language for Action Notation.
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source program

?
Action Semantics
of source language -

generator -

-

compiler - abstract machine code

abstract machine - output

semantics of
Action Notation

action term

input

? ?

? ?

Before going on to the transformations of our generator, we have to de�ne term rewriting
systems.

5.1.1 Term Rewriting Systems

The following de�nitions are based on those given in [Han94, Jou95].

De�nition 5.1.1 (Term Rewriting System) Let � be a signature, i.e., a �nite set of
constants, and X be a set of variables. T�(X) is the set of all �rst-order terms with variables
in X. A term rewriting system is a pair (�; R), where R is a set of rules li ) ri with
li; ri 2 T�(X) and V(ri) � V(li). Furthermore a rule li ) ri is linear (left-linear) if no
variable occurs twice in li.

For example the term rewriting system (�+; R+) where �+ = fnull; s;+g

and R+ =

(
null +N ) N;
s(N) +M ) N + s(M)

)
de�nes addition on a unary encoding of positive

natural numbers.

Let s be a term, (l ) r) 2 R and � be a substitution such that �(l) = s, then s
1
)R �(r) is

a one-step reduction. If there exists a sub-term s in t such that s
1
)R s0 and replacing one

occurrence of s by s0 in t yields u, then t)R u is a single rewrite step. We write
�
)R for the

re
exive, transitive closure of )R.
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Returning to the above example, addition of the two numbers 2 and 1 using R+ leads to

the following rewriting sequence: s(s(null))+s(null)
1
)R+

s(null)+s(s(null))
1
)R+

null+

s(s(s(null)))
1
)R+

s(s(s(null))) and thus we have s(s(null))+s(null)
�
)R+

s(s(s(null))).

5.1.2 Properties of Term Rewriting Systems

De�nition 5.1.2 (Normal form, termination, con
uence)
A term t is in R-normal form, i� there exists no term u such that t)R u. If s

�
)R u and u

is in normal form, then we write s
y
)R u. R is terminating i� there is no in�nite sequence

t1 )R t2 )R : : : . R is con
uent i� (t
�
)R t1 and t

�
)R t2) implies that a term t0 exists

such that t1
�
)R t

0 and t2
�
)R t

0.

De�nition 5.1.3 (Orthogonality) R is overlapping if a left-hand side uni�es with a re-
named non-variable subterm of some other left-hand side or with a renamed proper subterm
of itself. R is orthogonal if it is both linear and non-overlapping.

Theorem 5.1.4 (proof in [Hue80]) Every orthogonal system is con
uent.

In practice, functions (e.g., +, �, : : :) are often used in term rewriting rules without specifying
rewrite rules for these functions.
Alternatively, we will use in the proofs the following extension of term rewriting by rede�ning
one-step reductions:

Let s be a term, (l) r) 2 R and � be a substitution such that �(l) = s, then s
1
)R ��(�(r))

is a one-step reduction. The evaluation function �� was de�ned in Section 4.3.2.

5.2 A Motivating Example

The system which we are going to present converts 2BIG rules into term rewriting rules.
Then it generates from these term rewriting rules two sets of term rewriting rules: a set
which de�nes a compiler and a set which de�nes an abstract machine.

2BIG rules - ... - term rewriting rules
@
@@R

�
���

compiler

abstract machine
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In this section we look at the transformations of two simple 2BIG rules. It is impossible
to give the motivation for the design of a single transformation without considering our
intermediate goal to generate term rewriting rules. Before each transformation we discuss
a problem which keeps us from converting the rules into term rewriting rules. Then we
show the transformed rules and discuss how the problem was solved. Our guideline when we
devised the transformations was that each transition in the proof tree should correspond to a
step in a rewriting sequence and that the rewriting sequences should mimic the left-to-right
construction of proof trees.

Original Rules

The 2BIG rules below de�ne the evaluation of sum expressions2:

num(N).S!N
E1.S!V1 E2.S!V2

add(E1;E2).S!plus(V1;V2)

Proof tree for add(num(1),add(num(2),num(3)))

num(1).nil!1
num(2).nil!2 num(3).nil!3

add(num(2);num(3)).nil!5 1

add(num(1);add(num(2);num(3))).nil!6 2

The result of evaluating functions in the above proof tree are marked with boxed numbers,
in particular 1 is the result of plus(2; 3) and 2 the result of plus(1; 5). Consider the process
of building this proof tree from left to right. We make two observations:

(i) After building the trees
num(2).nil!2 and

num(3).nil!3 we can evaluate plus(2; 3). Here 2
is taken from the �rst proof tree and 3 from the second.

(ii) Furthermore nil is not contained in the right hand side of the conclusion in the �rst proof
tree, but is used again in the left hand side of the conclusion in the second proof tree.

In contrast in a sequence of term rewriting steps t1
1) : : :

1) tn all values needed for a rewrite

step ti
1) ti+1 must be present in ti. Since each transition in the proof tree should correspond

to a step in a rewriting sequence using the generated term rewriting rules, we have to modify
the transitions without changing the semantics. The following transformation achieves that
all values are passed from transition to transition until they are used for the last time.

2The state S is not used in the example, but if we allow variables in sum expressions, then we could add
a rule like var(X).S!lookup(X;S) for variables whose values are stored somewhere in the state.
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Allocation of Temporary Variables

Now consider the following rules which result from a transformation which we call `allocation
of temporary variables'. It adds a new componentD to the state and puts temporary variables
there.

num(N).[D;S]![D;N ]
E1.[[[S]jD];S]![[[S]jD];V1] E2.[[[V1]jD];S]![[[V1]jD];V2]

add(E1;E2).[D;S]![D;plus(V1;V2)]

Proof tree for add(num(1),add(num(2),num(3)))

num(1).[[[nil]];nil]![[[nil]];1]
num(2).[[[nil];[1]];nil]![[[nil];[1]];2] 1 num(3).[[[2];[1]];nil] 2 ![[[2];[1]];3] 3

add(num(2);num(3)).[[[1]];nil]![[[1]];5] 4

add(num(1);add(num(2);num(3))).[[];nil]![[];6]

When we build the new proof tree from left to right we �rst build
num(2).[[[nil];[1]];nil]![[[nil];[1]];2]

and then
num(3).[[[2];[1]];nil]![[[2];[1]];3]. It turns out that the two observations we made before do

no longer hold:

ad (i): The values 2 and 3 are both contained on the right hand side of the conclusion in the
second proof tree.

ad (ii): nil occurs on the right hand side of the conclusion in the �rst proof tree.

In the above proof tree we marked certain states with boxed numbers. For these states we
make the following observations:

(iii) The state 1 is di�erent from the state 2

(iv) The state 3 di�ers from the state 4 .

Now look again at a sequence of term rewriting steps t1
1
) : : :

1
) tn. Here the term ti+1 which

`results' from the rewriting step ti
1) ti+1 is the `input' to the next rewriting step ti+1

1) ti+2.

Sequentialization of Rules

Next we add transitions to the rules which convert the resulting state of a transitition into
the form needed for its following transition.
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E1 . [[[S]jD]; S]! [[[S]jD]; V1] conv1 . [[[S]jD]; V1]! [[[V1]jD]; S]
E2 . [[[V1]jD]; S]! [[[V1]jD]; V2] conv2 . [[[V1]jD]; V2]! [D; plus(V1; V2)]

add(E1;E2).[D;S]![D;plus(V1;V2)]

num(N).[D;S]![D;N ] conv1.[D;V ]![[[V ]jD];S] conv2.[[[V1]jD];V2]![D;plus(V1;V2)]

Proof tree for add(num(1),add(num(2),num(3)))

num(1)
5

[[[nil]]; nil]
#

[[[nil]]; 1]

conv1
5

[[[nil]]; 1]
#

[[[1]]; nil]

num(2)
5

[[[nil]; [1]]; nil]
#

[[[nil]; [1]]; 2] 1

conv1
5

[[[nil]; [1]]; 2] 1'

#

[[[2]; [1]]; nil] 2'

num(3)
5

[[[2]; [1]]; nil] 2

#

[[[2]; [1]]; 3] 3

conv2
5

[[[2]; [1]]; 3] 3'

#

[[[1]]; 5] 4'

add(num(2);num(3))
5

[[[1]]; nil]
#

[[[1]]; 5] 4

conv2
5

[[[1]]; 5]
#

[[]; 6]

add(num(1);add(num(2);num(3))).[[];nil]![[];6]

Returning to the observations for our previous proof tree we �nd:

ad (iii): The state 1 is equal to 1' which is converted to 2' and 2' is equal to 2 .

ad (iv): The state 3 is equal to 3' which is converted to 4' and 4' is equal to 4 .

From these rules we can now generate a term rewriting system.

Conversion into Term Rewriting System

In the generated term rewriting rules, terms are of the form hc; si where c corresponds to the
list of goals which have to be proved and s is the state which the �rst goal in the list has to
be proved in. We call these goals instructions and the list of goals, which have to be proved,
the program.
As an example look at the 2BIG rule for add(E1; E2). To prove a transition for this expres-
sion in state [D;S], we have to prove transitions for E1; conv1; E2 and conv2. Moreover the
transition for E1 has to be proved in the state [[[S]jD]; S]. Putting this together we get the
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term rewriting rule hadd(E1; E2);C; [D;S]i )I hE1; conv1;E2; conv2;C; [[[S]jD]; S]i.

Applying this conversion to all rules we get:

hnum(N);C; [D;S]i )I hC; [D;N ]i
hadd(E1; E2);C; [D;S]i )I hE1; conv1;E2; conv2;C; [[[S]jD]; S]i
hconv1;C; [[[S]jD]; V ]i )I hC; [[[V ]jD]; S]i
hconv2;C; [[[V1]jD]; V2]i )I hC; [D; plus(V1; V2)]i

We can use these term rewriting rules to compute the value of our example expression.

hadd(num(1);add(num(2);num(3)));nop; [[]; nil]i
) hnum(1); conv1;add(num(2);num(3)); conv2;nop; [[[nil]]; nil]i
) hconv1;add(num(2);num(3)); conv2;nop; [[[nil]]; 1]i
) hadd(num(2);num(3)); conv2;nop; [[[1]]; nil]i
) hnum(2); conv1;num(3); conv2; conv2;nop; [[[nil]; [1]]; nil]i
) hconv1;num(3); conv2; conv2;nop; [[[nil]; [1]];2]i
) hnum(3); conv2; conv2;nop; [[[2]; [1]]; nil]i
) hconv2; conv2;nop; [[[2]; [1]]; 3]i
) hconv2;nop; [[[1]]; 5]i
) hnop; [[]; 6]i

Generated De�nition of a Compiler and Abstract Machine

Consider the term rewriting rule for add. When we apply this rule both the program and the
state are modi�ed. But the modi�cation of the program does not depend on a variable in the
state. As a consequence the modi�cations can be done independently and thus at di�erent
times. The modi�cation of the program can be done at compile-time and the modi�cation
of the state is deferred until run-time. A new instruction add is introduced which does
the deferred modi�cation. Those instructions which do not change the program other than
removing its �rst instruction become instructions of the abstract machine. The same holds
for instructions for which the modi�cation of the program depends on the state. To indicate
that an instruction is an abstract machine instruction we put a line over its constructor.
Thus we get the following rules de�ning a compiler

num(N) )C num(N)
add(E1; E2) )C add;E1; conv1;E2; conv2

and the following rules de�ning an abstract machine
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hnum(N);C; [D;S]i )X hC; [D;N ]i
hadd;C; [D;S]i )X hC; [[[S]jD]; S]i
hconv1;C; [[[S]jD]; V ]i )X hC; [[[V ]jD]; S]i
hconv2;C; [[[V1]jD]; V2]i )X hC; [D; plus(V1; V2)]i

Compilation of add(num(1),add(num(2),num(3))) yields

add;num(1); conv1; add;num(2); conv1;num(3); conv2; conv2

Now we can use these abstract machine rules to compute the value of the compiled expression.

hadd;num(1); conv1; add;num(2); conv1;num(3); conv2; conv2;nop; [[]; nil]i
) hnum(1); conv1; add;num(2); conv1;num(3); conv2; conv2;nop; [[[nil]]; nil]i
) hconv1; add;num(2); conv1;num(3); conv2; conv2;nop; [[[nil]]; 1]i
) hadd;num(2); conv1;num(3); conv2; conv2;nop; [[[1]]; nil]i
) hnum(2); conv1;num(3); conv2; conv2;nop; [[[nil]; [1]]; nil]i
) hconv1;num(3); conv2; conv2;nop; [[[nil]; [1]]; 2]i
) hnum(3); conv2; conv2;nop; [[[2]; [1]]; nil]i
) hconv2; conv2;nop; [[[2]; [1]]; 3]i
) hconv2;nop; [[[1]]; 5]i
) hnop; [[]; 6]i

Note, that this rewriting sequence has the same length as the rewriting sequence we got using
the original term rewriting rules. Furthermore, the state in the i-th term in one sequence
is equal to the state in the i-th term in the other. The major di�erence to the original
sequence is that in this abstract machine at each rewrite step an instruction is removed from
the program. When it comes to implementing the abstract machine, this allows us to store
the program in an array and use a program counter which points to the instruction which has
to be executed. After execution of the instruction, the program counter is increased by one.

5.3 Generating Compilers and Abstract Machines from

2BIG Speci�cations

An overview of the system is given in Figure 5.1. Since the system transforms speci�cations
by successively applying transformations, we will present the transformations in the order of
their application. Actually the transformations have been devised in reverse order. Start-
ing from the pass separation transformation, we tried to remove restrictions on the input
speci�cations by transforming a more general class of speci�cations into the class of input
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speci�cations. This process �nally lead to determinate 2BIG speci�cations. Note that after
each transformation we have an executable speci�cation again.

We will use the following excerpts of a 2BIG semantics for an imperative language as a
running example:

B.S!true C;while B do C od.S!S0

while B do C od.S!S0
B.S!false

while B do C od.S!S

B.S!V is bool(V )
bool(B).S!V

B.S!V not(is bool(V ))
bool(B).S!type error

5.3.1 Source Variables

Compile-time objects are those which can be constructed or evaluated at compile-time on
grounds of the program without having to refer to information in the state or input to the
program. Because of the halting problem, not all compile-time objects can be computed or
constructed at compile-time. Thus one has to �nd approximations, i.e., criteria which help
to detect as many compile-time objects as possible.
Consider the �rst rule of the example 2BIG speci�cation of while. Here B and C are bound
to subprograms known at compile-time, whereas S and S0 are run-time data. Because B
and C are known at compile-time, the arguments to the sequencing instruction ; (written as
an in�x operator) of the precondition C;while B do C od . S ! S0, are also known at
compile-time. In the proof tree for while i > 1 do i := i� 1 od . [i 7! 2] ! [i 7! 1] at the
end of Section 4.7, there is no term on the left of ., which was not present in the original
program while i > 1 do i := i� 1 od.
Because of the important role they play in our transformations, we de�ne two kinds of variables
based on their �rst de�ning occurrence in a rule:

De�nition 5.3.1 (Source Variable, Input State Variable) Let s1 ::: sn
c.e!e0

be a 2BIG rule,
then we call a variable x 2 V(c) a source variable and a variable y 2 V(e) an input state
variable.

In general, if all rules have the property that arguments to instructions in the preconditions
contain only source variables then we can only build proof trees for c . e ! e0 where all
variables on the left of . get bound to terms occurring in c.
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Figure 5.1: Overview of the Transformations
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But there are two problems with this restriction. First, even if all rules have the required
form, we do not know how often the rules are applied, i.e., we know at compile-time what
terms occur on the left of ., but we do not know the size of the proof tree. Second, in many
speci�cations of programming languages, the de�nitions of procedures or functions are con-
tained in the environment, which is part of the state and applying the function or executing
the procedure is expressed by moving the de�nition from the input state, i.e., from the right
of ., to the instruction, i.e., to the left of ., of a precondition. For example, an expression
stored on top of a stack can be reduced by executing it as in

E.S!S0

apply.[EjS]!S0

One of the main rationales in our transformations is to split run-time and compile-time data.
Compile-time data have to be passed as arguments of instructions. Run-time data become
components of the state. At the end, we want to compile a source language program, which
is an instruction without variables, into a sequence of abstract machine instructions. In this
machine program, no run-time data must occur. Our translation rules cannot access any run-
time data, thus all arguments to abstract machine instructions used in compiler rules must
be constant terms or terms which occurred in the source program. Thus every time one of
our transformations introduces a new instruction, it makes sure that the arguments to that
instruction are source variables.

5.3.2 Transformation of Side Conditions

As we mentioned before, we regard side conditions as syntactic sugar for a special kind of
transitions. In semantic speci�cations side conditions are used to express tests on variables
in a rule. More precisely, with every predicate p we associate an n-ary relation � on terms.
There exists a proof for a side condition p(a1; : : : ; an), if (a1; : : : ; an) 2 �. The characteristic

function �p is de�ned as �p(x) =

(
true if x 2 �
false if x 62 �

Using the characteristic function of a predicate, side conditions can be converted into tran-
sitions. Let

s1 ::: sj
c.e!e0

be a rule. If si is a side condition of the form p(t1; : : : ; tn), then it is
converted into a transition

a(x1; : : : ; xk) . [y1; : : : ; ym]! true

A side condition of the form not p(t1; : : : ; tn) is converted into a transition

a(x1; : : : ; xk) . [y1; : : : ; ym]! false
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where a is a new instruction symbol, for which we generate a new rule

a(x1;:::;xk).[y1;:::;ym]!�p(t1;:::;tn)

and �p is the characteristic function of the predicate p, fx1; : : : ; xkg = V(c)\V(t1; : : : ; tn) and
fy1; : : : ; ymg = V(t1; : : : ; tn)�V(c). Dividing the variables occurring in the side condition this
way guarantees that only source variables x1; : : : ; xk are arguments of the new instruction.
The remaining variables y1; : : : ; ym are passed in the state. To reduce the number of generated
instructions, we identify two generated instructions if their de�ning rules are equal modulo
the instruction symbols.

Applying the above transformation to the rules for bool(B) we get

B.S!V test.[V ]!true
bool(B).S!V

B.S!V test.[V ]!false
bool(B).S!type error test.[V ]!is bool(V )

5.3.3 Factorization

The analogy between natural semantics and grammars has already been noted by G. Kahn
[Kah87]. Grammar rules de�ne legal parse trees and as a consequence legal sentences. In
analogy, inference rules de�ne legal proof trees and as a consequence derivable facts. Some
grammars can be converted by an algorithm called left-factoring [AU72, ASU86, LP81] into
a form that has the property that a top-down parser can decide among rules for the same
nonterminal by looking at the next input symbol. This class of grammars is usually called
LL(1):

Given the rules A! ��1j : : : j��nj
1j : : : j
m for the nonterminal A.
Grammar rules for the same nonterminal which have a common pre�x � are re-
placed by a single rule A ! �A0 and a new nonterminal A0 is introduced which
produces the su�xes �1; : : : ; �n. Thus we get the new rules A ! �A0j
1j : : : j
m
and A0 ! �1j : : : j�n. This transformation is repeated as long as there is a common
pre�x in the rules for a nonterminal.

The transformation presented in this section has much in common with the above algorithm,
but note that there is a crucial di�erence between grammars and inference rules. When ap-
plying a grammar rule, occurrences of the same nonterminal in a rule can produce di�erent
sentences, whereas when we apply an inference rule, occurrences of the same variable have to
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be substituted by the same term.

Factorization of inference rules converts sets of determinate inductive rules into deterministic
rules. The following factorization transformation can be regarded as an extension of da
Silva's transformation3 to sets of more than two con
icting rules. Basically the transformation
generates for a set of n con
icting rules n+ 1 new rules. First a rule is generated which has
as its preconditions the common initial preconditions of the con
icting rules and a transition
with a new instruction. To de�ne the new instruction, the transformation generates for each
of the n con
icting rules a rule which has the rest of the preconditions of the con
icting rule
as its preconditions. We repeat factorization until there are no more con
icting rules.
By =� we will denote equality of terms and formulae modulo renaming of variables.

De�nition 5.3.2 (Con
icting Rules) Two rules are con
icting, if they have the same
left hand sides in their conclusions.

Let C be the largest set of con
icting rules with respect to the same left hand side (When
left-factoring grammars this set is analogous to the set of grammar rules for the same non-
terminal):

c11.e11!e011 ::: c1m1
.e1m1

!e01m1
c1.e1!e01

: : :
cn1.en1!e0n1 ::: cnmn.enmn!e0nmn

cn.en!e0n

where c1; e1 =� : : : =� cn; en.
Let � be a renaming of variables and j be the largest integer, such that for all p; q 2 f1; : : : ; ng:
(cpj; epj)� = (cqj; eqj)� and

8k < j : (cpk; epk; e
0
pk)� = (cqk; eqk; e

0
qk)� (5.1)

It should be kept in mind that by the renaming � the terms are �-equal and not only uni�able.
Let us call the ordered set of the latter transitions the common initial segment seg. More
precisely, the common initial segment segi in the i-th rule is the ordered set of the �rst j � 1
preconditions of that rule. We arbitrarily choose seg = seg1. (When left-factoring grammars
the common segment is analogous to the common pre�x)
We de�ne the common term e1 �� e2 of two terms e1 and e2 with respect to a variable
renaming � as:

3A factorization transformation has been de�ned and proved correct by daSilva [dS90] for the case of sets
with two con
icting rules. A motivating example for our extension is given in Appendix D.
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e1��e2 =

8>>><>>>:
e1� if e1� = e2� are the same variable name
f(d1; : : : ; dn) if e1 = f(a1; : : : ; an), e2 = f(b1; : : : ; bn) and di = ai�� bi
c(d1; : : : ; dn) if e1 = c(a1; : : : ; an), e2 = c(b1; : : : ; bn) and di = ai �� bi
x otherwise

where x is a new variable name.

The common term is the most general term modulo renaming of variables which uni�es with
both e1 and e2.

Now let e� be the common term of e01j; : : : ; e
0
nj with respect to �, i.e., e� = e01j �� : : :�� e

0
nj,

furthermore let � be a new instruction symbol and

Variables used in the remaining preconditions:
R1 =

Sn
k=1 V(ck(j+1); : : : ; ckmk

; ek(j+1); : : : ; ekmk
; e0k)�

Variables de�ned in seg, the conclusion or in ckj ; ekj:
R2 = V(seg; c1; e1)� [

Sn
k=1 V(ckj; ekj)�

Variables used in the remaining preconditions, de�ned in seg, etc.
and not passed in the common term e�:
R3 = (R1 \R2)� V(e�)�

Those variables in R3 which are not source variables
R = R3 � V(�(c1))

Source variables are passed as arguments
� = �(x1; : : : ; xm) where xi 2 R3 \ V(�(c1))

(5.2)

(When left-factoring grammars a new nonterminal is introduced, which produces the di�erent
su�xes of the grammar rules. Here we have to introduce a new instruction and via the argu-
ments to that instruction and the state we have to ensure that it allows to prove exactly those
remaining non-�-equal preconditions of the original rules.)

Let e0 be a new variable name, then C is replaced by:

seg c1j.e1j!e� �.[R;e�]!e0

c1.e1!e0 �

c1(j+1).e1(j+1)!e01(j+1) ::: c1m1
.e1m1

!e01m1
�.[R;e01j]!e01

�

.

.

.
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cn(j+1).en(j+1)!e0
n(j+1) ::: cnmn.enmn!e0nmn

�.[R;e0nj]!e0n
�

For the while-loop rules, we get that seg = ;, e� = true� false = Y where Y is a new
variable, R1 = fC;B; S; S0g, R3 = R2 = fC;B; Sg, R = fSg, � = factor(C;B) and thus
factorization of the semantics rules yields:

B.S!Y factor1(C;B).[[S];Y ]!S0

while B do C od.S!S0

C;while B do C od.S!S0

factor1(C;B).[[S];true]!S0 factor1(C;B).[[S];false]!S

B.S!V1 test.[V1]!R factor2.[[V1];R]!V2
bool(B).S!V2

factor2.[[V ];false]!type error factor2.[[V ];true]!V

test.[V ]!is bool(V )

5.3.4 Stack Introduction

In the next step, the states in the rules are extended by a stack4. This stack will be used
later to store temporary variables5. A rule of the form

c1.e1!e01 ::: cn.en!e0n
c.e!e0

is converted into

c1.[s;e1]![s;e01] ::: cn.[s;en]![s;e0n]
c.[s;e]![s;e0]

4In our examples we use the variable D for the stack or dump, because S is already used for the store.
5A possible optimization not discussed here stores the results of function calls on the stack.
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where s is a new variable name.

Adding a stack D to the �rst rule of the while-loop yields:

B.[D;S]![D;Y ] factor1(C;B).[D;[[S];Y ]]![D;S0]
while B do C od.[D;S]![D;S0]

5.3.5 Allocation of Temporary Variables

Intuitively a variable is called temporary in a rule, if there is an intermediate state where the
variable does not occur and it is not a source variable. Our goal is that source variables are
passed from transition to transition in instructions whereas temporary variables are passed
in the state. Furthermore we do not allocate anonymous variables, i.e., variables, which only
occur once in a rule. The rules are transformed, such that temporary variables are passed
in the state from the precondition of their �rst occurrence to the precondition of their last
occurrence. More precisely:

De�nition 5.3.3 (Temporary in a Precondition) Let
c1.e1!e01 ::: cn.en!e0n

c.e!e0
be a 2BIG

rule, then we de�ne the sets Mj (1 � j � n) of variables temporary in the precondition with
index j:

for 1 � i < n :
Mi = fxjx 62 V(c); x 62 V(e0i); x 2 V(ci�1; ei�1); x 2 V(e; c1; e1; e

0
1; : : : ; ci; ei)g

[fxjx 62 V(c); x 62 V(ci; ei); x 2 V(e0i); x 2 V(e; c1; e1; e
0
1; : : : ; ci�1; ei�1; e

0
i�1)g

Mn = fxjx 62 V(c); x 62 V(e0n); x 2 V(e
0); x 2 V(e; c1; e1; e01; : : : ; cn; en)g

A variable x is temporary in a rule if there is an i such that x 2 Mi.

It can easily be shown that this de�nition of temporary variables is equivalent to De�ni-
tion 4.5.6.

Now consider the rules resulting from stack introduction:

c1.[s1;e1]![s01;e
0
1] ::: cn.[sn;en]![s0n;e

0
n]

c.[s;e]![s0;e0]
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We convert the preconditions in the rule as follows: Let ck . [sk; ek] ! [s0k; e
0
k] be the k-th

precondition in the rule. Then it is converted into ck . [[Mkjsk]; ek] ! [[Mkjs0k]; e
0
k] where

Mk is a list of all variables inMk. IfMk is empty, then we do not change the precondition.
Note that allocating temporary variables before factorization would destroy common initial
segments. Consider the two 2BIG rules for bool(B) after transformation of side conditions.
The left hand sides of the second precondition of both rules are equal and would be part of the
common segment. In the �rst rule V is temporary, in the second rule there is no temporary
variable. Thus we would get:

B.[D;S]![D;V ] test.[[[V ]jD];[V ]]![[[V ]jD];true]
bool(B).[D;S]![D;V ]

B.[D;S]![D;V ] test.[D;[V ]]![D;false]
bool(B).[D;S]![D;type error]

Allocating the variable V in the �rst rule but not in the second changes the left side of the
second precondition, such that it is no longer contained in the common segment of the rules.

Applying this transformation to the while-loop example, we get the following rules. Note
that S is the only temporary variable in the rules for while and V1 is the only temporary
variable in the rules for bool.

B.[[[S]jD];S]![[[S]jD];Y ] factor1(C;B).[D;[[S];Y ]]![D;S0]
while B do C od.[D;S]![D;S0]

C;while B do C od.[D;S]![D;S0]
factor1(C;B).[D;[[S];true]]![D;S0] factor1(C;B).[D;[[S];false]]![D;S]

B.[D;S]![D;V1] test.[[[V1]jD];[V1]]![[[V1]jD];R] factor2.[D;[[V1];R]]![D;V2]
bool(B).[D;S]![D;V2]

factor2.[D;[[V ];false]]![D;type error] factor2.[D;[[V ];true]]![D;V ]

test.[D;[V ]]![D;is bool(V )]
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5.3.6 Removing Variables �rst de�ned in Preconditions

Up to now, we did not restrict 2BIG rules such that instructions in the preconditions contain
only variables de�ned in the left hand side of the conclusion6. We say that source and input
state variables (see Def. 5.3.1) are conclusion-de�ned. If a variable is not conclusion-
de�ned, then it is �rst de�ned in a precondition. All transformations so far only introduce
preconditions with conclusion-de�ned variables in instructions. For the later transformation
to TRS we need the property that all preconditions have only conclusion-de�ned variables in
instructions. The following transformation converts all preconditions into the restricted form.
A precondition with an instruction, which contains variables �rst de�ned in a precondition, is
replaced by a precondition with a new instruction only containing conclusion-de�ned variables.

Let
c1.e1!e01 ::: cn.en!e0n

c.e!e0
be a rule. For all i > 1 we de�ne:

Mi = fx : x 2 V(ci) and x 62 V(c; e)g.

For everyMi 6= ; a new instruction pi is introduced and the rule is transformed into

c1.e1!e01 ::: ci�1.ei�1!e0i�1 pi.e
0
i�1!e0i ci+1.ei+1!e0i+1 ::: cn.en!e0n

c.e!e0

The new instructions are de�ned by the following rules:

ci.ei!e0i
pi.e

0
i�1!e0i

where �i is a new instruction symbol, pi = �i(x1; : : : ; xk) and fx1; : : : ; xkg = V(c) \ V(ci).

Recall that after allocation of temporary variables the term e0i�1 contains all non-source vari-
ables, which might be used in ci; ei.

6In McKeever's work the form of rules has been much more restrictive:

c1.e1!e01 ::: cn.en!e0n
a(p1;:::;pm).e!e0

where fc1; : : : ; cng � fp1; : : : ; pmg, i.e., a command is executed by executing some of its arguments.
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In the following example, the de�nition E of a procedure X is looked up in the state and
then executed. The �rst de�ning occurrence of E is in the �rst precondition:

lookup(X).S!E E.S!S0

call(X).S!S0

After allocation of temporary variables we get the following rule. The �rst de�ning oc-
currence of E is still in the �rst precondition:

lookup(X).[[[S]jD];S]![[[S]jD];E] E.[D;S]![D;S0]
call(X).[D;S]![D;S0]

Now the above transformation can be applied:

lookup(X).[[[S]jD];S]![[[S]jD];E] exec.[[[S]jD];E]![D;S0]
call(X).[D;S]![D;S0]

E.[D;S]![D;S0]
exec.[[[S]jD];E]![D;S0]

Now E is an input state variable in the second rule and can thus occur in the instructions
of its preconditions.

5.3.7 Sequentialization

Next we will transform the rules such that the state on the right side of a precondition is
equal to the state on the left side of the subsequent precondition. Furthermore the state on
the right side of the last precondition is equal to the state on the right side of the conclusion.
More precisely, a rule of the form

c1.e1!e01 ::: cn.en!e0n
c0.e0!en+1

is transformed into

c1 . e1 ! e01 p1 . e
0
1 ! e2 : : : pn�1 . en�1 ! en cn . en ! e0n pn . e

0
n ! en+1

c0.e0!en+1

and we add the rules

p1 . e
0
1 ! e2 : : : pn . e

0
n ! en+1

where for each rule of the form pi . e
0
i ! ei+1, the instruction pi has the form �(x1; : : : ; xk),

� is a new instruction symbol and fx1; : : : ; xkg = (V(ei+1) � V(e0i)) \ V(c0). One might
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ask, why we do not add a precondition p0 . e0 ! e1? But this case is taken care of by
the next transformation, namely the conversion into term rewriting rules. Note that after the
allocation of temporary variables, there should be no variables except for anonymous variables
and source variables in V(ei+1)�V(e0i).

Applying this transformation to our while-loop example new instructions are introduced
and the following rules are generated:

B.[[[S]jD];S]![[[S]jD];Y ] conv1.[[[S]jD];Y ]![D;[[S];Y ]] factor1(C;B).[D;[[S];Y ]]![D;S0]
while B do C od.[D;S]![D;S0]

C;while B do C od.[D;S]![D;S0]
factor1(C;B).[D;[[S];true]]![D;S0] factor1(C;B).[D;[[S];false]]![D;S]

conv1.[[[S]jD];Y ]![D;[[S];Y ]]

B . [D;S]! [D; V1] conv2 . [D; V1]! [[[V1]jD]; [V1]] test . [[[V1]jD]; [V1]]! [[[V1]jD]; R]
conv3 . [[[V1]jD]; R]! [D; [[V1]; R]] factor2 . [D; [[V1]; R]]! [D; V2]

bool(B).[D;S]![D;V2]

factor2.[D;[[V ];false]]![D;type error] factor2.[D;[[V ];true]]![D;V ]

test.[D;[V ]]![D;is bool(V )] conv2.[D;V ]![[[V ]jD];[V ]] conv3.[[[V ]jD];R]![D;[[V ];R]]

5.3.8 Conversion into Term Rewriting Systems

After sequentialization, the instructions of each precondition can be proved in the state re-
sulting from its preceding precondition. This property enables us to combine the instructions
and generate term rewriting rules:

� Rules of the form c . e ! e0 are transformed into the rewrite rule h(c; p); ei ) hp; e0i,
where p is a new variable name, which will be bound to the program rest when the rule
is applied.
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� Rules of the form
c1.e1!e01 ::: cn.en!e0n

c.e!e0
are converted into

h(c; p); ei ! h(c1; : : : ; cn; p); e1i where p is a new variable name.

The term rewriting system generated for our while-loop example is:

hwhile B do C od;P; [D;S]i ) hB; conv1; factor1(C;B);P; [[[S]jD]; S]i
hconv1;P; [[[S]jD]; Y ]i ) hP; [D; [[S]; Y ]]i
hfactor1(C;B);P; [D; [[S]; true]]i ) hC;while B do C od;P; [D;S]i
hfactor1(C;B);P; [D; [[S]; false]]i ) hP; [D;S]i
hbool(B);P; [D;S]i ) hB; conv2; test; conv3; factor2;P; [D;S]i
hconv2;P; [D;V ]i ) hP; [[[V ]jD]; [V ]]i
hconv3;P; [[[V ]jD]; R]i ) hP; [D; [[V ]; R]]i
hfactor2;P; [D; [[V ]; true]]i ) hP; [D;V ]i
hfactor2;P; [D; [[V ]; false]]i ) hP; [D; type error]i
htest;P; [D; [V ]]i ) hP; [D; is bool(V )]i

The term rewriting systems produced by conversion of 2BIG rules are linear and orthogonal,
because the left hand sides of the rules are non-overlapping (see proofs in Section 9.3.5). By
Theorem 5.1.4 we conclude that these term rewriting systems are con
uent.

5.3.9 Pass Separation

The term staging transformation has been introduced in [JS86] for a class of transforma-
tions including partial evaluation and pass separation. Let p be a program, x and y the static
and dynamic inputs to this program and x the statically known value of x, then partial eval-
uation of p with respect to x yields a residual program px, such that px(y) = p(x; y). 7 In
contrast, pass separation transforms the program p into two programs p1 and p2 such that
p2(p1(x); y) = p(x; y). 8 What is important about this equation is that here p1 produces some
intermediate data, which are input to p2. As is well known, partial evaluation can be used
to generate compilers in various ways according to the Futamura Projections [JGS93, Fut71].
The drawback of this approach is that the generated code is in the interpreter's language and

7There is a trivial solution to this equation, namely px = �y:(�x:p(x; y) x). The goal is to move computa-
tions from p to px.

8There is a trivial solution to this equation, namely p1 = id and p2 = p. The goal is to move computations
from p2 to p1.
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requires its evaluation mechanism. Thus, partial evaluation will not devise a target language
suitable for the source language or invent new runtime data structures. When it comes to the
generation of compiler/executor pairs, pass separation provides an immediate solution. We
pass separate the interpreter interp into an executor exec and a compiler comp, such that:
interp(prog; data) = exec(comp(prog); data). Despite this potential for compiler generation
there is only little work on pass separation. Actually we are only aware of the somewhat
hand-waving article [JS86] and the provably correct pass separation transformations for term
rewriting systems [Han94] and evolving algebras [Die95b].

5.3.10 Hannan's Pass Separation Transformation for Abstract In-

terpreters

In this section we only cite the relevant de�nitions of the key paper [Han94] with minimal
explanation. The interested reader will �nd more explanations, examples and a correctness
proof in Hannan's article.

De�nition 5.3.4 (Term Complexity) The complexity of a term t is de�ned by structural
induction:

� C(�) = 1 for a constant �;

� C(X) = 1 for a variable X;

� C(�(t1; : : : ; tn)) = C(t1) + � � �+ C(tn) + 1.

From this we derive a partial order on terms: t1 < t2 i� C(t1) < C(t2).

De�nition 5.3.5 (Abstract Interpreter (Def. 4.1 in [Han94]))
(�; R) is an abstract interpreter i�

� (�; R) is a linear term rewriting system

� nop, h:; :i, 0;0 2 �

� every rule in R is of the form: h�(X1; : : : ;Xk);C; ei ) hc01; : : : ; c
0
m;C; e

0i where X1; : : : ;Xk

and C are variables and c01; : : : ; c
0
m and e; e0 are terms which do not contain C.

The term rewriting system generated above for our running example is an abstract interpreter.

De�nition 5.3.6 (Instruction De�ning Rules (Def. 6.1 in [Han94]) ) Let (�; R) be an ab-
stract interpreter. For a constant � 2 �, Rj�;k is the set containing those rules of the form
h�(X1; : : : ;Xk);C; ei ) hp0; e0i for some e; e0 and p0.
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De�nition 5.3.7 (Atomic Program) A term of the form �(s1; : : : ; sn) is called an atomic
program, where � is a constant and none of the terms si contains one of the constants nop,
h:; :i or 0;0.

De�nition 5.3.8 (Common Su�x (Def. 6.2 in [Han94]) ) Let (�; R) be an abstract in-
terpreter. If the rule h�(X1; : : : ;Xk);C; ei ) hp0; e0i is in Rj�;k, then su�x(Rj�;k) is the term
b0 = b1; : : : ; bn (for atomic programs bi) such that

1. V(b0) � fX1; : : : ;Xkg

2. bi < �(X1; : : : ;Xk), for all 1 � i � n

3. for every rule r 2 Rj�;k there exist atomic programs a1; : : : ; am and terms e; e0 such that
r is of the form h�(X1; : : : ;Xk);C; ei ) ha1; : : : ; am; b0;C; e0i,

4. for no term b0; b1; : : : ; bn do the previous three properties hold.

(1) ensures that b0 can be constructed at compile-time (see our rationale in Section 5.3.1), (2)
ensures that the compiler will be normalizing, i.e., compilation will terminate, (3) is needed
to show con
uence of the generated compiler (by Theorem 5.1.4) and (4) enforces as much
reduction as possible at compile-time. Pass separation detects such parts of the term rewriting
rule which can be rewritten independently of the state, i.e., at compile time.
To construct the compiler one divides the instructions (atomic programs) on the right hand
side p;C of an abstract interpreter rule h�(X1; : : : ;Xk);C; ei ) hp;C; e0i 2 R for �(X1; : : : ;Xk)
into two parts: a1; : : : ; am is characteristic for the rule r and b0;C is common to all rules in
Rj�;k. Then a compiler rule is generated which translates �(X1; : : : ;Xk) into the program
�(X1; : : : ;Xk); b

0 where � is a new constant. The `execution' of the characteristic instructions
and the change of the state e to e0 is done by the generated executor rule for �.

De�nition 5.3.9 (Pass Separation (Def. 6.3 in [Han94]) )
Let (�; R) be an abstract interpreter.

1. (�c; Rc) is the smallest rewrite system such that
if h�(X1; : : : ;Xk);C; ei ) ha1; : : : ; am; b0;C; e0i 2 R and b0 = su�x(Rj�;k)
then �(X1; : : : ;Xk))c �(X1; : : : ;Xk); b0 2 Rc, where � is a new constant.

2. (�x; Rx) is the smallest rewrite system such that for each
h�(X1; : : : ;Xk);C; ei ) ha1; : : : ; am; b0;C; e0i 2 Rj�;k, such that b0 = su�x(Rj�;k) and
�(X1; : : : ;Xk))c �(X1; : : : ;Xk); b0 2 Rc,
a1; : : : ; am

�
)Rcac, e

�
)Rcec, e0

�
)Rce

0
c

then h�(X1; : : : ;Xk);C; eci ) hac;C; e0ci 2 Rx
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Pass separation converts a set of rules R into two sets Rc and Rx, such that the following
holds:

if hc; ei
�
)Rhc0; e0i then c

�
)Rc~c ; e

y
)Rc~e ; c

0 y)Rc~c
0 ; e0

y
)Rc~e

0 and h~c; ~ei
�
)Rxh~c

0; ~e0i

Note that also the state is compiled, because there might be instruction sequences stored in
the state. This occurs for example in the semantics of higher order languages.

In the terminology of John Hannan, the rules in R de�ne an abstract interpreter, the rules
in Rc a compiler and the rules in Rx an abstract executor, or in our terminology, an abstract
machine. The rules in Rx belong to a special class of rewrite rules. Their left sides will only
match the whole term (enclosed in h:::i), i.e., they never apply to sub-terms of that term,
because we do not allow h:::i to occur in a term. As a result they can be implemented more
e�ciently than ordinary rewrite rules.

Pass separating the term rewriting system for our example results in the following compiler
rules

while B do C od ) while(B;C)
bool(B) ) bool(B);B; conv2; test; conv3; factor2
conv2 ) conv2
conv3 ) conv3
factor2 ) factor2
test ) test

And the following executor rules are generated:

hwhile(B;C);P; [D;S]i ) hB; conv; factor1(C;B);P; [[[S]jD]; S]i
hconv;P; [[[S]jD]; Y ]i ) hP; [D; [[S]; Y ]]i
hfactor1(C;B);P; [D; [[S]; true]]i ) hC;while(B;C);P; [D;S]i
hfactor1(C;B);P; [D; [[S]; false]]i ) hP; [D;S]i
hbool(B);P; [D;S]i ) hP; [D;S]i
hconv2;P; [D;V ]i ) hP; [[[V ]jD]; [V ]]i
hconv3;P; [[[V ]jD]; R]i ) hP; [D; [[V ]; R]]i
hfactor2;P; [D; [[V ]; true]]i ) hP; [D;V ]i
hfactor2;P; [D; [[V ]; false]]i ) hP; [D; type error]i
htest;P; [D; [V ]]i ) hP; [D; is bool(V )]i
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In this example we didn't get a compilation rule, which compiled the while-loop into a se-
quence of less complex instructions. Instead it is translated into the instruction while, which
performs the translation at runtime into B; conv; factor(C;B). Looking at the de�nition of
the pass separation transformation, we �nd that B; conv; factor(C;B) was a candidate for b0,
but factor(C;B) 6< while B do C od, i.e., factor(C;B) is as complex regarding number and
structure of the arguments as the original while instruction. Hannan only allows compiler
rules which translate an instruction into a sequence of less complex instructions 9. Using this
restriction he can prove that the generated compiler is strongly normalizing, i.e., terminates
for all source language programs.

The compiler rule for bool produces a sequence of less complex machine instructions:

bool(B) ) bool(B);B; conv2; test; conv3; factor2

where B < bool(B); conv2 < bool(B); etc.

5.4 Optimizations of Compiler and Abstract Machine

After pass separation, the resulting compiler and abstract machine can be further optimized.
One important goal of these optimizations is to reduce the number of instructions of the
generated abstract machine.

5.4.1 Self-Application of Compiler Rules

After the right hand sides of each compiler rule have been compiled using the original compiler
rules, we can remove all compiler rules for non source language instructions, i.e., for those
instructions introduced by the transformations.

For example the 5 compiler rules for bool can be reduced to one rule

bool(B) =) bool(B);B; conv2; test; conv3; factor2

9Restriction 2 of de�nition 5.3.8.
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5.4.2 Remove Unused Arguments

Pass separation sometimes introduces instructions with arguments which do not occur on the
right side of any of the abstract machine rules for that instruction. Clearly such arguments
can be removed. Thus we have to detect which arguments are not used, and then we have
to remove those arguments in all occurrences of the instruction in the compiler as well as the
abstract machine rules.

In our example the argument of the instruction bool(B) is not used on the right hand side
of the abstract machine rule for that instruction. Thus we can simplify the compiler rule
to

bool(B) =) bool;B; conv2; test; conv3; factor2

and the abstract machine rule to

hbool;P; [D;S]i =) hP; [D;S]i

Actually this instruction does not even change the state, so it could be completely removed.

5.4.3 Factorize Abstract Machine Rules

Sometimes several rules for two instructions are identical except for the instruction names. In
this case, we can introduce a new instruction de�ned by the common rules. In our examples
we could factorize rules dealing with error handling. Often the error handling was identical
for several instructions.
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Here is a simple example:

hhd;C; [HjT ]i =) hC;Hi
hhd;C; errori =) hC; errori
htl;C; [HjT ]i =) hC;T i
htl;C; errori =) hC; errori

The error case can be factored out:

hfact(hd);C; [HjT ]i =) hC;Hi
hfact(tl);C; [HjT ]i =) hC;T i
hfact(X);C; errori =) hC; errori

In general the factorization transformation for abstract machine rules works as follows.

Let k1 and k2 be two instructions with the same number of arguments. Let R1 be the set of
all rules for k1 and R2 be the set of all rules for k2. The intersection of two rule sets modulo
instruction names is de�ned as:

R1 \ R2 = f [x1; : : : ; xn; c1; e1; s1]j
hk1(x1; : : : ; xn); c1; e1i ) s1 2 R1

and hk2(y1; : : : ; yn); c2; e2i ) s2 2 R2

and exists a variable renaming � such that
[x1; : : : ; xn; c1; e1; s1] = �([y1; : : : ; yn; c2; e2; s2])g

The set of rules in R1 which have no counterpart in R2 is:

R1 � R2 = fr1 : r1 2 R1 and there exists no rule in R2

and no variable renaming as in the definition of \ g

Let � be a new instruction symbol and x be a new variable name. We form a new set of rulesbR to replace R1 and R2:
� For all [x1; : : : ; xn; c; e; s] 2 R1 \ R2 we have h�(x; x1; : : : ; xn); c; ei ) s 2 bR
Now we have to deal with those rules which are di�erent for k1 and k2.

� For all hk1(x1; : : : ; xn); c; ei ) s 2 R1 � R2 we have h�(k1; x1; : : : ; xn); c; ei ) s 2 bR.
Similarily:
� For all hk2(x1; : : : ; xn); c; ei ) s 2 R2 � R1 we have h�(k2; x1; : : : ; xn); c; ei ) s 2 bR.
Finally we replace the rules R1 [R2 by bR.
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5.4.4 Combining Instructions

Transformation of side conditions and sequentialization introduce instructions which are de-
�ned by a single rule. In the compiler rules, we can detect sequences of such instructions
and combine them into a single instruction. This instruction has the combined e�ect of the
underlying instructions, but can be executed in one step. This reduces the interpretation
overhead, pattern matching, and the construction of intermediate data structures.

In what follows, let

c =) i1; : : : ; in 2 Rc

be a compiler rule, ij; : : : ; ij+k be the longest sequence (k > 1) of instructions in the above
compiler rule such that each instruction is de�ned by a single abstract machine rule and let
the rule de�ning the �rst instruction in the sequence be

hij;C; eji =) hc0;C; e0ji 2 Rx.

In the following we mean by pure rewriting
�
,!Rx that function names are treated as construc-

tors and thus function calls are not evaluated. If we get that 10

hij; : : : ; ij+k; eji
�
,!Rxhnop; e

0i

then we de�ne a new instruction. Let � be a new instruction symbol and

fx1; : : : ; xpg =
Sj+k
m=jfa1; : : : ; aqm : im = �m(a1; : : : ; aqm)g

The compiler rule is replaced by

c =) i1; : : : ; ij�1; �(x1; : : : ; xp); ij+k+1; : : : ; in

and the following abstract machine rule is added:

h�(x1; : : : ; xp);C; eji =) hC; e0i

10Otherwise, we try a shorter sequence, i.e., if k > 2, let k = k � 1 and try again.
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As an example look at the compiler rule for bool(B). The sequence conv2; test; conv3; is
replaced by a new instruction comb:

bool(B) =) bool;B; comb; factor2

The new instruction replaces the three original ones:

hcomb;P; [D;V ]i =) hP; [D; [[V ]; is bool(V )]]i

A similar transformation replaces sequences of instructions in the right hand side of an abstract
machine rule by a combined instruction.

5.4.5 Remove Redundant Rules

Due to the automatic generation of instructions, there are often instructions, which are de�ned
by the same rules except for the instruction name, e.g., the pairwise factorization of abstract
machine rules leads to redundant rules, if more than two instructions have common rules.
In all these cases, we can replace instructions which are equal modulo instruction names by
one instruction. Then we can remove the rules of the replaced instructions from the abstract
machine.

That these optimizations greatly reduce the number of compiler and abstract machine rules is
pointed out in Section 7.6 for the action notation speci�cation. First, by self-application, the
number of compiler rules was reduced from 216 to 43. Second, using the other optimizations
we got 181 instead of 276 abstract machine rules.



82 CHAPTER 5. GENERATION OF COMPILERS AND ABSTRACT MACHINES



Chapter 6

Generation of a Compiler and
Abstract Machine for Mini-ML

W
e apply our system to a speci�cation of Mini-ML . The generated compiler and ab-
stract machine are similar to those presented in [CCM85], i.e., the Categorial Abstract
Machine (CAM). The CAM has been the basis of very e�cient implementations of

ML [Ler93, MS86]. Based on the speci�cation of Mini-ML in [Kah87, Des86] we will present
a 2BIG speci�cation of Mini-ML and the compiler and abstract machine generated by our
system. A closer look at the abstract machine instructions reveals that variable lookup is still
ine�cient. We introduce an abstract syntax and a conversion of Mini-ML programs into the
abstract syntax. In the abstract syntax variable names are replaced by access paths which
are just a di�erent encoding for deBruijn numerals. For this abstract syntax we give a 2BIG
speci�cation. Now it turns out that the generated abstract machine is close to the CAM.
Whereas in this chapter the emphasis is on how modi�cations in the input speci�cation help
to improve the generated compiler and abstract machine, in the next chapter we will trace
the generation of an abstract machine.

6.1 Mini-ML

In [Kah87, Des86] the authors present natural semantics speci�cations of Mini-ML, the CAM
and the translation ofMini-ML programs to CAM code. Mini-ML consists of the purely applica-
tive part of ML, more precisely a simple typed �-calculus with constants, pairs, conditionals
and recursive function de�nitions . The syntax of Mini-ML is given in Figure 6.1, its semantics
will be de�ned in the next section by 2BIG rules.
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x variable symbol
n number
b boolean value: true; false
E ::= bool(b) j num(n) boolean value, number

j equal(E;E) equality test
j E + E j E � E sum, di�erence
j var(x) variable use
j if E then E else E end conditional
j (E;E) pair
j fst(E) �rst value of pair
j snd(E) second value of pair
j �x:E abstraction
j (E E) function application
j let x = E in E end function de�nition
j letrec x = E in E end recursive function de�nition

Figure 6.1: Syntax of Mini-ML



6.2. TRANSFORMING A 2BIG SPECIFICATION OF MINI-ML 85

The following example program counts from 10 down to 0:

letrec y = �x:if equal(var(x);num(0)) then var(x)
else (var(y) (var(x)� num(1)))

in (var(y) num(10)) end

And this is a Mini-ML function computing Fibonacci numbers:

letrec fib = �x:if equal(var(x);num(0)) then num(0)
else if equal(var(x);num(1)) then num(1)

else (var(fib) (var(x)� num(1)))
+(var(fib) (var(x)� num(2)))

end
end

in (var(fib) num(10)) end

6.2 Transforming a 2BIG speci�cation of Mini-ML

6.2.1 Cyclic Bindings

Recall from Chapter 4, that we require well-orderedness. Well-orderedness does not allow for
cyclic dependencies of variables and thus allows us to use terms and not graphs or rational
trees as the underlying model of 2BIG rules. From a practical point of view facilitates to
generate term rewriting systems as speci�cations of abstract machines . To implement cyclic

dependencies as for E� in
P2.[[X7!E�]jE]!E� P1.[[X 7!E�]jE]!E0

letrec X=P2 in P1 end.E!E0 we lift the handling of

cyclic bindings of variables in the meta-language into the speci�cation, i.e., we specify the
indirection and dereferencing of variables by 2BIG rules. As a result the state in the 2BIG
rules contains a new component, namely a list of redirections. Redirections associate indices
(addresses) with values. Everytime a value is an index, we have to look up its value in the
redirections. This process is also called dereferencing.

6.2.2 Basic Operations

In the 2BIG rules of this chapter the following functions are used:
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� lookup(E;X) yields the value associated with the identi�er bound to X in the mapping
E.

� replace(X;V;E) yields a new mapping, which di�ers from E only in that the association
of the identi�er X is replaced by an association of the identi�er X to the value V .

� minus op(V1; V2) yields V1 � V2 if both values are numbers

� plus op(V1; V2) yields V1 + V2 if both values are numbers

� equal op(V1; V2) yields true if both values are equal, false otherwise.

� lookup red(R;N) yields the value associated with index N in the redirections R.

� replace red(N;V;R) replaces the value associated with index N in the redirections R
by the value V .

� new index(R) yields a new index, which is not yet contained in R.

6.2.3 First Shot

The following 2BIG speci�cation is based on the natural semantics speci�cation of Mini-ML
in [Kah87, Des86]. To convert their natural semantics rules into 2BIG rules we had to remove
the cyclic dependencies and enforce the static semantics of 2BIG .

2BIG Speci�cation of Mini-ML

We use constructors like xbool, xnum and clo to build intermediate data structures and
distinguish them from constructors of the source language like bool or num. The constructor
val indicates that a value has not to be dereferenced, whereas ind is an index and has to be
dereferenced to get a value.

Primitive Types

num(N) . [R;E]! [R;xnum(N)]
(6.1)

V1 . [R;E]! [R0;xnum(N)] V2 . [R0; E]! [R00;xnum(M)]

V1 + V2 . [R;E]! [R00;xnum(plus op(N;M))]
(6.2)
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V1 . [R;E]! [R0;xnum(N)] V2 . [R0; E]! [R00;xnum(M)]

V1 � V2 . [R;E]! [R00;xnum(minus op(N;M))]
(6.3)

bool(B) . [R;E]! [R;xbool(B)]
(6.4)

N . [R;E]! [R0; N 0] M . [R0; E]! [R00;M 0]

equal(N;M) . [R;E]! [R00;xbool(equal op(N 0;M 0))]
(6.5)

Pairs

V1 . [R;E]! [R0; V 0
1] V2 . [R

0; E]! [R00; V 0
2]

(V1; V2) . [R;E]! [R00;xpair(V 0
1; V

0
2)]

(6.6)

V . [R;E]! [R0;xpair(A;B)]

fst(V ) . [R;E]! [R0; A]

V . [R;E]! [R0;xpair(A;B)]

snd(V ) . [R;E]! [R0; B]
(6.7)

Variable Lookup

lkup . [X;E]! ind(N)

var(X) . [R;E]! [R; lookup red(R;N)]

lkup . [X;E]! val(V )

var(X) . [R;E]! [R; V ]
(6.8)

lkup . [X;E]! lookup(E;X)
(6.9)

Conditional

B . [R;E]! [R0;xbool(true)] V1 . [R0; E]! [R00; V 0
1]

if B then V1 else V2 end . [R;E]! [R00; V 0
1]

(6.10)

B . [R;E]! [R0;xbool(false)] V2 . [R0; E]! [R00; V 0
2]

if B then V1 else V2 end . [R;E]! [R00; V 0
2]

(6.11)
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Functions

�X:V . [R;E]! [R; clo(E;xlambda(X; V ))]
(6.12)

V1 . [R;E]! [R0; clo(E0;xlambda(X;C))] V2 . [R0; E]! [R00; V 0
2]

run . [C;R00; replace(X;val(V 0
2); E

0)]! [R�; V ]

(V1 V2) . [R;E]! [R�; V ]
(6.13)

C . [R;E]! [R0; V ]

run . [C;R;E]! [R0; V ]
(6.14)

V1 . [R;E]! [R0; V 0
1] V2 . [R

0; replace(X;val(V 0
1); E)]! [R00; V ]

let X = V1 in V2 end . [R;E]! [R00; V ]
(6.15)

Recursive Functions

newind . R! N

V1 . [[red(N; ind(N))jR]; replace(X; ind(N); E)]! [R0; V 0
1]

V2 . [replace red(N; V
0
1; R

0); replace(X;val(V 0
1); E)]! [R00; V 0

2]

letrec X = V1 in V2 end . [R;E]! [R00; V 0
2]

(6.16)

newind . R! new index(R)
(6.17)

Generated Compiler for Mini-ML

Applying our system to the above speci�cation we get the following compiler rules:
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bool(B) ) bool(B)
equal(A;B) ) equal;A; conv 0;B; conv 1
num(N) ) num(N)
A+B ) equal;A; conv 2;B; conv 3
A�B ) equal;A; conv 2;B; conv 5
(A;B) ) equal;A; conv 0;B; conv 9
fst(V ) ) fst;V ; conv 10
snd(V ) ) fst;V ; conv 11
var(X) ) var(X)
if B then V1 else V2 end ) equal;B; conv 7; factor 1(V2; V1)
�X:V ) lambda(X;V )
(V1 V2) ) equal;V1; conv 12;V2; conv 13; run
let X = V1 in V2 end ) equal;V1; conv 15(X);V2
letrec X = V1 in V2 end ) letrec;newind; conv 16(X);V1; conv 17;V2

The names of the instructions introduced by our system are test : : :, conv : : :, factor : : :,
fact : : : and comb : : :. These names describe the task of an instruction not as speci�c as
those instruction names we know from existing abstract machines. After a closer inspection
of what our generated instructions do, we could give them more suggestive names like push,
pop, branch, etc.

Generated Abstract Machine for Mini-ML

We give only some of the generated abstract machine rules here, to illustrate and discuss some
ine�ciencies in the machine.

Variable Lookup

hvar(X);C; [D; [R;E]]i ) hlkup; conv 6; factor 0;C; [[[R]jD]; [X;E]]i
hlkup;C; [D; [X;E]]i ) hC; [D; lookup(X;E)]i
hconv 6;C; [[[R]jD]; S]i ) hC; [D; [[R]; S]]i
hfactor 0;C; [D; [[R]; ind(N)]]i ) hC; [D; [R; lookup red(R;N)]]i
hfactor 0;C; [D; [[R];val(V )]]i ) hC; [D; [R;V ]]i

In the CAM the variable access is done by statically compiled access paths. In the above
abstract machine rules variable access is still a search process hidden in the basic operation
lookup. The instruction factor 0 tests the cases that the variable is bound to a redirection
or directly to a value.
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Recursive Functions

hletrec;C; [D; [R;E]]i ) hC; [[[R;E]jD]; R]i
hnewind;C; [D;R]i ) hC; [D;new index(R)]i
hconv 16(X);C; [[[R;E]jD]; N ]i )
hC; [[[N;X;E]jD]; [[red(N; ind(N))jR]; replace(X; ind(N); E)]]i

hconv 17;C; [[[N;X;E]jD]; [R;V ]]i )
hC; [D; [replace red(N;V;R); replace(X;val(V ); E)]]i

Again the search process is hidden in a basic operation, namely replace(X; ind(N); E) and
replace(X;val(V ); E). The association found for the variable X is then replaced by an
association of X to the new value. In the CAM the environment is implemented as a stack
and the new value is just put on top of the stack.

6.2.4 Second Shot

As pointed out the structure of environments and as a result the variable lookup in the above
abstract machine is still insu�cient. Our transformations do not automatically change this
structure, thus the 2BIG speci�cation has to be modi�ed. We introduce an abstract syntax
with deBruijn numerals and a conversion of Mini-ML programs into the abstract syntax. Then
we give a new 2BIG speci�cation for Mini-ML programs in abstract syntax. When we replace
variable names by deBruijn numerals the environment can be replaced by a stack. The value
associated with the variable represented by the numeral $0 is the top most element of the
stack, for the numeral $n the value is the (n� 1)th element of the stack. Access paths are a
unary representation of numerals, i.e., the numeral $0 is represented by car, the numeral $n
by cdr(cdr(: : :cdr| {z }

n times

(car))).

Abstract Syntax

Since we use now deBruijn numerals in �,let and letrec abstractions, there are no more
variable names in Mini-ML programs and we have to change the syntax (see Figure 6.2).
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V ::= car j cdr(V ) variable access path
E ::= :::

j V variable use
j �:E abstraction
j let E in E end function de�nition
j letrec E in E end recursive function de�nition

Figure 6.2: Abstract Syntax of Mini-ML

Using the new abstract syntax the example program which counts from 10 down to 0
becomes:

letrec �:if equal(car;num(0)) then car
else (cdr(car) (car� num(1)))

in (car num(10)) end

And the Mini-ML function for Fibonacci numbers is now written as:

letrec �:if equal(car;num(0)) then num(0)
else if equal(car;num(1)) then num(1)

else (cdr(car) (car� num(1)))
+(cdr(car) (car � num(2)))

end
end

in (car num(10)) end

Conversion into Abstract Syntax

var(X) . E ! access path(X;E)
(6.18)

Here access path(X;E) is a basic operation which yields the access path for the numeral $(n�
1) ifX is the n-th variable inE. Or in other words access path(X;E) = cdr(cdr(: : :cdr| {z }

n�1 times

(car))).

V . [XjE]! V 0

�X:V . E ! �:V 0
(6.19)
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V1 . E ! V 0
1 V2 . [XjE]! V 0

2

let X = V1 in V2 end . E ! let V 0
1 in V

0
2 end

(6.20)

V1 . [XjE]! V 0
1 V2 . [XjE]! V 0

2

letrec X = V1 in V2 end . E ! letrec V 0
1 in V

0
2 end

(6.21)

In all other cases the arguments are just translated in the current environment, e.g.:

V1 . E ! V 0
1 V2 . E ! V 0

2

(V1; V2) . E ! (V 0
1 ; V

0
2)

(6.22)

2BIG Speci�cation of Mini-ML

Variable Lookup Instead of rules for var(X), we have now rules for access paths:

car . [R; [ind(M)jE]]! [R; lookup red(R;M)]
(6.23)

car . [R; [val(V )jE]]! [R; V ]
(6.24)

A . [R;E]! [R; V ]

cdr(A) . [R; [H jE]]! [R; V ]
(6.25)

Functions The name of the variable bound by the � abstraction is no longer stored in the
closure.

�:C . [R;E]! [R; clo(E;xlambda(C))]
(6.26)

Instead of replacing the value bound to the variable bound by the � abstraction of the closure,
we now pass the new value on top of the environment, which is now a stack and no longer a
mapping of variable names to values.

V1 . [R;E]! [R0; clo(E0;xlambda(C))] V2 . [R
0; E]! [R00; V 0

2]
run . [C;R00; [val(V 0

2)jE
0]]! [R�; V ]

(V1 V2) . [R;E]! [R�; V ]
(6.27)

Again, instead of binding the value V 0
1 to a variable it is passed on top of the stack.

V1 . [R;E]! [R0; V 0
1] V2 . [R

0; [val(V 0
1)jE]]! [R00; V 0

2]

let V1 in V2 end . [R;E]! [R00; V 0
2]

(6.28)
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Recursive Functions And again, the value of V 0
1 is now passed on top of the stack.

newind . R! M V1 . [[red(M; ind(M))jR]; [ind(M)jE]]! [R0; V 0
1]

V2 . [replace red(M;V 0
1; R

0); [val(V 0
1)jE]]! [R00; V 0

2]

letrec V1 in V2 end . [R;E]! [R00; V 0
2]

(6.29)

Generated Compiler for Mini-ML

Access paths are now translated into sequences of instructions, thus cdr(cdr(car)) becomes
cdr;cdr;car. Of course, there are no more abstract machine instructions, which take variable
names as their arguments, e.g., X in lambda(X;C).

car ) car
cdr(A) ) cdr;A
�:C ) lambda(C)
(V1 V2) ) equal;V1; conv 11;V2; conv 12; run
let V1 in V2 end ) equal;V1; conv 14;V2
letrec V1 in V2 end ) letrec;newind; conv 15;V1; conv 16;V2

Generated Abstract Machine for Mini-ML

Now we give the de�nitions generated for the instructions appearing in the above compiler
rules.

Variable Lookup

hcar;C; [D; [R; [ind(M)jE]]]i ) hC; [D; [R; lookup red(R;M)]]i
hcar;C; [D; [R; [val(V )jE]]]i ) hC; [D; [R;V ]]i
hcdr;C; [D; [R; [V jE]]]i ) hC; [D; [R;E]]i
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Functions

hlambda(V );C; [D; [R;E]]i ) hC; [D; [R; clo(E;xlambda(V ))]]i
hequal;C; [D; [R;E]]i ) hC; [[[E]jD]; [R;E]]i
hconv 11;C; [[[E]jD]; [R; clo(E0;xlambda(T ))]]i )

hC; [[[E0; T ]jD]; [R;E]]i
hconv 12;C; [[[E;T ]jD]; [R;V ]]i ) hC; [D; [T;R; [val(V )jE]]]i
hrun;C; [D; [T;R;E]]i ) hT ; conv 13;C; [[[T ]jD]; [R;E]]i
hconv 13;C; [[[T ]jD]; [R;E]]i ) hC; [D; [R;E]]i
hconv 14;C; [[[E]jD]; [R;V ]]i ) hC; [D; [R; [val(V )jE]]]i

Recursive Functions

hletrec;C; [D; [R;E]]i ) hC; [[[R;E]jD]; R]i
hconv 15;C; [[[R;E]jD];M ]i )

hC; [[[M;E]jD]; [[red(M; ind(M))jR]; [ind(M)jE]]]i
hconv 16;C; [[[M;E]jD]; [R;V ]]i )

hC; [D; [replace red(M;V;R); [val(V )jE]]]i
hnewind;C; [D;R]i ) hC; [D;new index(R)]i

6.2.5 Comparison to CAM

Before we can compare our generated abstract machine to the CAM, we have to introduce
the CAM in more detail. We restrict the presentation to how variable lookup, �-abstraction,
function application and recursive function de�nitions are translated to CAM code and discuss
the relevant instructions of the CAM. We will use the speci�cations in [Des86] 1, where both
the CAM and the translation to CAM code are given by natural semantics rules. To avoid
having to introduce another notation, we will write these rules in 2BIG notation, although
they do not satisfy the static semantics of 2BIG.

Translation of Mini-ML to CAM Code

In our generated compiler, we have two stages. First the Mini-ML program is converted into
the abstract syntax with access paths. This stage was described by inference rules. Then the
actually generated compiler is described by TRS rules and translates a program in abstract

1Despeyroux's speci�cation slightly di�ers from [Kah87] and [CCM85]. In the latter the CAM is speci�ed
by TRS rules and an ML program is given, which translates Mini-ML programs to CAM code.
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syntax into an abstract machine program. These two stages have been intertwined in the
inference rules below which specify a translation of Mini-ML programs into CAM code.

In these translation rules the state is an environment, in fact a list of variable names and we
use (: : : ; : : :) to construct such lists.

access(X).E!C
var(X).E!C

Here access(X) computes given the environment E the access path for the variable X as a
sequence of car and cdr instructions.

V.E!C
�X:V.E!cur(C)

The variable name is ignored and the expression V is translated into CAM code and used as
an argument to the CAM instruction cur.

V1.E!C1 V2.E!C2
(V1 V2).E!push;C1;swap;C2;cons;app

Here V1 and V2 are translated �rst and the resulting code is combined into a sequence of
instructions.

V1.(E;X)!C1 V2.(E;X)!C2
letrec X=V1 in V2 end.E!push;quote(R0);cons;push;C1;swap;rplac;C2

Note, that R0 is an anonymous variable and, as we will see now when we present the CAM
instructions, R0 is used by rplac to create a cyclic binding.

Instructions of the CAM

In the rules for the instructions of the CAM the state is a stack of environments.

car.[(A;B)jS]![AjS] cdr.[(A;B)jS]![BjS]

push.[AjS]![Aj[AjS]] swap.[Aj[BjS]]![Bj[AjS]]

cons.[Aj[BjS]]![(A;B)jS]
C.[(R;A)jS]!S1

app.[(clo(C;R);A)jS]!S1

quote(R).[AjS]![RjS]
V=R0

rplac.[(R;V)j[R0jS]]![(R;R0)jS]

The equality of V = R0 means that every occurrence of V in R0 is replaced by R0.
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Comparison

The following observation will ease the comparison of the rules for the CAM instructions and
those for our generated abstract machine instructions. For the CAM the state is a stack of
environments, in our generated abstract machine the state has the form [D; [R;E]], where R
are redirections and D corresponds to the rest of the stack in the CAM and E to the top most
element of the stack2. Since they have similar e�ects we get the following correspondence of
CAM instructions and instructions of the generated abstract machine:

Generated Instruction CAM Instruction
car car
cdr cdr
lambda cur

equal push
�

conv 11 swap

conv 12 cons
�

run app

conv 14 cons
�

letrec push
�

newind;conv 15 quote(R0);cons;push
conv 16 swap;rplac

�
There is not always a one-to-one correspondence of CAM instructions and generated

instructions. For example, equal pushes only the environment on top of the stack, whereas
letrec pushes both the environment and the redirections on top of the stack.

The major deviation of the generated instructions from the CAM instructions is the additional
handling of redirections. In the above cited speci�cations of the CAM these are hidden in the
meta-language, but when it comes to implementing the CAM in a language like C one has to
deal with this problem.

2A minor notational observation is, that in the generated abstract machine we use [: : : j : : :] to construct
environments instead of (: : : ; : : :).



Chapter 7

Generation of a Compiler and
Abstract Machine for Action
Notation

W
e apply the system to a speci�cation of Actress Action Notation (see Appendix B).
As an example we trace the transformations of rules for an action and an action
combinator. The resulting compiler and abstract machine can be used as a basis for

a compiler generator based on Action Semantics.

7.1 Action Semantics

Action semantics [Mos92] has been developed to allow for useful semantics descriptions of
realistic programming languages. The language used to write such semantics descriptions is
called action notation.

The semantic entities of action semantics are actions, data and yielders. Actions are com-
putational entities, they re
ect the step-wise execution of programs. Data are mathematical
entities like numbers, truth-values, lists and sets. Finally yielders represent unevaluated data.
If the action containing a yielder is performed, the yielder evaluates to a concrete datum.
Actions can become data by encapsulating them in abstractions, which can be enacted
into actions again. The performance of an action may complete (i.e., normal termination),
escape (i.e., exceptional termination which may be trapped), fail (i.e., abandoning the per-
formance of an action which can lead to the performance of an alternative action) or diverge

97
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(i.e., nontermination). Actions process di�erent kinds of information and can be classi�ed
according to which facet they belong: basic (control-
ow, no data are changed), func-
tional (transient information, i.e., intermediate results), declarative (scoped information,
i.e., bindings), imperative (stable information, i.e., the store), communicative (permanent
information, i.e., messages send between actions), directive (�nite representation of self-
referential bindings). Actions which process information in more than one facet are called
hybrid. An action may commit and discard alternatives, e.g., in an action A1 or A2 rep-
resenting the nondeterministic choice between two sub-actions, A1 may commit and thus A2

is discarded. Compound actions can be build from primitive actions using a special kind of
actions called action combinators.
Since action semantics provides so many actions and yielders we refrain from giving an ex-
haustive listing but instead look at some examples.
Similar to denotational semantics the action semantics of a programming language is given
by semantic equations1:

� execute[[ X ":=" E ]] = evaluate E
then
store the given value in the cell bound to X

evaluate is a semantic function de�ned by semantics equations similar to the way the semantic
function execute is de�ned here. For a concrete value of E the function evaluate yields a
compound action. The action combinator A1 then A2 propagates the transients given to the
whole action to A1, the transients given by A1 are propagated to A2, and only the transients
given by A2 are given by the whole action. Thus then represents the left-to-right sequencing
in the functional facet. The primitive, imperative action store Y1 in Y2 stores the datum
produced by the yielder Y1 in the store cell (a special kind of data) produced by the yielder
Y2. Note, that items of data are a special case of yielders, and always yield themselves when
evaluated. In the above example the variable name associated with X in a concrete program
would be such a special yielder.

� execute[[ "while" E "do" C "od" ]] = unfolding
evaluate E
then
execute C then unfold
else
complete

1Instead of using parentheses to indicate precedence of actions, in action semantics we use the convention
that vertical lines group actions and their arguments.
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The action combinator unfolding A performs the action A, but whenever it reaches the dummy
action unfold it performs A instead. The action complete simply completes and is thus a neu-
tral action with respect to some action combinators. The action combinator A1 else A2 is ac-
tually syntactic sugar for a compound action: check the given truth-value and then A1

or
check no the given truth-value and then A2

The action check Y completes if the yielder Y evaluates to true and fails if it evaluates to
false. The yielder not Y evaluates to true (false) if Y evaluates to false (true). The yielder the
given D evaluates to a transient datum of sort D given by a preceding action. There can be
more than one transient datum, which is taken care of by a labeling mechanism. The action
which gives a datum can label it, e.g., give Y label #n and later a yielder can access it, e.g.,
the given D label #n. Now give Y is short for give Y label #0 and the given D or just the D
is short for the given D label #0.

7.2 Transforming a 2BIG speci�cation of Action Nota-

tion

In his PhD thesis [Mou93] deMoura gives a natural semantics speci�cation of a subset of action
notation used in the compiler generator Actress [MW94]. In this speci�cation the order of
rules is important. We converted these rules into 2BIG rules adding additional preconditions,
when necessary, to make the rules determinate. Then we used our system to generate a
compiler and abstract machine represented as term rewriting systems.
In Section 7.5.1 we demonstrate the generation process by transforming the 2BIG rules for the
OR action combinator. In the transformation of the 2BIG rules of the GIVE action discussed
in Section 7.5.2 we also deal with side conditions.
Our speci�cation consists of 100 2BIG rules de�ning the semantics of 39 action notation con-
structs including the control, functional, declarative and imperative facets but, as in other
Action Semantics directed compiler generators, neither the communicative facet, nondeter-
minism nor the interleaving of actions. After transformation of side conditions we got 135
rules. Factorization resulted in 191 rules. After sequentialization we got 276 rules. Finally
pass separation yielded 216 compiler rules and 276 abstract machine rules. We tested this
compiler and abstract machine by translating Mini-� programs (e.g., Fibonacci numbers)
based on an action semantics speci�cation (see Appendix A) of the language Mini-� [MW94]
into action terms. Then we compiled these action terms using the generated compiler into
an abstract machine program and executed the latter by the above abstract machine rules.
In other words we use a 2BIG semantics-based compiler generator to generate a compiler and
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abstract machine for action notation. The generated compiler is then inserted as the back
end into a compiler generator based on action semantics (see Figure 7.1). The front end of
this compiler generator was previously developed and used with a positive supercompiler for
Prolog2 as its back end [Diea].

7.3 Prototyping Tools

In the picture 7.1 we show how the di�erent generators and interpreters can be used for
both rapid prototyping of language speci�cations and generation of compilers and abstract
machines. First we can use a 2BIG-interpreter to test a 2BIG-speci�cation Li2BIG of program-
ming languages Li. Then we can generate an abstract machine AMLi for the language Li
and a compiler CLi from Li to AMLi using our 2BIG-semantics directed compiler and abstract
machine generator (2BIG-DCAMG). The generator's central transformation is pass separation
of term rewriting rules. In addition it applies many pre- and post-processing transformations
including several optimizations.
Based on a 2BIG-speci�cation AN2BIG of a certain language, namely action notation, we
generate a compiler and abstract machine for action notation. Now an action semantics
speci�cation LiAN of a programming language Li can be tested both by using an action
notation interpreter or by composing the action notation speci�cation,i.e., semantics equations
mapping Li programs to action notation terms, with the compiler CAN . This composition
results in an action semantics-directed compiler generator (AN-DCG).
Our prototyping environment includes several tools written in Prolog:

� a 2BIG interpreter

� an action notation interpreter (actually we have a handwritten interpreter, but we can
also use the 2BIG interpreter to execute action terms using the 2BIG speci�cation of
action notation)

� an interpreter for compiler and abstract machine rules

� a compiler of source language programs to C using the compiler and abstract machine
rules

� a compiler of compiler rules and abstract machine rules to SML

2Positive supercompilation [Tur86, SGJ94] is a program specialization technique developed in the functional
community. Its adaption to Prolog is not much di�erent from partial evaluation of Prolog [GS94].



102 CHAPTER 7. ABSTRACT MACHINE GENERATION FOR ACTION NOTATION

7.4 An Abstract Machine Language Language

Since Action Semantics is a formal language to de�ne programming languages, we expect,
that the abstract machine language AMAN generated for Action Semantics is suitable to
de�ne abstract machine languages. Rather than just composing the AMAN and the semantics
equation which gives us AN-DCG, we could try a method similar to the combinator based
approach (see section 3.11.2). Given an Action Semantics speci�cation of a programming
language L:

1. Translate the right hand sides of the semantics equation using the generated compiler
into AMAN (this results in an AN-DCG).

2. Look for recurring patterns in the translated right hand side.

3. De�ne new instructions based on these patterns. These new instructions form an ab-
stract machine speci�c for L.

4. Fold the patterns in the semantics equations by the new instructions. The resulting
equations constitute a compiler into the abstract machine for L.

7.5 Action Semantics-Directed Compiler Generation

Now we will show how our action semantics-based compiler generator works by means of a
simple example. The semantics of the language Mini-� is given by equations like the following
one:

� execute[[ X ":=" E ]] =
evaluate E
then store the value in the cell bound to X

These semantic equations de�ne a translation function from source language programs to
action terms. Using this action semantics speci�cation of Mini-� the following program

let const i=1;

var x:integer;

in x:=2+i end

is translated into the following action term
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� furthermore
give num(1) then bind i to the given value
before
allocate a cell of type integer then bind x to the cell

hence
give num(2) then give the value label#1
and

give the value stored in the cell bound to i
or
give the value bound to i

then
give the value label #2

then
give add(the value #1,the value #2)

then
store the given value in the cell bound to x

In our system we use pre�x notation instead of the mix�x notation usually used for action
terms. Thus A1 then A2 becomes then(A1; A2). The above action term in pre�x notation is:

hence(

furthermore(

before(then(give(num(1),0),bind(i,the(value,0))),

then(allocate(cell(integer)),bind(x,the(cell,0))))),

then(

then(

and(then(give(num(2),0),give(the(value,0),1)),

then(or(give(stored(value,bound(cell,i)),0),

give(bound(value,i),0)),

give(the(value,0),2))),

give(add(the(value,1),the(value,2)),0)),

store(the(value,0),bound(cell,x))))

Now this action term is converted into a very long abstract machine program by the gener-
ated compiler. One reason for the length of the abstract machine program is that recurring
subprograms are not shared.
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hence(
furthermore(
before(
then(
(give(num(1); 0);
num(1);
conv2;
test1;
conv3;
factgive(0));
(bind(i; the(value; 0));
the(value; 0);
conv14;
test5;
conv15;
factbind(i)));
give(num(1); 0);
:::

The execution of the above program by the abstract machine in the empty environment yields
the expected result: a memory cell is allocated for the variable x and the value 3 is stored in
it.

In the above example the action term could be simpli�ed before translating it into the abstract
machine language. As an example give num(2) then give the value label#1 can be simpli�ed
to give num(2) label#1. Analyses and simpli�cations of action terms have been investigated
in de Moura's PhD thesis [Mou93]. It would be interesting to use the simpli�ed action terms
produced by his Actress system and translate those into the generated abstract machine
language.

In the rest of this chapter we will demonstrate step by step how our system generated the
abstract machine instructions for the OR action combinator and the GIVE action.

7.5.1 Transforming the OR Action Combinator

In the 2BIG speci�cation the following rules de�ne the action combinator or. In the rules,
states are composed of the transients T , the bindings B and a single-threaded store S. Fur-
thermore there is the outcome status O, which can be failed or completed.
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A1.[T;B;S]![completed;T1;B1;S1]
or(A1;A2).[T;B;S]![completed;T1;B1;S1]

A1.[T;B;S]![failed;[];[];S1] A2.[T;B;S1]![O2;T2;B2;S2]
or(A1;A2).[T;B;S]![O2;T2;B2;S2]

There are no side conditions, so the above rules are next factorized:

A1.[T;B;S]![O1;T1;B1;S1] factor(A2).[[B;T ];[O1;T1;B1;S1]]!E
or(A1;A2).[T;B;S]!E

factor(A) . [[B;T ]; [completed; T1; B1; S1]]! [completed; T1; B1; S1]

A.[T;B;S]![O;T1;B1;S1]
factor(A).[[B;T ];[failed;[];[];S]![O;T1;B1;S1]

Now the stack (Z) is introduced and temporary variables are allocated, e.g., in the �rst rule
T ,B are allocated on the stack, because they do not occur on the right side of the �rst
precondition.

A1 . [[[T;B]jZ]; [T;B; S]]! [[[T;B]jZ]; [O1; T1; B1; S1]]
factor(A2) . [Z; [[B; T ]; [O1; T1; B1; S1]]]! [Z;E]

or(A1;A2).[Z;[T;B;S]]![Z;E]

factor(A) . [Z; [[B;T ]; [completed; T1; B1; S1]]]! [Z; [completed; T1; B1; S1]]

A.[Z;[T;B;S]]![Z;[O;T1;B1;S1]]
factor(A).[Z;[[B;T ];[failed;[];[];S]]![Z;[O;T1;B1;S1]]

Next these rules are sequentialized:

A1 . [[[T;B]jZ]; [T;B; S]]! [[[T;B]jZ]; [O1; T1; B1; S1]]
conv1 . [[[T;B]jZ]; [O1; T1; B1; S1]]! [Z; [[B; T ]; [O1; T1; B1; S1]]]
factor(A2) . [Z; [[B; T ]; [O1; T1; B1; S1]]]! [Z;E]

or(A1;A2).[Z;[T;B;S]]![Z;E]

factor(A) . [Z; [[B;T ]; [completed; T1; B1; S1]]]! [Z; [completed; T1; B1; S1]]
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A.[Z;[T;B;S]]![Z;[O;T1;B1;S1]]
factor(A).[Z;[[B;T ];[failed;[];[];S]]![Z;[O;T1;B1;S1]]

conv1 . [[[T;B]jZ]; [O1; T1; B1; S1]]! [Z; [[B;T ]; [O1; T1; B1; S1]]]

Now a term rewriting system is generated:

hor(A1; A2);C; [Z; [T;B; S]]i ) hA1; conv1; factor(A2);C; [[[B;T ]jZ]; [T;B; S]]i
hfactor(A);C; [Z; [[T;B]; [completed; T1; B1; S1]]]i ) hC; [Z; [completed; T1; B1; S1]]i
hfactor(A);C; [Z; [[T;B]; [failed; []; []; S]]]i ) hA;C; [Z; [T;B; S]]i
hconv1;C; [[B;T ]jZ]; [O;T1; B1; S1]]i ) hC; [Z; [[T;B]; [O;T1; B1; S1]]]i

Finally we apply the pass separation transformation and we get the following compiler rules:

or(A1; A2) ) or(A1; A2);A1; conv1; factor(A2)
factor(A) ) factor(A)
conv1 ) conv1

And the following abstract machine rules:

hor(A1; A2);C; [Z; [T;B; S]]i ) hC; [[[B;T ]jZ]; [T;B;S]]i
hfactor(A);C; [Z; [[T;B]; [completed; T1; B1; S1]]]i ) hC; [Z; [completed; T1; B1; S1]]i
hfactor(A);C; [Z; [[T;B]; [failed; []; []; S]]]i ) hA;C; [Z; [T;B; S]]i
hconv1;C; [[B;T ]jZ]; [O;T1; B1; S1]]i ) hC; [Z; [[T;B]; [O;T1; B1; S1]]]i

7.5.2 Transforming the GIVE Action

In the 2BIG speci�cation the following rules de�ne the action give which evaluates the yielder
Y and returns the resulting value D as a transient:

Y .[T;B;S]!datum(D) D 6=nothing
give(Y;N).[T;B;S]![completed;[N 7!datum(D)];[];S]

Y .[T;B;S]!datum(D) not(D 6=nothing)
give(Y;N).[T;B;S]![failed;[];[];S]

There are two side conditions in the above rules, one is the negation of the other. Transforming
the side conditions yields:

Y .[T;B;S]!datum(D) test1.[D]!true
give(Y;N).[T;B;S]![completed;[N 7!datum(D)];[];S]
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Y .[T;B;S]!datum(D) test1.[D]!false
give(Y;N).[T;B;S]![failed;[];[];S]

test1 . [D]! D 6= nothing

After factorization of the above rules we have:

Y .[T;B;S]!datum(D) test1.[D]!R factgive(N).[[D;S];R]!E

give(Y;N).[T;B;S]!E

factgive(N) . [[D;S]; true]! [completed; [N 7! datum(D)]; []; S]

factgive(N) . [[D;S]; false]! [failed; []; []; S]

test1 . [D]! D 6= nothing

Now the stack (Z) is introduced and temporary variables are allocated:

Y . [[SjZ]; [T;B; S]]! [[SjZ]; datum(D)]
test1 . [[[S;D]jZ]; [D]]! [[[S;D]jZ];R] factgive(N) . [Z; [[D;S];R]]! [Z;E]

give(Y;N).[Z;[T;B;S]]![Z;E]

factgive(N) . [Z; [[D;S]; true]]! [Z; [completed; [N 7! datum(D)]; []; S]]

factgive(N) . [Z; [[D;S]; false]]! [Z; [failed; []; []; S]]

test1 . [Z; [D]]! [Z;D 6= nothing]

Next these rules can be sequentialized:

Y . [[SjZ]; [T;B; S]]! [[SjZ]; datum(D)]
conv5 . [[SjZ]; datum(D)]! [[[S;D]jZ]; [D]] test1 . [[[S;D]jZ]; [D]]! [[[S;D]jZ];R]
conv6 . [[[S;D]jZ]; R]! [Z; [[D;S];R]] factgive(N) . [Z; [[D;S];R]]! [Z;E]

give(Y;N).[Z;[T;B;S]]![Z;E]

factgive(N) . [Z; [[D;S]; true]]! [Z; [completed; [N 7! datum(D)]; []; S]]

factgive(N) . [Z; [[D;S]; false]]! [Z; [failed; []; []; S]]
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test1 . [Z; [D]]! [Z;D 6= nothing]

conv2 . [[SjZ]; datum(D)]! [[[S;D]jZ]; [D]]

conv3 . [[[S;D]jZ]; R]! [Z; [[D;S]; R]]

Now a term rewriting system is generated:

hgive(Y;N);C; [Z; [T;B;S]]i
=) hY ; conv2; test1; conv3; factgive(N);C; [[[S]jZ]; [T;B;S]]i

hfactgive(N);C; [Z; [[D;S]; true]] =) hC; [Z; [completed; [N 7! datum(D)]; []; S]]i
hfactgive(N);C; [Z; [[D;S]; false]] =) hC; [Z; [failed; []; []; S]]i
htest1;C; [Z; [D]] =) hC; [Z;D 6= nothing]i
hconv2;C; [[[S]jZ]; datum(D)]i =) hC; [[[S;D]jZ]; [D]]i
hconv3;C; [[[S;D]jZ]; R]i =) hC; [Z; [[D;S]; R]]i

Finally we apply the pass separation transformation and we get the following compiler rules:

give(Y;N) =) give(Y;N);Y ; conv2; test1; conv3; factgive(N)
factgive(N) =) factgive(N)
test1 =) test1
conv2 =) conv2
conv3 =) conv3

And the following abstract machine rules:

hgive(Y;N);C; [Z; [T;B; S]]i =) hC; [[[S]jZ]; [T;B;S]]i
hfactgive(N);C; [Z; [[D;S]; true]]i =) hC; [Z; [completed; [N 7! datum(D)]; []; S]]i
hfactgive(N);C; [Z; [[D;S]; false]]i =) hC; [Z; [failed; []; []; S]]i
htest1;C; [Z; [D]]i =) hC; [Z;D 6= nothing]i
hconv2;C; [[[S]jZ]; datum(D)]i =) hC; [[[S;D]jZ]; [D]]i
hconv3;C; [[[S;D]jZ]; R]i =) hC; [Z; [[D;S]; R]]i

7.6 Experimental Results for Optimizations

For the action notation speci�cation, the optimizations of the generated term rewriting sys-
tems lead to a signi�cant reduction of the number of rules both of the compiler and the
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abstract machine. First, by self-application, the number of compiler rules was reduced from
216 to 43. Second, using the other optimizations we got 181 instead of 276 abstract machine
rules.

give(Y;N) =) give(Y;N);Y ; conv2; test1; conv3; factgive(N)

give(Y;N) =) give;Y ; comb; factdisp(factorgive; N)

Comparing the original and the optimized compiler rule for the GIVE action we �nd that the
following optimizations have been applied:

� The arguments to the abstract machine instruction give have been removed.

� There are no more compiler rules for conv2, test1, etc.

� The sequence of instructions conv2; test1; conv3 has been combined into the instruction
comb.

� Some abstract machine rules of factorgive have been con
icting with rules of other
instructions and thus these term rewriting rules have been factorized. This lead to the
introduction of the new instruction factdisp.

7.7 Designing Semantics Formalisms

In this thesis our prototyping tools have been used to implement a considerable subset of
Action Semantics. Instead one could also try to implement subsets of Action Semantics
restricted to a few facets. As an example, to specify functional languages we could implement
a version of Action Semantics without the imperative facet. As a consequence the generated
abstract machine would not have a store as a compenent of its state. Another approach would
be to implement an annotated version of Action Semantics and a preprocessing phase, e.g.,
a binding-time analysis, which translates action terms into annotated terms. Finally, rather
than just experimenting with existing semantics formalism, our system can also be used to
design and implement new semantics formalisms.
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Chapter 8

Performance Evaluation

T
he main focus of our work has been feasability and correctness. So far e�ciency has
not been the main goal of our work. Nevertheless to compare our approach to other
approaches in semantics-directed compiler generation, we provide some benchmarks

and performance �gures.

8.1 Introduction

For the benchmarks we used a 60Mhz Pentium PC with 8MB RAM running the Linux Operat-
ing System. On this machine GCC (version 2.4.5), Standard ML of New Jersey (version 0.93)
and Sicstus Prolog (version 2.1) have been available. We did similar benchmarks on a Sol-
bourne (Series 5) wich was about 1.4 times slower and a Sun Sparc 20 which was about 1.2
times faster.

The following benchmarks were run:

� loop: a program which counts form 1 to n.

� fib: a program which computes the Fibonacci number of n.

� primes: a program which computes the �rst n prime numbers using the algorithm
known as \Sieve of Eratosthenes".

We did benchmarks with three di�erent languages. Only for SIMP we tested all three pro-
grams:

111
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� SIMP: loop, an iterative fib program and primes

� Mini-ML: loop and a recursive fib program

� Action Notation: action terms produced by expanding Mini-� programs of loop and a
recursive fib

For these programs, times of the following ways of execution are given:

� Interpreting the 2BIG rules in Prolog

� Executing an abstract machine program on the generated abstract machine in SML

� Executing an abstract machine program on the generated abstract machine in C

To compare our results to production quality compilers we also provide the execution times
of an SML program for Fibonacci numbers and a C program for prime numbers.

8.2 Performance Results

Execution Times for the loop Program
SIMP Mini-ML Mini-�

2BIG in AM in AM in 2BIG in AM in AM in 2BIG in AM in AM in
n Prolog C SML Prolog C SML Prolog C SML
10 1.25 < 0.05 0.01 4.50 <0.10 0.01 22.80 0.20 2.40
50 5.80 <0.05 0.11 21.50 <0.10 0.17 101.60 1.30 42.40
100 11.50 <0.05 0.40 42.70 <0.10 0.56 201.90 2.70 166.75
1000 0.40 31.1 1.30 46.76 29.80
10000 5.00
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Execution Times for the fib Program
SIMP Mini-ML Mini-�

2BIG in AM in AM in 2BIG in AM in AM in 2BIG in AM in AM in
n Prolog C SML Prolog C SML Prolog C SML
3 1.43 <0.01 <0.01 4.40 <0.05 <0.05 121.60 0.10 1.44
5 2.25 <0.01 0.01 13.50 <0.05 0.04 362.1 0.40 9.73
6 2.70 <0.01 0.01 22.50 <0.05 0.06 633.3 0.70 24.53
7 3.10 <0.01 0.02 37.4 <0.05 0.11 1.30 63.01
8 3.50 <0.01 0.02 61.4 0.08 0.24 2.40 168.68
9 3.95 0.02 0.02 0.10 0.55 4.40 449.36
12 0.02 0.03 0.40 5.90
15 0.02 0.04 2.00
20 0.03 0.05 24.80
40 0.04 0.12
100 0.09
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Figure 8.1: SIMP: Fibonacci numbers
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SIMP

As shown in Figure 8.1 both the generated abstract machine in SML and the abstract machine
in C are considerably faster than the interpretation in Prolog. In Prolog and SML we soon
ran into memory management problems, whereas in C also for greater values of n garbage
collection did not degrade performance. For the primes program we ran out of memory when
interpreting the 2BIG rules or the generated abstract machine in Prolog, but the generated
abstract machine program in C worked �ne, and was 2 orders of magnitude slower than an
equivalent C program.

Execution Times for the prime Program
SIMP C

AM in AM in
n C SML
30 < 0:01 0.34
100 0.20 4.18
500 1.70 < 0:01
1000 4.00 0.03
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SML program for Fibonacci numbers

Figure 8.2: Mini-ML: Fibonacci numbers
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Mini-ML

In Figure 8.2 we see that the generated abstract machine in C is 2 orders of magnitude faster
than interpreting the 2BIG rules in Prolog. On the other hand it is 2 orders of magnitude
slower than an SML program computing Fibonacci numbers compiled with the SML of New
Jersey Compiler.
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Execution Times of a Mini-Delta program for Fibonacci numbers on a Pentium-PC (60Mhz)

Interpreted in Prolog
AM in C

Figure 8.3: Mini-�: Fibonacci numbers

Action Notation of Mini-�

Mini-� is an imperative language with procedures and functions. It allows both call-by-value
and call-by-reference parameter passing. Furthermore functions can be passed as parameters.
For these performance tests a benchmark program in the language Mini-� was �rst translated
into an action term using the Action Semantics speci�cation of Mini-� in Appendix A. This
action term was then executed by interpreting the 2BIG rules for Action Semantics or by the
generated abstract machine for Action Semantics in C. As shown in Figure 8.3, the abstract
machine in C is at least 2 orders of magnitude faster.
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Chapter 9

Correctness of Transformations

\Every program has at least one bug and can be shortened by at least one in-
struction { from which, by induction, one can deduce that every program can be
reduced to one instruction which doesn't work. "

/usr/games/fortune

\Contrariwise," continued Tweedledee, \if it was so, it might be, and if it were so,
it would be; but as it isn't, it ain't. That's logic!"

{ Lewis Carroll, \Through the Looking Glass"

117
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F
irst we discuss the importance of doing both correctness proofs and experimental
evaluation. To prove the correctness of our transformations we refer to the formal
de�nitions of rule induction in Section 4.3 and term rewriting rules in Section 5.1.1.

Furthermore we need the properties of 2BIG rules and term rewriting rules as de�ned in
Section 4.5 and 5.1.2. Before we actually prove the correctness of the transformations of the
core system, we explain our basic proof technique.

9.1 Correctness and Experimental Evaluation

We feel that a system of considerable complexity needs both experimental evaluation and cor-
rectness proofs. Given the complexity of the system neither experimental evaluation nor the
correctness proofs are absolutely reliable. Combining these conceptually di�erent approaches
helps to decrease the number of errors in the system.
That programs which have been proved correct can go wrong, is best expressed in Knuth's
famous quote:

\Beware of bugs in the above code; I have only proved it correct, not tried it. "

Donald E. Knuth

Such bugs might be syntax errors, machine dependent errors or ignored side-e�ects.
As programs and especially large programs tend to be error-prone so are proofs. And as
syntactic and semantic program analysis helps to �nd bugs, so might proof checkers assist to
make correctness proofs correct.

\The correctness statement, including various lemmas but without proofs, takes
28 pages. Putting further sophistication into the compiler will add signi�cantly
to these page counts. We feel that the size alone of the speci�cations calls for
automatic proof checking. "

Jens Palsberg [Pal92b, page 11]

On the other hand experimental evaluation seems to be a much simpler task1 and thus should

1Though who ever thought about �nding \covering" test examples certainly will admit that this is not at
all trivial.
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be a minimum requirement. Curiously enough, as a recent study revealed, even experimental
evaluation is not standard in computer science.

\Of the papers in the random sample that would require experimental validation,
40% have none at all. In journals related to software engineering this fraction is
over 50%. "

Luckowicz et al. [LHPT94]

9.2 Proof Technique

The transformations we consider here convert a set � of relational inductive rules into another
set �0 of relational inductive rules. Let T be such a transformation and R be a relation on
terms in T�(X).
We will prove claims of the form:

Theorem: For all (x; y) 2 R we have: x 2 I(�), y 2 I(�0)

Actually to prove such a theorem we will prove two lemmata. The theorem follows immedi-
ately from these.

Completeness-Lemma: For all (x; y) 2 R we have: x 2 I(�)) y 2 I(�0)

Soundness-Lemma: For all (x; y) 2 R we have: x 2 I(�)( y 2 I(�0)

Our correctness proofs can be based on �-proofs using Theorem 4.3.7 or on �-trees using
Theorem 4.3.9. Since proof trees provide more structure we use them here.

Proof:

Completeness: x 2 I(�)
4:3:9
=) there exists a �-tree

PT
�
(b1) ::: PT

�
(bn)

x
for x

)
Here the de�nitions of the transformation T and the relation R are used to construct
a �0-tree. We use induction on the depth of the �-tree



120 CHAPTER 9. CORRECTNESS OF TRANSFORMATIONS

)
PT

�0
(b01) ::: PT

�0
(b0m)

y
is a �0-tree for y

4:3:9
=) y 2 I(�0)

Soundness: y 2 I(�0)
4:3:9
=) there exists a �0-tree

PT
�0
(b01) ::: PT

�0
(b0m)

y
for y

)
Here the de�nitions of the transformation T and the relation R are used to construct
a �-tree. We use induction on the depth of the �0-tree

)
PT

�
(b1) ::: PT

�
(bn)

x
is a �-tree for x

4:3:9
=) x 2 I(�)

A remark on the induction principle is in order. The induction principle is ((8n < d : P (n)))
P (d))) 8d : P (d). Using this version of the induction principle, we do not have to prove the
base case d = 1 separately.

9.3 Correctness Proofs

9.3.1 Correctness of Stack Introduction and Allocation of Tem-

porary Variables

Let T1 be the stack introduction transformation and T2 be the allocation of temporary vari-
ables. We now prove the correctness of the composed transformation TA = T2 � T1, i.e.,
TA(�) = T2(T1(�)).

Theorem 9.3.1 Let � be a set of 2BIG rules and �0 = TA(�).
Then c . e! e0 2 I(�), c . [s; e]! [s; e0] 2 I(�0) for some s 2 T�.

We prove two stronger lemmata. First, given a �-tree we can construct �0-trees for all possible
values of the stack and second, given a �0-tree we can reconstruct the original �-tree by simply
ignoring the stack.
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Lemma 9.3.2 If
PT

�
(c1.e1!e01) ::: PT

�
(cn.en!e0n)

c.e!e0
is a �-tree of depth d then for every s 2 T�

there is a �0-tree
PT

�0
(c1.[s�1;e1]![s�1;e

0
1]) ::: PT�0(cn.[s

�
n;en]![s�n;e

0
n])

c.[s;e]![s;e0] of depth d where s�i = s or

s�i = [vijs] for some vi 2 T�.

The terms s�i depend on whether the original rule contained temporary variables or not.

Proof. The proof is by induction on the depth d of the �-tree.

Induction Hypothesis: Lemma holds for all n < d.

Induction Step: Given the �-tree
PT

�
(c1.e1!e01) ::: PT

�
(cm.em!e0m)

c.e!e0
4:3:8
=) 9r = (B; c . e! e0) 2 � where B = fc1 . e1 ! e01; : : : ; cm . em ! e0m)g
4:3:13
=) 9�:9r = (B; c . e! e0) 2 � : ��(�(r)) = r
) TA(r) = (B0; c . [X; e] ! [X; e0]) 2 �0 where X is a new variable and s� = X or
s� = [vjX] for some term v and B 0 = fc1 . [s�; e1]! [s�; e01]; : : : ; cm . [s�; em]! [s�; e0m]g
4:3:13
=) Let � be a ground substitution for X, � (X) = s
then ��(� (�(TA(r)))) 2 �0

) The depth of every �-tree PT�(ck . ek ! e0k) is smaller or equal to n. By the

induction hypothesis there exist �0-trees PT
�0(ck . [s�; ek] ! [s�; e0k]) with the same

depth.

4:3:8
=)

PT
�0
(c1.[s�;e1]![s�;e01]) ::: PT�0

(cm.[s�;em]![s�;e0m])

��(� (�(c.[s;e]![s;e0])))

=
PT

�0
(c1.[s�;e1]![s�;e01]) ::: PT

�0
(cm.[s�;em]![s�;e0m])

c.[s;e]![s;e0] is a �0-tree of depth d

2

Lemma 9.3.3 Let s 2 T� be a ground term. If
PT

�0
(c1.[s�1;e1]![s�1;e

0
1]) ::: PT�0

(cn.[s�n;en]![s�n;e
0
n])

c.[s;e]![s;e0]

is a �0-tree of depth d where s�i = s or s�i = [vijs] for some vi 2 T� then there is a �-tree
PT

�0
(c1.e1!e01) ::: PT

�0
(cn.en!e0n)

c.e!e0 of depth d.

Proof. The proof is by induction on the depth of the �0-tree.

Induction Hypothesis: Lemma holds for n < d.
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Induction Step: we give the interesting steps,only:

...
4:3:13
=) 9�:9r0 = (B0; c . [X; e]! [X; e0]) 2 �0

The rule r0 resulted from transforming a rule r 2 �, i.e., TA(r) = r0 where r = (B; c .
e ! e0). The depth of every �0-tree PT

�0(ck . [s�; ek] ! [s�; e0k]) is smaller or equal to

n. By the induction hypothesis there exist �-trees PT
�
(ck . ek ! e0k) with the same

depth.
4:3:8
=)

PT
�
(c1.e1!e01) ::: PT

�
(cm.em!e0m)

��(�(c.e!e0))) is a �-tree of depth d
...

2

Finally by lemma 9.3.2 and 9.3.3 and theorem 4.3.9 follows theorem 9.3.1.

9.3.2 Correctness of Factorization

In the sequel we mean by factorization the transformation de�ned in Section 5.3.3. To make
a set of rules deterministic, factorization has to be applied to the resulting rules as long as
there are determinate rules, which are nondeterministic. We prove four properties of the
transformation:

� factorization preserves determinacy

� repeated application of factorization terminates

� the resulting rules are deterministic

� factorization is correct

We assume that the rules are determinate and well-ordered.
Determinacy:
We factorize the largest set of con
icting rules with the left-hand side c; e in their conclusions.
These rules are replaced by a single rule, which has the same left-hand side c; e in its conclusion(y)
and is now the only such rule and as a consequence cannot destroy determinacy.
Now we have to show, that the rules de�ning the new instruction are also determinate. If two
rules in the original set have �-equivalent LHS in their conclusions, then there are two cases for
the discrimination index j0 of the �rst non �-equivalent LHS in their preconditions: if j0 = j
(where j is the index used to factorize all rules with �-equivalent LHS in their preconditions),
then the LHS of the conclusions of the rules de�ning the new instruction are not �-equivalent,
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otherwise if j0 > j then the j0-th precondition is a precondition in the resulting rules de�ning
the new instruction and makes them determinate.
Termination:
Factorization replaces a set of con
icting rules with respect to a left-hand side c; e by a new
rule using a new instruction and a set of rules de�ning this new instruction. Thus the number
of rules with the left-hand side c; e is reduced and factorizing rules with the left-hand side c; e
stops if there are no more con
icting rules or there is only one rule left.
It remains to show, that factorization of the rules de�ning the new instruction also terminates.
The point is, that if we factorize n con
icting rules, the newly de�ned instruction has at most
n � 1 con
icting rules, because in condition 5.1 for the common segment j is chosen, such
that 9k; l : k 6= l and elj� 6= ekj�. Thus again, factorization stops if there are no con
icting
rules for the newly de�ned instruction or the instruction is de�ned by a single rule.
Deterministic Rules:
Repeated application of factorization stops, if there are no more con
icting rules. If there are
no more con
icting rules, the resulting rules are deterministic.
Correctness:
In the sequel we denote by TF one application of the factorization transformation.

Theorem 9.3.4 Let � be a set of 2BIG rules and �0 = TF (�).
Then c . e ! e0 2 I(�) , c . e ! e0 2 I(�0) where c, e and e0 do not contain any symbols
introduced by factorization.

In the proofs the notation �9� : P (�) means, there exists a smallest substitution � which
satis�es P (�). For two substitutions �; � , we de�ne the smaller relation as � � � , jdom(�)j �
jdom(� )j. By considering the smallest substitutions in the proofs, we will not have to restrict
substitutions to some set of variables. The use of smallest substitutions facilitates composition
of substitutions.

Lemma 9.3.5 PT
�
(c . e! e0)) PT

�0(c . e! e0)

The proof idea is to construct from a proof tree p1 ::: pk
x a new proof tree

p1 ::: pj
pj+1 ::: pk

p

x ,
where p is a judgement which contains an instruction introduced by factorization.

Proof. The proof is by induction on the depth d of the �-tree.

Induction Hypothesis: Lemma holds for n < d.
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Induction Step: Given the �-tree PT�(c . e! e0) =
PT

�
(c1.e1!e01) ::: PT

�
(cm.em!e0m)

c.e!e0
4:3:8
=) 9r = (B; c . e! e0) 2 � where B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
4:3:13
=) �9�:9r = (B; c . e! e0) 2 � : ��(�(r)) = r
where B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
)

1st case: r was not factorized, i.e., r 2 TF (�) = �0
4:3:13
=) r 2 �0

by the induction hypothesis:
�0-trees PT�0(c1 . e1 ! e01); : : : ; PT�0(cm . em ! e0m) exist.

4:3:8
=) PT

�0(c . e! e0) =
PT

�0
(c1.e1!e01) ::: PT

�0
(cm.em!e0m)

c.e!e0

is a �0-tree

2nd case: r was factorized, i.e., r 2 C where C = fr1; � � � ; rkg is the largest set of
con
icting rules in �:

r1 =
c11.e11!e011 ::: c1m1.e1m1!e01m1

c10.e10!e010
...

rk =
ck1.ek1!e0k1 ::: ckmn.ekmn!e0kmn

ck0.ek0!e0k0

Let q be the index of r in the set C, i.e., r = rq.

Let e� be the common term, ey a new variable, seg the common segment and � the
new instruction as de�ned by the transformation, then C 0 = TF (C) is the set

r0 =
seg c1j.e1j!e� �.e�!ey

c.e!ey
�

r01 =
c1(j+1).e1(j+1)!e01(j+1) ::: c1m1.e1m1!e01m1

�.[R;e01j]!e010
�

...

r0k =
ck(j+1).ek(j+1)!e0

k(j+1) ::: ckmk
.ekmk

!e0kmk

�.[R;e0
kj]!e0k0

�

For the preconditions in the common segment, we have by the induction hypothesis
(*)

8� 2 seg : PT
�
(��(�(�)))) PT

�0(��(�(�)))

For e� we know by the de�niton of the operation �� that there is a smallest
substitution � such that � (e�) = e0qj. Furthermore, since � maps only variables
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introduced by the �� operation onto terms containing none of these new variables,
� and � are compatible, i.e., 8X : X 2 dom(� ) and X 2 dom(�) ) � (X) = �(X).
Thus we have that ��(� (�(c1j . e1j ! e�))) = cj . ej ! e0j and by the induction
hypothesis follows:

(**)
PT�(cj . ej ! e0j)) PT�0(cj . ej ! e0j) = PT�0(��(� (�(c1j . e1j ! e�))))

Now we have to build the proof tree for the new instruction. Since 81 � i �
mq : ��(�(cqi . eqi ! e0qi)) = ci . ei ! e0i, we have by the induction hypothesis:
81 � i � mq : PT�(ci . ei ! e0i)) PT�0(ci . ei ! e0i)
And thus using r0q we get the proof tree:

(***)

PT
�0(�(�) . [R; e0j]! e0) =

PT
�0
(cj+1.ej+1!e0j+1) ::: PT

�0
(ck.ek!e0k)

�(�).[R;e0j]!e0

Finally by (*),(**),(***) and using r0:

PT�0(c . e! e0) =
PT

�0
(c1.e1!e01) ::: PT

�0
(cj.ej!e0j) PT

�0
(�(�).[R;e0j]!e0)

c.e!e0

2

Lemma 9.3.6 PT
�0(c . e ! e0) ) PT

�
(c . e ! e0) where c does not contain a symbol

introduced by factorization.

Proof. The proof is by induction on the depth d of the �0-tree.

Induction Hypothesis: Lemma holds for n < d.

Induction Step:

1st case: PT�0(c . e ! e0) =
PT

�0
(c1.e1!e01) ::: PT

�0
(cm.em!e0

m)

c.e!e0 and cm does not contain
an instruction symbol introduced by factorization.
4:3:8
=) 9r = (B; c . e! e0) 2 �0 where B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
4:3:13
=) �9�:9r = (B; c . e! e0) 2 �0 : ��(�(r)) = r
) r was not factorized, i.e., r 2 � ) r 2 �
Furthermore by the induction hypothesis we have:

(*)
81 � i � m : PT�0(ci . ei ! e0i)) PT�(ci . ei ! e0i)
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4:3:8
=) Using r 2 � and (*) we get:

PT�(c . e! e0) =
PT

�
(c1.e1!e0

1
) ::: PT

�
(cm.em!e0m)

c.e!e0

2nd case: PT�0(c . e ! e0) =
PT

�0
(c1.e1!e0

1
) ::: PT

�0
(cj.ej!e0j) PT

�0
(�.[R;e0j]!e0)

c.e!e0
where � =

�(: : :) for some instruction � introduced by factorization and none of the ci contains
a symbol introduced by factorization.
4:3:8
=) 9r1 = (B1; c . e ! e0) 2 �0 where B1 = fc1 . e1 ! e01; : : : ; cj . ej ! e0j ; � .

[R; e0j ]! e0g
4:3:13
=) �9�:9r1 = (B1; c . e! e0) 2 �0 : ��(�(r1)) = r1
The proof tree for � . [R; e0j ]! e0 must be of the form:

PT�0(� . [R; e0j]! e0) =
PT

�0
(cj+1.ej+1!e0j+1

) ::: PT
�0
(cm.em!e0

m)

�.[R;e0j ]!e0

4:3:8
=) 9r2 = (B2; � . [R; e0j ] ! e0) 2 �0 where B2 = fcj+1 . ej+1 ! e0j+1; : : : ; cm .
em ! e0mg
4:3:13
=) �9�:9r2 = (B2; � . [R; e0j]! e0) 2 �0 : ��(� (r2)) = r2
Since r1 and r2 2 �0 there must have been a rule r0 2 � with r0 = (B0; c . e! e0)
where B0 = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
and ��(� (�(r0))) = (fc1 . e1 ! e01; : : : ; cm . em ! e0mg; c . e! e0)
Note, that � and � are compatible, because 8X 2 dom(� ) \ dom(�) : X is a
parameter of �, i.e., � = �(: : : ;X; : : :), or X occurs in the list R, and � (�) =
�(�) = � and � (R) = �(R) = R. Furthermore by the induction hypothesis we
have:

(**)
81 � i � m : PT

�0(ci . ei ! e0i)) PT
�
(ci . ei ! e0i)

4:3:8
=) Using r0 and (**) we get:

PT�(c . e! e0) =
PT

�
(c1.e1!e0

1) ::: PT
�
(cm.em!e0m)

c.e!e0

2

Finally by lemma 9.3.5 and 9.3.6 and theorem 4.3.9 follows theorem 9.3.4.

9.3.3 Correctness of Removing Variables from Instructions

In the sequel we denote by TR the transformation, which removes in the instructions of the
preconditions those variables �rst de�ned in a precondition.
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Theorem 9.3.7 Let � be a set of 2BIG rules and �0 = TR(�).
Then c . e ! e0 2 I(�) , c . e ! e0 2 I(�0) where c does not contain a symbol introduced
by the transformation.

Lemma 9.3.8 PT�(c . e! e0)) PT
�0(c . e! e0)

Proof. The proof is by induction on the depth d of the �-tree.

Induction Hypothesis: Lemma holds for n < d.

Induction Step PT�(c . e! e0) =
PT

�
(c1.e1!e01) ::: PT

�
(cm.em!e0m)

c.e!e0
4:3:8
=) 9r = (B; c . e! e0) 2 � where B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
4:3:13
=) �9�:9r = (B; c . e! e0) 2 � : ��(�(r)) = r
where B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
) ~r = ( ~B; c . e! e0) 2 �0 where ~B = f~c1 . ~e1 ! ~e01; : : : ; ~cm . ~em ! ~e0mg

and ~ci; ~ei =

(
pi; e

0
i�1 if Mi 6= ;

ci; ei otherwise

Furthermore for every new instruction pi there is a rule ~ri = (fci . ei ! e0ig; pi . e
0
i�1 !

e0i) in �
0.

) Let �(pi) = pi, then by the induction hypothesis the proof trees PT�0(ci . ei ! e0i)

exist and thus using ~ri we get PT�0(pi . e
0
i�1 ! e0i) =

PT
�0
(ci.ei!e0i)

pi.e
0
i�1!e0i

) PT
�0(c . e! e0) = pt1 ::: ptm

c.e!e0

where pti =

(
PT

�0(pi . e
0
i�1 ! e0i) if Mi 6= ;

PT
�0(ci . ei ! e0i) otherwise

2

Lemma 9.3.9 PT
�0(c . e! e0)) PT�(c . e! e0)

Proof. The proof is by induction on the depth d of the �0-tree.

Induction Hypothesis: Lemma holds for n < d.
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Induction Step: PT�0(c . e! e0) =
PT

�0
(~c1.~e1!e01) ::: PT

�0
(~cm.~em!e0m)

c.e!e0
4:3:8
=) 9r = (B; c . e! e0) 2 �0 where B = f~c1 . ~e1 ! e01; : : : ; ~cm . ~em ! e0mg
4:3:13
=) �9�:9r = (B; c . e! e0) 2 �0 : ��(�(r)) = r
where B = f~c1 . ~e1 ! e01; : : : ; ~cm . ~em ! e0mg
)

1st case: ~ci; ~ei = pi; e
0
i�1 and pi = �i(x1; : : : ; xk) where �i is an instruction symbol

introduced by the transformation.
) 9ri 2 �0 : ri = (fci . ei ! e0ig; pi . e

0
i�1 ! e0i)

) Let pi = �(pi) then PT�0(~ci . ~ei ! e0i) = PT
�0(pi . e

0
i�1 ! e0i) =

PT
�0
(ci.ei!e0i)

pi.e
0
i�1!e0i

Now by the induction hypothesis follows that PT�(ci . ei ! e0i) exists.

2nd case: ~ci; ~ei = ci; ei
) PT�0(~ci . ~ei ! e0i) = PT�0(ci . ei ! e0i)
and by the induction hypothesis follows that PT�(ci . ei ! e0i) exists

4:3:8
=) Using the original rule in � we get:

PT�(c . e! e0) =
PT

�
(c1.e1!e01) ::: PT

�
(cm.em!e0m)

c.e!e0

2

Finally by lemma 9.3.8 and 9.3.9 and theorem 4.3.9 follows theorem 9.3.7.

9.3.4 Correctness of Sequentialization

In the sequel, we denote by TS the sequentialization transformation.

Theorem 9.3.10 Let � be a set of 2BIG rules and �0 = TS(�).
Then c . e ! e0 2 I(�) , c . e ! e0 2 I(�0) where c does not contain a symbol introduced
by sequentialization.

Lemma 9.3.11 PT�(c . e! e0)) PT�0(c . e! e0)

Proof. The proof is by induction on the depth d of the �-tree.

Induction Hypothesis: Lemma holds for n < d.
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Induction Step: PT
�0(c . e! e0) =

PT
�0
(c1.e1!e0

1
) ::: PT

�0
(cm.em!e0

m)

c.e!e0

4:3:8
=) 9r = (B; c . e! e0) 2 �0 where B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
4:3:13
=) �9�:9r = (B; c . e! e0) 2 �0 : ��(�(r)) = r
r = (B; c . e! e0) and B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
) 9r0 2 �0 : r0 = (B0; c . e ! e0) and B0 = fc1 . e1 ! e01; p1 . e

0
1 ! e2; : : : ; pm�1 .

e0m�1 ! em; cm . em ! e0m; p . em ! e0g
Since all variables occurring in pi and p have been present in the original rule we have
that pi = ��(�(pi)) and p = ��(�(p)) are ground.
4:3:13
=)

(*)

r0 = ��(�(r
0)) 2 �0

For all preconditions pi . e0i ! ei+1 we have a rule in � without a precondition and thus
��(�(pi . e

0
i ! ei+1)) 2 �0

4:3:8
=)

(**)

PT
�0(pi . e0i ! ei+1) = pi.e

0
i!ei+1

analogous:
(***)

PT
�0(p . e0m ! e0) =

p.e0m!e0

By the induction hypothesis:
(****)

PT�(ci . ei ! e0i)) PT
�0(ci . ei ! e0i)

By (*) to (****) follows:

PT
�0(c . e! e0) =

PT
�0
(c1 . e1 ! e01) PT�0

(p1 . e
0
1 ! e2)

: : :

PT
�0(pm�1 . e

0
m�1 ! em) PT�0(cm . em ! e0m)

PT
�0(p . em ! e0)

c.e!e0

2

Lemma 9.3.12 PT
�0(c . e! e0)) PT�(c . e! e0)

Proof. Analogous to proof above, but the proof idea is that by removing the proof trees
PT

�0(pi . e0i ! ei+1) and PT�0(p . em ! e0) from PT
�0(c . e! e0) we get PT�(c . e! e0). 2

Finally by lemma 9.3.11 and 9.3.12 and theorem 4.3.9 follows theorem 9.3.10.
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9.3.5 Correctness of Conversion into TRS

We prove three properties of the conversion:

� the generated rules are linear TRS rules

� the rules are non-overlapping

� the conversion into TRS is correct

TRS:
Since conclusions of 2BIG rules are linear and none of the transformations (factorization,
allocation of temporary variables, removing of variables de�ned in preconditions and sequen-
tialization) produces non-linear conclusions, the generated TRS rules are linear, too.
Let l) r 2 R be a generated rule, then we have to show that V(r) � V(l).

1st case: h(c; p); ei ) hp; e0i
From the well-orderedness of the 2BIG rule follows that every variable in e0 has to be
de�ned in c; e.

2nd case: h(c; p); ei ) h(c1; : : : ; cn; p); e1i
Here we have to consider two cases:

� x 2 V(e1): From the well-orderedness of the 2BIG rule follows that x has to be
de�ned in c; e.

� x 2 V(ci): After removing of variables de�ned in preconditions we have that
x 2 V(c; e). This property is preserved by sequentialization.

Non-Overlapping:
After factorization, the 2BIG rules are deterministic and thus no two left hand sides of the
conclusions of 2BIG rules unify. None of the following transformations introduces rules with
conclusions having such left hand sides. Finally when transforming the 2BIG rules into TRS
rules, the left hand sides of the conclusions become the left hand sides of the TRS rules. From
this follows, that no two left hand sides of TRS rules unify. It remains to show, that no left
hand side uni�es with a proper subterm of another left hand side or itself, but this is obvious,
because h:; :i does not occur within a term, but only as the outmost constructor.

Correctness:
In the sequel we denote by TTRS the conversion into term rewriting rules.
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Theorem 9.3.13 Let � be a set of allocated, sequential, deterministic 2BIG rules and R =
TTRS(�). Then c . e! e0 2 I(�), hc; p; ei �)R hp; e0i for all terms p.

Lemma 9.3.14 PT�(c . e! e0)) hc; p; ei �)Rhp; e0i

The proof idea is that based on a proof tree, we construct a sequence of rewrite steps.
Proof. The proof is by induction on the depth d of the �-tree.

Induction Hypothesis: Lemma holds for n < d.

Induction Step: PT�(c . e! e0) =
PT

�
(c1.e1!e01) ::: PT

�
(cm.em!e0m)

c.e!e0
4:3:8
=) 9r = (B; c . e! e0) 2 � where B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
4:3:13
=) 9�:9r = (B; c . e! e0) 2 � : ��(�(r)) = r
where B = fc1 . e1 ! e01; : : : ; cm . em ! e0mg
) r0 = hc; p; ei ) hc1; : : : ; cm; p; e1i 2 R
Furthermore by the induction hypothesis we have:

(*)
81 � i � m : PT�(ci . ei ! e0i)) hci; pi; eii

�
)Rhpi; e

0
ii for all terms pi.

We choose pi = ci+1; : : : ; cm; p.

Let �0 = � [ fp 7! pg then �0(hc; p; ei) = hc; p; ei.
Using r0 we get: t0 = hc; p; ei )R t1 = ��(�0(hc1; : : : ; cm; p; e1i)) = hc1; : : : ; cm; p; e1i.
Using (*):
t1

�)R t2 = hc2; : : : ; cm; p; e01i.
Since r was sequential, we have e01 = e2, and thus t2 = hc2; : : : ; cm; p; e2i.
In general, for 1 � i < m we have:
Using (*):
ti

�)R ti+1 = h(ci+1; : : : ; cm; p); e0ii.
Since r was sequential, we have e0i = ei+1, and thus ti+1 = hci+1; : : : ; cm; p; ei+1i.
Finally using (*) for tm we have: tm

�
)R t = hp; e0mi.

Since r was sequential, we have e0m = e0, and thus t = hp; e0i.

2

Lemma 9.3.15 hc; p; ei �)Rhp; e0i ) PT�(c . e! e0)

The proof idea is that based on a sequence of rewrite steps, we construct a proof tree. The
proof is by induction on the length l of the rewriting sequence.
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Proof.

l = 1 : Given the rewrite step hc; p; ei )R hp; e0i
) 9�:9r 2 R : r = hc; p; ei ) hp; e0i and �(hc; p; ei) = hc; p; ei and ��(�(hp; e0i)) = hp; e0i
) c . e! e0 2 �
4:3:13
=) ��(�(c . e! e0)) 2 �
4:3:8
=)

c.e!e0 is a �-tree

l = n+ 1 : Given the sequence of rewrite steps hc; p; ei )R : : : )R hp; e0i of length n + 1.
There are only two kinds of rules in R. Some rules rewrite the �rst instruction by a
sequence of instructions and some rules remove the �rst instruction (see l = 1).
hc; p; ei )R h(c1; : : : ; cm; p); e1i )R : : :)R hp; e0i
) 9�:9r 2 R : r = hc; p; ei ) h(c1; : : : ; cm; p); e1i and �(hc; p; ei) = hc; p; ei
and ��(�((hc1; : : : ; cm; p); e0i)) = h(c1; : : : ; cm; p); e1i

) rorg =
c1.e1!e01 ::: cm.em!e0m

c.e!e0
2 �

4:3:13
=) rorg =

c1.e1!e01 ::: cm.em!e0m
c.e!e0

2 �
By the induction hypothesis we have:

(*)
81 � i � m : h(ci; : : : ; cm; p); eii

�
)Rh(ci+1; : : : ; cm; p); e0ii in � n rewrite steps

) PT�(ci . ei ! e0i)

4:3:8
=) By (*) and using rorg we get:

PT�(c . e! e0) =
PT

�
(c1.e1!e01) ::: PT

�
(cm.em!e0

m)

c.e!e0

2

Finally by lemma 9.3.14 and 9.3.15 and theorem 4.3.9 follows theorem 9.3.13.

9.3.6 Correctness Statement for Pass Separation

Pass separation works as described in Section 5.3.10. Let TP be the pass separation converting
a set of rules R into two sets Rc and Rx: TP (R) = (Rc; Rx).
Hannan de�nes abstract interpreters as a certain class of linear term rewriting systems:
(�; R) is an abstract interpreter, such that nop; h:; :i and 0;0 are in � and every rule in R is
of the form: ha(X1; : : : ;Xn);P; ei ) hc01; : : : ; c

0
m;P; e

0i where X1; : : : ;Xn and P are variables
and c01; : : : ; c

0
m and e; e0 are terms which do not contain P .
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Theorem 9.3.16 (Theorem 6.9 in [Han94]) Let R be an abstract interpreter de�ning term
rewriting system and TP (R) = (Rc; Rx). Then

1. if hc; ei
�
)Rhc0; e0i then c

y
)Rc~c , e

y
)Rc~e , c0

y
)Rc

~c0 , e0
y
)Rc

~e0 and h~c; ~ei
�
)Rxh~c0; ~e0i

2. if c
y
)Rc~c , e

y
)Rc~e and h~c; ~ei

�
)Rxh~c0; ~e0i then hc; ei

�
)Rhc0; e0i and c0

y
)Rc

~c0 , e0
y
)Rc

~e0

9.3.7 Correctness of Core System

By theorems 9.3.1, 9.3.4, 9.3.7, 9.3.10, 9.3.13, and 9.3.16 follows:

Theorem 9.3.17 Let � be a set of 2BIG rules, �0 = Tm
F (�) such that Tm

F (�) = Tm+1
F (�) and

(Rx; Rc) = TP (TTRS(TS(TR(TA(�0))))). Then

1. if c . e! e0 2 I(�) then c
y
)Rc~c , e

y
)Rc~e , e0

y
)Rc

~e0 and h~c; [[]; ~e]i
�
)Rxhnop; [[]; ~e0]i

2. if c
y
)Rc~c , e

y
)Rc~e and h~c; [[]; ~e]i �)Rxhnop; [[]; ~e0]i then c . e! e0 2 I(�) and e0

y
)Rc

~e0

Intuitively this theorem states that if the execution of a program c in a start state e according
to the semantics speci�ed by the 2BIG rules � yields �nal state e0 (short: c . e! e0 2 I(�)),
then the execution of the compiled program ~c in a corresponding start state yields a corre-
sponding �nal state. This correspondence of states in the semantics and the abstract machine
is expressed in terms of compilation. This is necessary because we allow instructions to occur
in states, e.g., the state might contain an environment mapping names to function abstrac-
tions as in the case of the Mini-ML speci�cation in Section 6.2.3. These function abstractions
contain instructions and these instructions have to be compiled into the instructions of the
abstract machine.
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Chapter 10

Concluding Remarks

I
n the previous chapters, we presented a system to generate compilers and abstract
machines. Although this idea is not novel, our system is the �rst fully automatic
semantics-directed compiler generator of this kind. In this chapter, we summarize our

thesis and discuss some directions for future research including extensions and applications
of the system.

10.1 Summary

We gave a comparison of existing work in the �eld of semantics-directed generation of compil-
ers and abstract machines. So far the derivation of abstract machines has not been assisted by
automated tools. In this thesis, we presented a system that automatically generates a compiler
and abstract machine from a 2BIG speci�cation of a programming language. The compiler
computes only on program structures, whereas the abstract machine computes primarily on
run-time structures.

We gave the transformations used in our system and as an example, we transformed the 2BIG
speci�cation of two toy languages, namely SIMP and Mini-ML , and a speci�cation of Action
Semantics. For Mini-ML , we got an abstract machine which is very close to the CAM, an
abstract machine used for e�cient implementations of ML. We pointed out that the system
was used to generate a compiler and abstract machine for action notation and that these have
been used as a backend of an action semantics-based compiler generator. Our results are
backed by a running implementation tested with non-trivial examples as well as a correctness
proof of the core system.

The 2BIG speci�cations and the term rewriting systems are interpreted in Prolog, and all
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transformations have been implemented in Prolog, too. Furthermore we wrote a compiler
which translates the term rewriting rules of the compiler and abstract machine into SML
programs, and a compiler which generates from term rewriting rules a C implementation of
the abstract machine. In Table 3.3 we listed several approaches to derive abstract machines,
here is an additional entry for our system:
Author Quality Languages Transformations Papers

Stephan
Diehl

aut: yes
corr: yes
e�: -,+,2

spec: 2BIG rules
obj: term rewriting systems
src: Mini-ML , SIMP, Action

Notation
trg: code

for the abstract machine
(implementations of ab-
stract machines in Pro-
log, SML, and C are
generated)

factorization, allocation of
temporary variables, se-
quentialization,
pass separation and vari-
ous optimizations

[Die96]

The generated term rewriting rules de�ning the compiler and abstract machine can also be
used as a basis for handwriting compilers and abstract machines, much in the way e�cient
compilers and abstract machines have been written starting from the term rewriting systems
given in [CCM85]. This is in contrast to the traditional partial evaluation approaches to
compiler generation (see section 3.7). First, by simply composing semantics equations and a
partial evaluator no language speci�c compiler is generated. Second, by self-application of the
partial evaluator, the generated compilers inherit much structure from the underlying partial
evaluator and the analysis and code generation parts are intertwined making it di�cult to
use these residual programs as starting points for handwriting compilers.

10.2 Future Work

Given a determinate 2BIG speci�cation, our system automatically generates a compiler and
an abstract machine represented as term rewriting systems. Admittedly the transformations
introduce a lot of abstract machine instructions. Especially the number of conversion in-
structions introduced by sequentialization should be reduced by replacing similar instructions
by one more general instruction, e.g., the instructions conv1 and conv2 de�ned by the rules
conv1; [truejR] ! R and conv2; [falsejR] ! R might be replaced by pop; [F jR] ! R, but
this instruction would also pop values di�erent from true and false. Furthermore there are
instructions which do nothing besides pattern matching, i.e., test whether the current state
has a required form, and it might be safe to remove them in case we know that the state
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will always have the required form. Thus these and other optimizations have to be inves-
tigated further. Such optimizations are likely to be based on global analyses. Detection of
single-threatedness and compile-time garbage collection have been studied in the functional
world and might help to generate more e�cient implementations of abstract machines. As our
system is the �rst running implementation of a semantics-directed compiler generator which
uses pass separation as its key transformation and our performance results are encouraging,
we feel that the development of pass separation transformations for other meta-languages is
a challenging and worthwhile future research goal.
Up to now, our system has only been used to generate compilers from natural semantics spec-
i�cations of programming languages. These speci�cations can be regarded as interpreters. As
one can also specify other functionalities like static semantics checking or program special-
ization algorithms using natural semantics rules, it is possible to pass separate those speci�-
cations. In the partial evaluation community [JGS93] the resulting �rst stage is usually not
called a compiler but a generating extension. The second stage, i.e., the abstract machine,
has so far only been derived from interpreters. Therefore the question arises, whether it makes
sense to generate the second stage for other algorithms and what its practical consequences
are?
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Appendix A

Example Action Semantics
Speci�cation

The following sections are based on the de�nition of the language Mini-� in [BMW92] and
the de�nition of the language SPECIMEN in [Mou93].
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A.1 Syntax of Mini-�

Declaration : DECL ::= const(id(I); EXP ) declaration of a constant
var(id(I); TY PE) declaration of a variable
proc(id(I); FPLIST;COM) declaration of a procedure
fun(id(I); FPLIST;EXP ) declaration of a function
dseq(DECL;DECL)

Commands : COM ::= print(EXP ) print to standard output
assign(id(I); EXP ) assignment
call(id(I); APLIST ) procedure call
cseq(COM;COM)
let(DECL;COM) local declarations
if(EXP;COM;COM) conditional
while(EXP;COM) loop

Expressions : EXP ::= int(N) integer
bool(B) truth value
id(I) identi�er
call(id(I); APLIST ) function call
if(EXP;EXP;EXP ) conditional
binary(op(OP ); EXP;EXP ) binary operation
unary(op(OP ); EXP ) unary operation

Operators : OP 2 fadd; sub;mult; div; less;
greater; equal; and; or; notg

Formal
Parameters : FPLIST ::= FP �

Formal
Paramters : FP ::= var(id(I)) call-by-reference parameter

fun(id(I)) function as parameter
val(id(I)) call-by-value parameter

Actual
Parameters : APLIST ::= AP �

Actual
Parameter : AP ::= var(id(I)) call-by-reference parameter

EXP call-by-value parameter
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A.2 Semantics of Mini-�

� program[[X]] = execute[[X]].

A.2.1 Commands

� execute[[print(E)]] = evaluate[[E]]
then
print the value.

� execute[[assign(id(I),E)]] = evaluate[[E]]
then
store the value in the cell bound to id(I).

� execute[[cseq(C1,C2)]] = execute[[C1]]
and
then execute[[C2]].

� execute[[let(D,C)]] = furthermore elaborate[[D]]
hence
execute[[C]].

� execute[[if(E,C1,C2)]] = evaluate[[E]]
then
execute[[C1]] else execute[[C2]].

� execute[[while(E,C)]] = unfolding evaluate[[E]]
then
execute[[C]] and then unfold
else
complete.

� execute[[call(id(I),A)]] = eval para list[[A]] /* procedure call */

then
enact (the abstraction bound to id(I) with the value).

A.2.2 Expressions

� evaluate[[int(I)]] = give num(I) .
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� evaluate[[bool(B)]] = give B.

� evaluate[[id(I)]] = give the value stored in the cell bound to id(I)
or
give the value bound to id(I).

� evaluate[[if(E,E1,E2)]] = evaluate[[E]]
then
evaluate[[E1]] else evaluate[[E2]].

� evaluate[[call(id(I),A)]] = eval para list[[A]] /* function call */

then
enact the abstraction bound to id(I) with the value.

� evaluate[[binary(O,E1,E2)]] = evaluate[[E1]] then give the value label #1
and
evaluate[[E2]] then give the value label #2

then
apply[[O]].

� evaluate[[unary(O,E)]] = evaluate[[E]] then apply[[O]].

A.2.3 Operators

� apply[[op(add)]] = give add(the value #1, the value #2).

� apply[[op(sub)]] = give subtract(the value #1, the value #2).

� apply[[op(mult)]] = give multiply(the value #1, the value #2).

� apply[[op(div)]] = give divide(the value #1, the value #2).

� apply[[op(less)]] = give less(the value #1, the value #2).

� apply[[op(greater)]] = give greater(the value #1, the value #2).

� apply[[op(equal)]] = give is(the value #1, the value #2).

� apply[[op(and)]] = give bool and(the value #1, the value #2).

� apply[[op(or)]] = give bool or(the value #1, the value #2).
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� apply[[op(not)]] = give bool not(the value #1).

A.2.4 Declarations

� elaborate[[const(id(I),E)]] = evaluate[[E]]
then
bind id(I) to the value.

� elaborate[[var(id(I),T)]] = allocate a cell[T]
then
bind id(I) to the cell.

� elaborate[[proc(id(I),FS,C)]] =
recursively bind id(I) to closure abstraction furthermore elaborate formal para list[[FS]]

hence
execute[[C]].

� elaborate[[fun(id(I),FS,E)]] =
recursively bind id(I) to closure abstraction furthermore elaborate formal para list[[FS]]

hence
evaluate[[E]] then give the value.

� elaborate[[dseq(D1,D2)]] = elaborate[[D1]]
before
elaborate[[D2]].

A.2.5 Evaluate Actual Parameters

� eval para list[[[]]] = give empty-list.

� eval para list[[[E]]] = eval para[[E]] then give list(it).

� eval para list[[[E R]]] = eval para[[E]] then give list(it) label #1
and
eval para list[[R]] then give it label #2

then
give concatenation(the list #1, the list #2).

� eval para[[E]] = evaluate[[E]].
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� eval para[[var(id(I))]] = give the cell bound to id(I).

A.2.6 Elaborate Formal Parameters

� elaborate formal para list[[[]]] = complete.

� elaborate formal para list[[[F]]] = give head-of(the list)
then
elaborate formal para[[F]].

� elaborate formal para list[[[F R]]]= give head-of(the list) then elaborate formal para[[F]]
and then
give tail-of(the list) then elaborate formal para list[[R]].

� elaborate formal para[[val(id(I),T)]] = give the value label #1
and
allocate a cell[T] then give the cell label #2

then
bind id(I) to the cell #2
and
store the value #1 in the cell #2.

� elaborate formal para[[fun(id(I))]] = bind id(I) to the abstraction.

� elaborate formal para[[var(id(I))]] = bind id(I) to the cell.



Appendix B

Excerpts of a 2BIG Speci�cation of
Action Notation

Modi�cation wrt. de Moura's speci�cation [Mou93]:

� Rules are determinate, all conditions are made explicit, and the order of the rules doesn't
matter. We added for every language construct (if necessary) an additional rule, which
applies if the other rules do not succeed.

� Instead of having a test saying O 6= completed we let O have the value failed.

� We split the functionality of a test, which also binds a variable, into two parts: a
test and a function call (e.g., member((A;B);L) binds B and yields true, to split
these functionalities we replace the test bymember((A; ); L) where is an anonymous
variable and replace every occurrence of B by lookup(A;L)).

� De Moura's rule for recursively bind creates a cyclic binding of logical variables. We
added rules for the directive facet (see action notation book by P.D. Mosses [Mos92])
and translate recursively bind into an action with directive actions:
recursively bind k to y is translated into
hence(furthermore(indirectly bind(k;uninitialized));

and(redirect(k; y);bind(k;bound(value; k))))
There are two di�erent kinds of transitions in the speci�cation. For actions we have
transitions of the form A . [T;B; S;R]! [O;T;B; S;R] and for yielders we have tran-
sitions of the form Y . [T;B; S;R]! datum(D) where A is an action, Y is a yielder,
T are transients, B are bindings, S is the store, R are redirections, O is the outcome
status (failed or completed) and D is a value.
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B.1 Basic Operations

We use mappings to represent transients, bindings, stores and redirections. Mappings are
lists of associations x 7! y, i.e., the key x is associated with the value y.

mergeable(M1;M2) tests whether the mappings are mergeable. The mappings M1 and M2

are mergeable, if there is no key which is associated to a value in both mappings. Even
in the case that a key is associated to the same value in both mappings, the mappings
are not mergeable.

map merge(M1;M2) merges two mergeable mappings, i.e., the result is the union of the
associations in both mappings.

overlay(M1;M2) yields the set of all associations in both mappings, except for those with
keys x occurring in both mappings. In this case the result only contains the association
of x in M1.

member(A;M) tests whether the association A is contained in the mappings M .

lookup(K;M) returns the valueD if datum(D) is associated with the keyK in the mapping
M .

remove entry(K;M) returns the mapping which results from M by removing the associa-
tion for the key K.

check type(V; T ) tests whether the value V is a subtype of T .

lookup cell type(C) returns the type of the cell C.

new cell(S; T ) returns a new cell of type T , which is not yet associated in the store S.

lookup red(I;R) returns the value associated with the indirection I in the redirections R.

new indirection(R) returns a new indirection, which is not yet associated in the redirections
R.

expand unfold(U;A) returns the action which results from replacing every occurrence of
unfold in the action A by the action U .

io print(V ) prints the value V to the output stream.

atomic(V ) tests whether the value V is atomic, i.e., a string, character, integer or boolean.
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B.2 A 2BIG Speci�cation of Action Notation

Most of the LaTEX-code for typesetting the rules below has been automatically generated from
the internal Prolog representation of 2BIG rules used in our system.

COMPLETE

complete . [T;B; S;R]! [completed; []; []; S;R]
(B.1)

FAIL

fail . [T;B; S;R]! [failed; []; []; S;R]
(B.2)

AND

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B; S0; R0]! [completed; T 00; B00; S00; R00]

#1&#2

and(A1; A2) . [T;B; S;R]! [completed;#3;#4; S00; R00]
(B.3)

where

#1 = mergeable(T 0; T 00)
#2 = mergeable(B0; B 00)
#3 = map merge(T 0; T 00)
#4 = map merge(B 0; B00)

A1 . [T;B; S;R]! [failed; T 0; B0; S0; R0]

and(A1; A2) . [T;B; S;R]! [failed; T 0; B0; S0; R0]
(B.4)

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B; S0; R0]! [failed; T 00; B00; S00; R00]

and(A1; A2) . [T;B; S;R]! [failed; T 00; B00; S00; R00]
(B.5)
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A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B; S0; R0]! [completed; T 00; B00; S00; R00]

:(#1&#2)

and(A1; A2) . [T;B; S;R]! [failed; []; []; S;R]
(B.6)

where
#1 = mergeable(T 0; T 00)
#2 = mergeable(B0; B 00)

UNFOLDING

#1 . [T;B; S;R]! [O;T 0; B0; S0; R0]

unfolding(A) . [T;B; S;R]! [O;T 0; B 0; S0; R0]
(B.7)

where #1 = expand unfold(unfolding(A); A)

OR

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]

or(A1; A2) . [T;B; S;R]! [completed; T 0; B 0; S0; R0]
(B.8)

A1 . [T;B; S;R]! [failed; []; []; S0; R0]
A2 . [T;B; S

0; R0]! [O;T 00; B00; S00; R00]

or(A1; A2) . [T;B; S;R]! [O;T 00; B00; S00; R00]
(B.9)

GIVE

Y . [T;B; S;R]! datum(D)
D 6= nothing

give(Y;N) . [T;B; S;R]! [completed; [N 7! datum(D)]; []; S;R]
(B.10)

Y . [T;B; S;R]! datum(D)
D = nothing

give(Y;N) . [T;B; S;R]! [failed; []; []; S;R]
(B.11)
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CHECK

Y . [T;B; S;R]! datum(true)

check(Y ) . [T;B; S;R]! [completed; []; []; S;R]
(B.12)

Y . [T;B; S;R]! datum(false)

check(Y ) . [T;B; S;R]! [failed; []; []; S;R]
(B.13)

Y . [T;B; S;R]! datum(nothing)

check(Y ) . [T;B; S;R]! [failed; []; []; S;R]
(B.14)

THEN

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T 0; B; S0; R0]! [completed; T 00; B 00; S00; R00]

#1

then(A1; A2) . [T;B; S;R]! [completed; T 00;#2; S00; R00]
(B.15)

where
#1 = mergeable(B0; B 00)
#2 = map merge(B 0; B00)

A1 . [T;B; S;R]! [failed; T 0; B 0; S0; R0]

then(A1; A2) . [T;B; S;R]! [failed; T 0; B0; S0; R0]
(B.16)

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T 0; B; S0; R0]! [failed; T 00; B00; S00; R00]

then(A1; A2) . [T;B; S;R]! [failed; T 00; B 00; S00; R00]
(B.17)

A1 . [T;B; S;R]! [completed; T 0; B 0; S0; R0]
A2 . [T

0; B; S0; R0]! [completed; T 00; B00; S00; R00]
:(#1)

then(A1; A2) . [T;B; S;R]! [failed; []; []; S;R]
(B.18)

where #1 = mergeable(B0; B 00)
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THE

#1&#2

the(Q;N) . [T;B; S;R]! datum(#3)
(B.19)

where
#1 = member(N 7! datum(D); T )
#2 = check type(#3; Q)
#3 = lookup(N;T )

:(#1&#2)

the(Q;N) . [T;B; S;R]! datum(nothing)
(B.20)

where
#1 = member(N 7! datum(D); T )
#2 = check type(#3; Q)
#3 = lookup(N;T )

BIND

Y . [T;B; S;R]! datum(D)
#1

bind(K;Y ) . [T;B; S;R]! [completed; []; [K 7! datum(D)]; S;R]
(B.21)

where #1 = check type(D;bindable)

Y . [T;B; S;R]! datum(D)
:(#1)

bind(K;Y ) . [T;B; S;R]! [failed; []; []; S;R]
(B.22)

where #1 = check type(D;bindable)

FURTHERMORE

A . [T;B; S;R]! [completed; T 0; B0; S0; R0]

furthermore(A) . [T;B; S;R]! [completed; T 0;#1; S 0; R0]
(B.23)

where #1 = overlay(B 0; B)

A . [T;B; S;R]! [failed; T 0; B0; S0; R0]

furthermore(A) . [T;B; S;R]! [failed; T 0; B0; S0; R0]
(B.24)
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HENCE

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B0; S0; R0]! [completed; T 00; B00; S00; R00]

#1

hence(A1; A2) . [T;B; S;R]! [completed;#2; B00; S00; R00]
(B.25)

where
#1 = mergeable(T 0; T 00)
#2 = map merge(T 0; T 00)

A1 . [T;B; S;R]! [failed; T 0; B0; S0; R0]

hence(A1; A2) . [T;B; S;R]! [failed; T 0; B 0; S0; R0]
(B.26)

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B0; S0; R0]! [failed; T 00; B00; S 00; R00]

hence(A1; A2) . [T;B; S;R]! [failed; T 00; B00; S00; R00]
(B.27)

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B0; S 0; R0]! [completed; T 00; B00; S00; R00]

:(#1)

hence(A1; A2) . [T;B; S;R]! [failed; []; []; S;R]
(B.28)

where #1 = mergeable(T 0; T 00)

MOREOVER

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B; S 0; R0]! [completed; T 00; B00; S00; R00]

#1

moreover(A1; A2) . [T;B; S;R]! [completed;#2;#3; S00; R00]
(B.29)

where
#1 = mergeable(T 0; T 00)
#2 = map merge(T 0; T 00)
#3 = overlay(B 0; B 00)
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A1 . [T;B; S;R]! [failed; T 0; B0; S0; R0]

moreover(A1; A2) . [T;B; S;R]! [failed; T 0; B0; S0; R0]
(B.30)

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B; S0; R0]! [failed; T 00; B00; S00; R00]

moreover(A1; A2) . [T;B; S;R]! [failed; T 00; B00; S00; R00]
(B.31)

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;B; S 0; R0]! [completed; T 00; B00; S00; R00]

:(#1)

moreover(A1; A2) . [T;B; S;R]! [failed; []; []; S;R]
(B.32)

where #1 = mergeable(T 0; T 00)

BEFORE

A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;#1; S0; R0]! [completed; T 00; B00; S00; R00]

#2

before(A1; A2) . [T;B; S;R]! [completed;#3;#4; S00; R00]
(B.33)

where

#1 = overlay(B 0; B)
#2 = mergeable(T 0; T 00)
#3 = map merge(T 0; T 00)
#4 = overlay(B 00; B0)

A1 . [T;B; S;R]! [failed; T 0; B0; S0; R0]

before(A1; A2) . [T;B; S;R]! [failed; T 0; B0; S 0; R0]
(B.34)
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A1 . [T;B; S;R]! [completed; T 0; B0; S0; R0]
A2 . [T;#1; S 0; R0]! [failed; T 00; B00; S00; R00]

before(A1; A2) . [T;B; S;R]! [failed; T 00; B00; S00; R00]
(B.35)

where #1 = overlay(B 0; B)

A1 . [T;B; S;R]! [completed; T 0; B 0; S0; R0]
A2 . [T;#1; S0; R0]! [completed; T 00; B 00; S00; R00]

:(#2)

before(A1; A2) . [T;B; S;R]! [failed; []; []; S;R]
(B.36)

where
#1 = overlay(B 0; B)
#2 = mergeable(T 0; T 00)

BOUND

#1 #2

bound(Q;K) . [T;B; S;R]! datum(#4)
(B.37)

where

#1 = member(K 7! datum(D); B)
#2 = check type(#3; indirection)
#3 = lookup(K;B)
#4 = lookup red(#3; R)

#1 :(#2) #4

bound(Q;K) . [T;B; S;R]! datum(#3)
(B.38)

where

#1 = member(K 7! datum(D); B)
#2 = check type(#3; indirection)
#3 = lookup(K;B)
#4 = check type(#3; Q)

:(#1)

bound(Q;K) . [T;B; S;R]! datum(nothing)
(B.39)

where #1 = member(K 7! datum(D); B)
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#1 :(#2) :(#4)

bound(Q;K) . [T;B; S;R]! datum(nothing)
(B.40)

where

#1 = member(K 7! datum(D); B)
#2 = check type(#3; indirection)
#3 = lookup(K;B)
#4 = check type(#3; Q)

STORE

Y1 . [T;B; S;R]! datum(D1)
D1 6= nothing

Y2 . [T;B; S;R]! datum(D2)
#1&#2&#3

store(Y1; Y2) . [T;B; S;R]! [completed; []; [];#5; R]
(B.41)

where

#1 = member(D2 7! datum(D3); S)
#2 = check type(D2; cell(Q))
#3 = check type(D1;#4)
#4 = lookup cell type(D2)
#5 = overlay([D2 7! datum(D1)]; S)

Y1 . [T;B; S;R]! datum(D1)
D1 = nothing

store(Y1; Y2) . [T;B; S;R]! [failed; []; []; S;R]
(B.42)

Y1 . [T;B; S;R]! datum(D1)
D1 6= nothing

Y2 . [T;B; S;R]! datum(D2)
:(#1&#2&#3)

store(Y1; Y2) . [T;B; S;R]! [failed; []; []; S;R]
(B.43)

where

#1 = member(D2 7! datum(D3); S)
#2 = check type(D2; cell(Q))
#3 = check type(D1;#4)
#4 = lookup cell type(D2)
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DEALLOCATE

Y . [T;B; S;R]! datum(K)
#1

deallocate(Y ) . [T;B; S;R]! [completed; []; [];#2; R]
(B.44)

where
#1 = member(K 7! datum(D); S)
#2 = remove entry(K;S)

Y . [T;B; S;R]! datum(K)
:(#1)

deallocate(Y ) . [T;B; S;R]! [failed; []; []; S;R]
(B.45)

where #1 = member(K 7! datum(D); S)

STORED

Y . [T;B; S;R]! datum(K)
#1&#2

stored(Q;Y ) . [T;B; S;R]! datum(#3)
(B.46)

where
#1 = member(K 7! datum(D); S)
#2 = check type(#3; Q)
#3 = lookup(K;S)

Y . [T;B; S;R]! datum(K)
:(#1&#2)

stored(Q;Y ) . [T;B; S;R]! datum(nothing)
(B.47)

where
#1 = member(K 7! datum(D); S)
#2 = check type(#3; Q)
#3 = lookup(K;S)
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ENACT

Y . [T;B; S;R]! datum(abstraction(A0; T 0; B0))
A0 . [T 0; B0; S;R]! [O;T 00; B00; S00; R00]

enact(Y ) . [T;B; S;R]! [O;T 00; B00; S00; R00]
(B.48)

Y . [T;B; S;R]! datum(nothing)

enact(Y ) . [T;B; S;R]! [failed; []; []; S;R]
(B.49)

ABSTRACT

abstract(A) . [T;B; S;R]! datum(abstraction(A; []; []))
(B.50)

WITH

Y1 . [T;B; S;R]! datum(abstraction(A;T 0; B 0))
T 0 = []

Y2 . [T;B; S;R]! datum(D)
D 6= nothing

with(Y1; Y2) . [T;B; S;R]! datum(abstraction(A; [0 7! datum(D)]; B 0))
(B.51)

Y1 . [T;B; S;R]! datum(abstraction(A;T 0; B0))
T 0 = []

Y2 . [T;B; S;R]! datum(D)
D = nothing

with(Y1; Y2) . [T;B; S;R]! datum(nothing)
(B.52)

Y1 . [T;B; S;R]! datum(abstraction(A;T 0; B 0))
T 0 6= []

Y2 . [T;B; S;R]! datum(D)

with(Y1; Y2) . [T;B; S;R]! datum(abstraction(A;T 0; B 0))
(B.53)
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CLOSURE

Y . [T;B; S;R]! datum(abstraction(A;T 0; B 0))
B 0 = []

closure(Y ) . [T;B; S;R]! datum(abstraction(A;T 0; B))
(B.54)

Y . [T;B; S;R]! datum(abstraction(A;T 0; B0))
B 0 6= []

closure(Y ) . [T;B; S;R]! datum(abstraction(A;T 0; B0))
(B.55)

Y . [T;B; S;R]! datum(nothing)

closure(Y ) . [T;B; S;R]! datum(nothing)
(B.56)

ELSE

#1
A1 . [[]; B; S;R]! [O;T 0; B0; S0; R0]

else(A1; A2) . [T;B; S;R]! [O;T 0; B0; S0; R0]
(B.57)

where #1 = member(0 7! datum(true); T )

:(#1)
#2

A2 . [[]; B; S;R]! [O;T 0; B0; S0; R0]

else(A1; A2) . [T;B; S;R]! [O;T 0; B0; S0; R0]
(B.58)

where
#1 = member(0 7! datum(true); T )
#2 = member(0 7! datum(false); T )

:(#1)
:(#2)

else(A1; A2) . [T;B; S;R]! [failed; []; []; S;R]
(B.59)

where
#1 = member(0 7! datum(true); T )
#2 = member(0 7! datum(false); T )
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ALLOCATE

allocate(cell(Q)) . [T;B; S;R]! [completed; [0 7! datum(#1)]; [];#2; R]
(B.60)

where
#1 = new cell(S;Q)
#2 = map merge([#1 7! datum(uninitialized)]; S)

INDIRECTLY BIND

Y . [T;B; S;R]! datum(D)

indirectly bind(K;Y ) . [T;B; S;R]! [completed; []; [K 7! datum(#1)]; S;#2]
(B.61)

where
#1 = new indirection(R)
#2 = overlay([#1 7! D]; R)

REDIRECT

Y . [T;B; S;R]! datum(D)
#1

redirect(K;Y ) . [T;B; S;R]! [completed; []; []; S;#2]
(B.62)

where
#1 = member(K 7! D2; B)
#2 = overlay([#3 7! D]; R)
#3 = lookup(K;B)

Y . [T;B; S;R]! datum(D)
:(#1)

redirect(K;Y ) . [T;B; S;R]! [failed; []; []; S;R]
(B.63)

where #1 = member(K 7! D2; B)

UNDIRECT

#1

undirect(K) . [T;B; S;R]! [completed; []; []; S;#2]
(B.64)

where
#1 = member(K 7! D;B)
#2 = remove entry(#3; R)
#3 = lookup red(K;R)
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:(#1)

undirect(K) . [T;B; S;R]! [failed; []; []; S;R]
(B.65)

where #1 = member(K 7! D;B)

PRINT

Y . [T;B; S;R]! datum(D)
#1

print(Y ) . [T;B; S;R]! [completed; []; []; S;R]
(B.66)

where #1 = io print(D)

LIST

Y . [T;B; S;R]! datum(D)
D 6= nothing

list(Y ) . [T;B; S;R]! datum([D])
(B.67)

Y . [T;B; S;R]! datum(D)
D = nothing

list(Y ) . [T;B; S;R]! datum(nothing)
(B.68)

SUBTRACT

Y1 . [T;B; S;R]! datum(D1)
Y2 . [T;B; S;R]! datum(D2)
D1 6= nothing&D2 6= nothing

subtract(Y1; Y2) . [T;B; S;R]! datum(#1)
(B.69)

where #1 = D1 �D2

Y1 . [T;B; S;R]! datum(D1)
Y2 . [T;B; S;R]! datum(D2)

:(D1 6= nothing&D2 6= nothing)

subtract(Y1; Y2) . [T;B; S;R]! datum(nothing)
(B.70)
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LESS

Y1 . [T;B; S;R]! datum(D1)
Y2 . [T;B; S;R]! datum(D2)

#1&#2
D1 < D2

less(Y1; Y2) . [T;B; S;R]! datum(true)
(B.71)

where
#1 = check type(D1; integer)
#2 = check type(D2; integer)

Y1 . [T;B; S;R]! datum(D1)
Y2 . [T;B; S;R]! datum(D2)

#1&#2
:(D1 < D2)

less(Y1; Y2) . [T;B; S;R]! datum(false)
(B.72)

where
#1 = check type(D1; integer)
#2 = check type(D2; integer)

Y1 . [T;B; S;R]! datum(D1)
Y2 . [T;B; S;R]! datum(D2)

:(#1&#2)

less(Y1; Y2) . [T;B; S;R]! datum(nothing)
(B.73)

where
#1 = check type(D1; integer)
#2 = check type(D2; integer)

BOOL AND

Y1 . [T;B; S;R]! datum(true)
Y2 . [T;B; S;R]! datum(true)

bool and(Y1; Y2) . [T;B; S;R]! datum(true)
(B.74)
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Y1 . [T;B; S;R]! datum(true)
Y2 . [T;B; S;R]! datum(false)

bool and(Y1; Y2) . [T;B; S;R]! datum(false)
(B.75)

Y1 . [T;B; S;R]! datum(false)

bool and(Y1; Y2) . [T;B; S;R]! datum(false)
(B.76)

NUM

#1

num(N) . [T;B; S;R]! datum(N)
(B.77)

where #1 = atomic(N)

:(#1)

num(N) . [T;B; S;R]! datum(nothing)
(B.78)

where #1 = atomic(N)
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Appendix C

Transforming the 2BIG Speci�cation
of SIMP

C.1 The 2BIG Speci�cation of SIMP

B . E ! true
C1 . E ! E 0

if(B;C1; C2) . E ! E0

B . E ! false
C2 . E ! E 0

if(B;C1; C2) . E ! E 0

(C.1)

C1 . E ! E 0

C2 . E
0 ! E00

seq(C1; C2) . E ! E00

io print(lookup(X;E))

print(X) . E ! E

(C.2)

B . E ! true
seq(C;while(B;C)) . E ! E0

while(B;C) . E ! E0

B . E ! false

while(B;C) . E ! E

(C.3)

V . E ! V 0

assign(X;V ) . E ! replace(X;V 0; E)
(C.4)

id op(X) . E ! lookup(X;E) num(N) . E ! N (C.5)

V1 . E ! V 0
1

V2 . E ! V 0
2

add(V1; V2) . E ! plus(V 0
1; V

0
2)

V1 . E ! V 0
1

V2 . E ! V 0
2

eq(V1; V2) . E ! equal(V 0
1 ; V

0
2)

(C.6)

163
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C.2 The generated Compiler for SIMP

if(B;C1; C2) ) if;B; conv 0; factor 0(C2; C1)
seq(C1; C2) ) seq;C1;C2

while(B;C) ) while(B;C)
assign(X;V ) ) if;V ; conv 2(X)
id op(X) ) id op(X)
num(N) ) num(N)
add(V1; V2) ) if;V1; conv 3;V2; conv 4
eq(V1; V2) ) if;V1; conv 3;V2; conv 6
not(B) ) seq;B; conv 7; factor 2
print(X) ) print(X)

C.3 The generated Abstract Machine for SIMP

hif ;C; [D;E]i ) hC; [[[E]jD]; E]i
hconv 0;C; [[[E]jD]; B]i ) hC; [D; [[E]; B]]i
hfactor 0(C1; C2);C; [D; [[E]; true]]i ) hC2;C; [D;E]i
hfactor 0(C1; C2);C; [D; [[E]; false]]i ) hC1;C; [D;E]i
hseq;C; [D;E]i ) hC; [D;E]i
hwhile(B;C1);C; [D;E]i ) hB; conv 0; factor 1(C1; B);C; [[[E]jD]; E]i
hfactor 1(C1; B);C; [D; [[E]; true]]i ) hseq;B;while(B;C1);C; [D;E]i
hfactor 1(C1; B);C; [D; [[E]; false]]i ) hC; [D;E]i
hconv 2(X);C; [[[E]jD]; V ]i ) hC; [D; replace(X;V;E)]i
hid op(X);C; [D;E]i ) hC; [D; lookup(E;X)]i
hnum(N);C; [D;E]i ) hC; [D;N ]i
hconv 4;C; [[[V1]jD]; V2]i ) hC; [D;plus(V1; V2)]i
hconv 3;C; [[[E]jD]; V ]i ) hC; [[[V ]jD]; E]i
hconv 6;C; [[[V1]jD]; V2]i ) hC; [D; equal(V1; V2)]i
hconv 7;C; [D;E]i ) hC; [D; [[]; E]]i
hfactor 2;C; [D; [[]; true]]i ) hC; [D; false]i
hfactor 2;C; [D; [[]; false]]i ) hC; [D; true]i
hprint(X);C; [D;E]i ) htest 0(X); conv 8;C; [[[E]jD]; [E]]i
hconv 8;C; [[[E]jD]; true]i ) hC; [D;E]i
htest 0(X);C; [D; [E]]i ) hC; [D; io print(lookup(E;X))]i
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C.4 Basic Operations

We use mappings to represent bindings of identi�ers to values.

replace(X;V;B) replaces the binding for the identi�er X in the binding B by a binding of
X to the value V .

lookup(B;X) returns the value bound to the identi�er X in the binding B.

plus(N;M) returns the sum of the integers N and M .

equal(V;W ) tests whether the values V and W are equal.

io print(V ) prints the value V to the output stream.
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Appendix D

A Note on Factorization

Consider the following rules:

1)
a.e!completed;e0

a or b.e!completed;e0

2)
a.e!failed;e0 b.e!completed;e00

a or b.e!completed;e00

3)
a.e!failed;e0 b.e!failed;e00

a or b.e!failed;e

The �rst solution might be to use factorization for two rules several times.
Factorize 2) and 3):

23)
a.e!failed;e0 b.e!(o;e00) ins1(e).(o;e00)!o0;e+

a or b.e!o0;e+

a) ins1(e) . (completed; e0)! completed; e0

b) ins1(e) . (failed; e0)! failed; e

Now we have still two con
icting rules 1) and 23).
Let's factorize 1) and 23)

123)
a.e!o;e0 ins2(e;b).(o;e0)!o0;e00

a or b.e!o0;e00

c) ins2(e; b) . (completed; e0)! completed; e0

167
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d)
b.e!(o;e00) ins1(e).(o;e00)!o0;e+

ins2(e;b).(failed;e0)!o0;e+

OK, this worked �ne !
Now we start again, this time we decide to factorize 1) and 2) �rst.

12)
a.e!o;e0 ins1(e;b).(o;e0)!completed;e00

a or b.e!completed;e00

a) ins1(e; b) . (completed; e0)! completed; e0

b)
b.e!completed;e00

ins1(e;b).(failed;e0)!completed;e00

This time 12) and 3) are the remaining con
icting rules, so we will factorize these:

123)
a.e!o;e0 ins2(e;b).(o;e0)!o0;e00

a or b.e!o0;e00

c)
b.e!failed;e00

ins2(e;b).(failed;e0)!failed;e

d)
ins1(e;b).(o;e0)!completed;e00

ins2(e;b).(o;e0)!completed;e00

Now the left hand sides of the conclusions in c) and d) do not really clash, because they are
not �-equal but one is more general than the other. But we would have to factorize the two
of them, otherwise two rules would be applicable for ins2(e; b); (failed; e0).
Our strategy to factorize more than two rules works as follows: In a set of m rules for the
same instruction, there can be several con
icting subsets. What we suggest is to factorize the
largest subsets �rst.
So in the above example the three rules are the largest subset of con
icting rules and we
factorize them as follows:

123)
a.e!o;e0 ins1(b;e).(o;e0)!o0;e00

a or b.e!o0;e00

a) ins1(b; e) . (completed; e0)! completed; e0

b)
b.e!completed;e00

ins1(b;e).(failed;e0)!completed;e00
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c)
b.e!failed;e00

ins1(b;e).(failed;e0)!failed;e

Now b) and c) are con
icting rules and we factorize these:

bc)
b.e!o;e00 ins2(e).(o;e00)!o0;e+

ins1(b;e).(failed;e0)!o0;e+

d) ins2(e) . (completed; e00)! completed; e00

e) ins2(e) . (failed; e00)! failed; e

This is similar to what we got in our �rst attempt, but in the �rst attempt there was no
obvious reason to prefer the rules 2) and 3) over the rules 1) and 2). And as shown above,
the factorization of the latter leads to severe problems.
A closer look at these problems reveals that the old strategy destroys determinacy. In rules
12) and 3) the terms o; e0 and failed; e0 in the �rst precondition are not uni�able. In the proof
in Section 9.3.2 a (y) marks where our strategy was used to prove preservation of determinacy.
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