

Education and Evaluation

- Education
 - Example Scenarios for using Algorithm Animations for Teaching
- Evaluation
 - Questions
 - Evaluation Methods
 - Results of some experimental studies

See [Hundhausen,Douglas&Stasko:02]

Advanced Learning Scenarios

- Visualized Path Testing [Korhonen,Sutinen&Tarhio:02]
- Exploring the Functional Structure [Faltin:02]

Exploring the Functional Structure

• Goal:

- exploratory learning, so that the learner actively reinvents parts of an algorithm.
- Method:
 - Algorithm is structured into many small functions so the student only has to think about one function at a time. Finding the steps of a function for a specific data input can further be eased by providing constraints that delimit the exploration space.

Visualized Path Testing

- Statement coverage is satisfied, when every (noncontrol-flow) statement is executed at least once with the test set.
- Branch coverage is satisfied, when every edge of the flow graph of the program is applied at least once with the test set.
- **Path coverage** is satisfied, when the test set contains a test case for every possible control path in the flow graph of the program.
- **Problem:** Number of paths is exponential to the number of branches.

Types of Knowledge

- *conceptual* or *declarative*—an understanding of the abstract properties of an algorithm
- procedural—an understanding of the procedural, step-by-step behavior of an algorithm

Typical Questions

- What does it mean that a learning scenario is effective?
 - Comparison with other scenarios
 - Learners^c knowledge and skills have improved
 What did they know before ? → Pre-Test
 - Knowledge questions \rightarrow conceptual and procedural
 - Transfer questions → transfer/apply knowledge in a different context

Example Questions

- Taken from an evaluation of the animation of the generation of finite automata.
- Pre-Test
 - Do you know what finite automata are ?
 - Which word belongs to the language defined by the regular expression (ab)* ?
- Post-Test
- Knowledge Question:
 - Which word belongs to the language defined by the regular expression ab*a ?
 - Transfer Question:
 - We add the notation a^{\star} to our regular expressions. Give a construction rule for a transition diagram of a NFA ?
 - Open Question:

• What properties of the animation helped to better understand the generation algorithm ?

Learning Theories

- Epistemic-Fidelity Theory: emphasizes the value of a good denotational match between the graphical representation and the expert's mental model.
- **Dual-Coding Theory:** visualizations that encode knowledge in both verbal and non-verbal modes allow viewers to build dual *representations* in the brain.
- Individual-Differences Theory: asserts that measurable differences in human abilities and styles will lead to measurable performance differences in scenarios of AV use.
- **Cognitive Constructivism:** asserts that there is no absolute knowledge. Individuals actively construct their own individual knowledge out of their subjective experiences in the world.

Results of some Studies

- Meta study by Hundhausen_et_al
 - More than 40% of the 24 studies considered did not find significant results.
 - ,,Thus, according to our analysis, *how* students use AV technology, rather than *what* students see, ap-pears
 - to have the greatest impact on educational effectiveness."
- Several studies found that electronic learning material (multimedia or hypermedia) with algorithm animations outperforms lectures. Comparisons with textbooks are less clear.

Results of some Studies

- The form of the learning exercise in which AV technology is used is actually more important than the quality of the visualizations
- AV technology has been successfully used to actively engage students in such activities as

 prediction exercises
 - prediction exercises
 - programming exercises

Open Research Question: Evaluation of Industrial Software Visualization

- To what extent has software visualization been effectively applied in industry?
 - Increased productivity ?
 - Decreased costs ?
 - Support for the large software teams typical in industry?
 - Support for *distributed* programming teams that are common today?