
1

Software
Visualization

Software
Architectures

Visualizing Software Architectures

• What is Software Architecture

• Some Diagrams on the Web

• Object Oriented
– UML
– Class Blueprint

2

(Software) Architecture

• Definition:
– „Architecture is the fundamental organization

of a system embodied in its components, their
relationships to each other and to the
environment and the principles guiding its
design and evolution.“

IEEE recommended practice for architecture description, IEEE Standard 1471, 2000.

Software Architecture
Issues:
• gross organization and global control structure;
• protocols for communication, synchronization,

and data access;
• assignment of functionality to design elements;
• physical distribution;
• composition of design elements;
• scaling and performance;
• and selection among design alternatives.

An Introduction to Software Architecture, David Garlan, and Mary Shaw
In V. Ambriola and G. Tortora (ed.), Advances in Software Engineering and Knowledge Engineering, Series on
Software Engineering and Knowledge Engineering, Vol 2, World Scientific Publishing Company, Singapore,
pp. 1-39, 1993.

3

Software Architectures

Specification Method
• Functional Decomposition
• Data Flow
• Data Structure
• Programming calculus

Relation
Uses
Becomes
Is composed of
Constructs by proof

(execution)

See [G.D. Bergland, „A Guided Tour of Program Design Methodologies“,
IEEE Computer, October,1981]

CoreCoreCore

Some Familiar Architectures

• Pipes and Filters

• Layered Systems

• Blackboard-driven (multiple units, read&write)

Blackboard
Process2

Process3Process1

Process4

Core
Basic Utilities
Application

User Interface

Core

Filter1 Filter2 Filter2

4

Some Architecture Diagrams
found on the Internet

• IT Architectures:
– include soft- and hardware and users

• Collected by Henk Koning

• Mostly freestyle graphics

See also [Practical Guidelines for Readability of IT-architecture Diagrams,
Henk Koning, Claire Dormann, Hans van Vliet, SIGDOC2002]

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Universal Modeling Language UML

• A set of graphical
notations for
modeling software
systems

• Combination of the
methods of Booch,
Rumbaugh und
Jacobsen („Three
Amigos“).

• Standardized by the
Object Management
Group (OMG)

20

UML Diagrams
• use case diagram
• class diagram (including object diagram)
• behavior diagrams:

– statechart diagram
– activity diagram

• interaction diagrams:
– sequence diagram
– collaboration diagram

• implementation diagrams:
– component diagram
– deployment diagram

• model management diagrams:
– packages, subsystems, and models

Graphical Notation
• We look here only at a small subset of UML

Class

Class

Object

<<instance of>>

Class
Attributes
Operations

Object:Class
Attributes
Operations

State and Behavior:

21

Graphical Notation

• Aggregation

Class
Attributes
Operations

Class
Attributes
Operations

has1 1..n

Notation for Multiplicity: 1..n, n..k, 1..*, *

Classes

• Java Syntax:
class Class extends Superclass { Properties }

• Example:
class Address { ... }
class HomeAddress extends Address { ... }
class POBoxAddress extends Address { ... }

Superclass

Class

22

Properties
• Syntax: class Class extends Superclass

{ Variable
and Method declarations }

• Example:
class Address

{ int zipcode;
String city;
void print()

{ System.out.println(zipcode+“ “+city); }
}

Class
Attributes
Operations

AddressAddress

int zipcode
String city
int zipcode
String city

print()print()

Method Overriding

class Address { int zipcode;
String city;
void print()

{ System.out.println(zipcode+“ “+city); }
}

class HomeAddress extends Address
{ String street;

int number;
void print()

{ System.out.println(street+“ “+number);
super.print(); }

}

AddressAddress

int zipcode
String city
int zipcode
String city

print()print()

HomeAddressHomeAddress

String street
int number
String street
int number

print()print()

Call to a hidden method, method chaining

<<call>>

23

Objects

home:HomeAddress
street=Milky Way
number=42
zipcode=99999
city=Galaxcity

print()

<<instance of >>

HomeAddress
String street
int number
int zipcode
String city

print()

Multiple Inheritance

LabelLabel

print()
printLabel()
print()
printLabel()

AddressAddress

String street
int number
String city

String street
int number
String city

AddressLabelAddressLabel

24

<<interface>> printable<<interface>> printable

print()print()

Interfaces

LabelLabel

print()
printLabel()
print()
printLabel()

AddressAddress

String street
int number
String city

String street
int number
String city

AddressLabelAddressLabel

print()print()

Packages:
Access and

Import
Relationships

25

Sequence Diagram

State Diagram

26

Class Blueprint
• Layers

– Initialization
• Methods with substring „init“ or „initialize“
• constructors

– Interface
• Methods invoked by initialization layer
• „public“ and „protected“ methods
• Methods not invoked by other methods within the same class

– Implementation
• „private“ methods
• Methods invoked by other methods in the same class

– Accessor
• Methods to get and set the values of attributes

– Attributes
• All attributes of the class

A Categorization of Classes based on the Visualization of their Internal Structure: the Class Blueprint
Michele Lanza, Stephane Ducasse. Published in the OOPSLA 2001 Proceedings (Conference on Object-
Oriented Programming, Systems, Languages, and Applications), pp. 300 - 311, ACM, 2001.

Class Blueprint

27

Class Blueprint
• Colors

Overriding Method

Delegating Method

Interface and Implementation
Layer Method

Attribute

Accessor Layer Method

Constant Method

Cyan: abstract method
Orange: extending method
Black line: invocation of a method
Cyan line: invocation of an accessor

or access of an attribute

Cyan: abstract method
Orange: extending method
Black line: invocation of a method
Cyan line: invocation of an accessor

or access of an attribute

Class Blueprint
• Inheritance

Attribute Definer

Talking Overrider/Extender

28

Class Blueprint: Categorization
• Based on the blueprint classes can be categorized,

e.g. as
– large implementation,
– wide interface
– or delegator classes.

• Taking inheritance into account they can be
classified as
– definers,
– overriders
– and extenders.

• Overriders and extenders can be
• talking (invoking superclass methods)
• or mute (no invocation of superclass methods).

Exercise
• For the given Java program

– Draw an architecture diagram using icons and
metaphors related to the application. You can draw
the diagrams by hand, but you can also produce it
with your computer. The best diagrams will be
shown in class.

– Draw the UML class diagram with aggregations.
– Draw a class blueprint (no color coding required).

• Optional: Search for architecture diagrams on
the web and identify familiar architectures
therein.

29

Excerpts of Java Source Code
A pet door that detects animals wearing a collar key
(electronically transmitted id). Opens and closes automatically

public class Pet
{ int collarKey; String name; }

public class Pets
{ final int maxPets=10;

Pet[] list = new Pet[maxPets];
public boolean contains(int k) { ... }
public void add(Pet p) { ... }
public void remove(int k) { ... }

}

public class Door
{ boolean isOpen;

public void isOpen() { return isOpen; }
public void open() { isOpen=true; }
public void close() { isOpen=false; }

}

public class PetDoor extends Door
{ Pets currentPets, registeredPets;

PetDoor(Pets regPets)
{ registeredPets=regPets;

currentPets=new Pets();
isOpen=false; }

public void open()
{ if (!isOpen) { super.open(); } }

public collarKeySignalReceived(int k)
{ Pet p=registeredPets.contains(k);

if (p!=null) { open(); currentPets.add(p); } }

public collarKeySignalLost(int k)
{ if (currentPets.contains(k))

{ currentPets.remove(k); close(); } }
}

