Software
Visualization

| Visualizing the Evolution
of Software Systems

Real programmers code in binary.

Visualizing the Evolution of Software Systems

» Software Evolution

+ Examples
— SeeSoft
— Evolution Matrix Metrics
— Time Wheel
— VRCE
— VRCS
— Revision Towers
— GEVOL

Software Archives

Typical question of a project manager

* What subsystems are very big ?
* What subsystems grow very fast?

* Where is the center of the current development, where
are most developers working ?

* Are developers mostly fixing bugs or extending the
program?

* Which subsystems contained most bugs?

* When were major versions released?

=> Track changes and collect data during the development
process

Metrics

* Size of moduls

* Runtime of program

* Number of Changes

* Number of Bugfixes

* Number of programmers that did a change
* Depth of nested blocks

* Type of error

Metrics and Program Code

Zeile Metric try {

1 12 y y .
2 23 Configuration gcfg;
3 12 .
4 12 Object graph = cfg findSingle("graph");
5 12
;3 1(1) /1 2. Configure the protocol graph for this host...
g Z if (graph == null)
10 12 throw new configException("Host must have graph attribute: "+cfg);
11 23 else if (graph instanceof String) {
12 12 throw new configException(,File has been deprecated; please use find instead");
13 12 }else
1‘; 1? gcfg = (Configuration)graph;
16 10
17 9 super.config(gcfg);
18 8
19 12 ProtocolSession IP = SessionForName ("ip");
20 99
g; :g /I 3. Finally, configure the specified interface set for this host.
23 12 for (Enumeration ifaces = cfg.find("interface");
24 11 ifaces.hasMoreElements();) {
25 10 Configuration ncfg = (Configuration)ifaces.nextElement();
26 9 idrange ids = new idrange(); ids.config(ncfg);
27 8

Visualizing Software Systems; Marla J. Baker, Stephen G. Eick
Software Visualization in the Large; Thomas Ball, Stephen G. Eick

Requirements of a Representation for
Program Code and related Metrics

* Provide an overview

* Fit on the screen!

* Moduls with one million lines of code must
be displayed

—> Use screen real estate economically

SeeSoft combines

Colorcoding

Textual Representation

Line Representation

— Each line of text is represented by a colored line of pixels
Pixel Representation

— Each line of text is represented by a one (or a few) pixel.
— Order of pixels:

« According to order of the lines in the text

reuonaodoxd

« According to color
File Summary Representation

— Every file is represented by a box. There are four different sizes
(quartiles).

Hierarchical Representation
— Essentially tree maps

Line Representation

fprintf (Dro_stream, "\

Textual order

Pixel Representation

PN RWNR

¥\

Pixels within a line are ordered by color

File Summary: Statistics

=L st [= (00}

|[=1 sst =

File Statistics View Options He:

andasa0ter

Bug / Feature Distribution

I

Age of Bugfix
Vs.
Age of Fix on Fix

T T

Version Differences

—| appls ool s isth P 276 =337 | |[]

File Search Options Help

MenuBar(win, |
‘VzBookMarkahle ‘menubar”

=
g W construct the selector (application) window

Hierarchical Representation

() ()

Version Differences of a Directory

=|lapp =5t [=100

Diff

Version-specific Code

‘ m =
I! | 1 LL
o)
Depth of nested blocks

=

g
|-
55
_BEE
i’
faf
=

Imjiuje.

|
y
L |

IMmEE

IC

O CTETTWT [B W0 e EE

||

Profiling Data

Animation

» Representations of the same aspects of different
development states of the systems can be
combined into an animation.

* Animations visualize the evolution of the system

Addding a third dimension: sv3D

Under development by Adrian Marcus, Kent State University

The Evolution Matrix

* Visualization of the Evolution of an Object-
Oriented System, i.e. a set of classes.

The Evolution Matrix: Recovering Software Evolution using Software Visualization Techniques;
Michele Lanza

Representation of a Class

e.g. number of method

<—Width Metric™
e.g. number
cLASs | Height —" of member
Metric variables
1

Representation of the Evolution of several Classes

Versionl Version 2 Version 3 Version 4 o
Class B O — O —
Class C O 1 |:| l:' o
Class D |:| [|:|] o

TIME

Observations about the whole System

+ System Size
— Adding and Removing Classes

: E

— Phases of Growth, Stagnation and Shrinking

Properties of the System

Categorizing single Classes

ojooooo oo oo LAST VERSION
oo EI@ REMOVED CLASSES
OooDoOooOoO0D0O0oooooDoodl e Pulsar
OooooooooOoo
ODO0O0D0DO0O0O0 000000 oo * Supernova
s e e e e e e e e e s ¢ White Dwarf
OF THE SYST i e e e e e e Y e e e B e e .
) i e e e e e e e s e e e R e * Red Gigant
_— Oloooooooooooooolo « Dayfly
W —— 000 000000000000)
DDoDOoOoDOoo0DO0DO0O000OOOo|o * Persistent
) i e e e e e e e s e e e R e - Stagnant
o i o o e o e o e e o [
TIME (VRIS — == -
Pulsar Supernova
ale|Dle| e o
[m] — — —
TIME

+ Extending the functionality leads to increase of size
 Restructuring decreases size of the class
+ This class is in the center of the development

TIME

« sudden increase of size

« can be the consequence of a refactoring of the system

* pure data class, e.g. defines lots of constants, has a simple structure
* class was defined before, but implementation was just added

« can be a sign for problems with the design

White Dwarf

=l IR

TIME

+ Class might be obsolete

Example

\

FIRST VERSION

LEAP 1

/ .
STAGNATION DAVELIES

RENAMED PULSAR

LEAP 2

fl
3252 Nides, 0 Eigos

Example

S

;;}.L.L.LL./-:.;:_L.L.L.LL.L.;E

1z
GROWTH PHASE 1/
FIRST VERSION e

/

/puLsaR classts— LRI

/7
STAGNATION PHASE

GROWTH PHASE 2

N
PERSISTENT CLASSES

Skalar metrics over time

#lines of code

: E‘ time
GROWTH PHASE 3 HE"—‘
Time Wheel Time Wheel
#-of-error-
added-lines 4 ot arror-
#-of-people (nop) (aerr) deleted-lines
(derr)
#-of-new-added-
#-lines-of-code lines (anew)
(loc) Userld1
#-of-new-deleted-
#-of-errors (err) lines (dnew)
] i #-of-undefined-
#-of-file-changes added-lines (audef)
(fchg) #-of-undefined-

Jeleted-lines (dudef)

Evolution of Software Systems

» Keeping track of versions and changes

—>Configuration Management Systems
* E.g. RCS and CVS

* The software archive contains the history of
the system

* Other tools keep track of additional
information, e.g. bug databases

VRCE: T
Control

he Visual Revision

Archive path,
replicates
workspace
structures

Workspace]

Control Engine

VRCE: The Visual Revision

Revision graph
of selected file

Selected
revision

i

| maric Nt auit | ot

2] Pops up/ ovlstons

Attributes of
| selected
file

Attributes of
selected
revision

Page through
all selected
files with Next-

'o Display of Revision Graph

© Tichy 1998

button.

VRCS

Z (time)

v.2

H.Koike, H-C Chu, “VRCS: Integrating Version Control and Module Management using Interactive
Three-D Graphics”. f of 1997, IEEE on Visual Languages, Capri, ltaly, 1997.

Revision Towers

Tool for visualizing
of a RCS or CVS ¢
repository.
Each block repres
files (header and
implementation),
and coloured acca
various properties
The process is the
making it possible
various files, or ve
became part of the

I |

|1

s IR N O]

Revision Towers, Christopher M. B. Taylor and Malcolm Munro, Proceedings of the Workshop
on Visualizing Software for Understanding and Analysis (VISSSOFT 2002) Paris, June 26-27, 2002

GEVOL

Uses Force-Directed Layout to draw graphs of Java
programs
— Call Graph
— Control-Flow Graph
— Inheritance Graph
Color encodes age
— colored in color of user who did the change
(1
G 4 i)
— Aging => progression from user‘s color to blue
Animation shows subsequent graphs
— one graph per day
— uses linear interpolation for smooth transitions.

Summary

+ Different techniques for visualizing the
change of the structure, metrics and source
code of a system over time.

* There is much more information in software
archives than current tools exploit, because
they leave the exploration and analysis to
the user.

