
Checking universally quantified temporal
properties with three-valued analysis

Björn Wachter

Diplomarbeit
bei Professor Reinhard Wilhelm

Betreuung: Jörg Bauer

Universität des Saarlandes

2005

1

Erklärung

Hiermit erkläre ich, Björn Wachter, an Eides statt, dass ich die vorliegende Diplomarbeit
selbstständig verfasst und keine anderen als die angegebenen Quellen verwendet habe.

Saarbrücken, 24. Februar 2005

2

3

Abstract

Establishing correctness of systems with replicated components, UML models, and heap-
manipulating programs requires showing universally quantified temporal properties. We
present a symbolic quantifier elimination which is independent of a particular abstract
representation of states. Based on the symbolic quantifier elimination, we give a three-
valued logical analysis for quantified temporal properties. We compare the analysis with
a method that employs finite instantiation and data type reduction. For this purpose, we
have conducted a case study using the tools TVLA and SMV. Finite instantiation relies
on symmetry arguments. We discuss how the framework for three-valued logical analysis
relates to symmetry.

Zusammenfassung

Um Korrektheit von Systemen mit replizierten Komponenten, UML-Modellen und heap-
manipulierenden Programmen zu zeigen, bentötigt man universell quantifizierte temporale
Eigenschaften. Wir stellen eine symbolische Quantorelimination vor, die unabhängig von
einer speziellen Representation der abstrakten Zustände ist. Wir präsentieren eine drei-
wertige logische Analyse für quantifizierte temporale Eigenschaften, die auf dieser sym-
bolischen Quantorelimination beruht. Wir vergleichen die Analyse mit einer Methode, die
auf endlicher Instanziierung und Datentypreduktion aufbaut. Zu diesem Zweck haben wir
eine Fallstudie mit den Verifikationsprogrammen TVLA und SMV durchgeführt. Endliche
Instanziierung beruht auf Symmetrieargumenten. Wir erläutern die Beziehung des Frame-
works für drei-wertige logische Analyse zur Symmetrie.

4

5

Acknowledgements

Ich hatte grosses Glück Jörg Bauer als Betreuer zu haben. Sein Enthusiasmus und das
Interesse, das er an meiner Arbeit zeigte, waren immer wieder inspirierend für mich. Pro-
fessor Wilhelm danke ich für das spannende Thema, sein Vertrauen in meine Fähigkeiten
und die Chancen, die er mir gibt, mich als Forscher zu entwickeln.

Diskussionen mit meinem Kollegen Jan Reineke verdanke ich viele Anregungen zur
Gestaltung der Arbeit und neue Sichtweisen jenseits davon. Ich will auch meine sehr
guten Freunde Lijun Zhang und Andreas Meyer nicht vergessen. Lijuns Geradlinigkeit und
sein Sinn für das Praktische haben mich stark beeinflußt. Andreas wurde am Ende meiner
Studienzeiten ein enger Freund und geschätzter Kooperationspartner bei Projekten. Auch
jetzt half er mir tatkräftig und las meine Diplomarbeit.

Ich bin dankbar für die Förderung durch die Deutsche Forschungsgemeinschaft (DFG)
im Rahmen des Projektes AVACS (DFG Transregio-Sonderforschungsbereich 14, Teilpro-
jekt S2). Die Kooperation innerhalb von S2 hat mich sehr vorangebracht. Besonders
Bernd Westphal gab mir Denkanstösse während des letzten AVACS Workshops und kom-
mentierte frühe Entwürfe meiner Arbeit.

Die Mitarbeiterinnen und Mitarbeiter am Lehrstuhl Wilhelm haben mir immer wieder
bei kleineren Problemen geholfen.

Diese Aufzählung wäre unvollständig, würden darin nicht meine Eltern erwähnt. Ihre
emotionale Unterstützung kann man nicht hoch genug einschätzen. Darüberhinaus gab
mir mein Vater die Möglichkeit mich ganz meinem Studium zu widmen. Ohne sein Zutun
hätte es diese Arbeit nicht geben können.

6

7

Contents

1 Introduction 11
1.1 Verification Problem . 11
1.2 Existing Techniques . 13

1.2.1 Three-valued Logical Analysis . 13
1.2.2 Finite instantiation and data type reduction 13
1.2.3 Predicate Abstraction . 14

1.3 Summary of the thesis . 15
1.4 Results . 17
1.5 Overview of the thesis . 18

2 Models 19
2.1 First-Order Logic . 19

2.1.1 Syntax . 19
2.1.2 Semantics . 21

2.2 Syntax and Semantics of Models . 22
2.3 Predicate Logic . 23
2.4 Example . 24
2.5 Discussion . 25

3 Properties 28
3.1 Syntax . 29
3.2 Semantics . 30
3.3 Discussion . 32

4 Quantifier Elimination 34
4.1 Skolemization . 35
4.2 Predicate Logic Skolemization . 38
4.3 Discussion . 41

5 Analysis 44
5.1 Three-Valued Analysis . 44
5.2 Implementation . 50
5.3 Case Study . 55
5.4 Related 3-valued analyses . 58
5.5 Discussion . 63

8

6 Symmetry 65
6.1 Intuition. 65
6.2 Canonical Abstraction and Symmetry . 67

7 Finite Instantiation and Data Type Reduction 70
7.1 Case Study: SMV . 73

8 Conclusion 77
8.1 Future Work . 77

A Extended Embedding Order 83

B Proofs 89
B.1 Galois connection induced by representation function 89
B.2 Skolemization for predicate logic . 89
B.3 Preservation by Simulation . 92
B.4 Extended Embedding . 95
B.5 Symmetry Lemma . 96

C Sources 99
C.1 Case Study with TVLA . 99
C.2 Case Study with SMV . 102

9

Table of meta-variables

K = 〈S, I, R〉 ∈ KS transition system over state space S
S set of states
I set of initial states
R transition relation
Σ = 〈B,F , P,V , r〉 signature
T ∈ B base type
f ∈ F function symbol
p ∈ P predicate
x ∈ V variable
r rank function
s ∈ Struct[Σ, ∆] logical structure
∆(T) semantic domain of a base type T
e ∈ FOΣ expression over signature Σ
M = 〈S, θ, ρ〉 ∈ MΣ model
θ ∈ FOΣ expression denoting the initial states of a model
ρ ∈ FOΣ∪Σ′ expression denoting the transitions of a model
r ∈ R compatibility constraint

P = 〈P,V , r〉 signature of predicate logic
s ∈ 3Struct[P] three-valued logical structure

φ FCTL∗ state formula
Φ FCTL∗ path formula

ζ Skolem constant
η Skolem predicate

10

Chapter 1

Introduction

Systems which manipulate unbounded data and have a large number of components are
ubiquitous. They occur in the shape of software, or dynamic communicating systems.
Dynamic communicating systems consist of a collection of entities that interact via com-
munication links. They are dynamic in that communication links can change, and entities
can be created or destroyed. Examples are traffic guidance systems and ad-hoc networks.
Formal methods are needed to guarantee correctness of designs, in order to avoid acci-
dents, data loss, or security breaches.

1.1 Verification Problem

Formal verification methods provide means for verifying a model of a system against a
property. Both models and properties are denoted in an unambiguous formal description
language and have a precise semantics. Using formal verification, one can guarantee that
a system shows exactly the behavior specified by the property. Testing or simulation
can only partially explore the behavior of a program and can only consider a restricted
set of inputs. This is sufficient to find some, but not necessarily all, bugs, however,
it is insufficient to ensure that a system meets the specification given by the property.
We assume that models are denoted in first-order logic. Their semantics are first-order
transition systems, i.e. transition systems with a state space consisting of first-order
structures. Temporal properties incorporate the aspect of time into the specification. This
is necessary in order to express the reactions of a system to stimuli: when x happens then
after k steps y will happen, liveness properties: something good will happen eventually,
and safety properties: something bad will never happen. The semantics of a temporal
property is a set of logical structures in a transition system.

We are interested in verifying systems with infinite data domains and an unbounded
number of processes. A simple example for such a system is the Ticket Protocol depicted
in Figure 1.1. Processes compete for a resource that can only be used by one process
at a time. The goal of the Ticket Protocol is to make sure that no two processes ever
become critical simultaneously, i.e. use the resource simultaneously. Mutual exclusion
is ensured with counter variables. Counter values are called tickets. Each process has a
ticket, which is modeled by the local process variable a. There is always a winner ticket,
the value of global variable s; global variable t holds a fresh ticket that is by one larger

11

than the greatest ticket issued so far. Formally, mutual exclusion can be expressed by
the quantified safety property, for all processes p, q holds invariantly that if p and q are
critical they must be identical, formally this can be expressed by the quantified temporal
property φMUTEX = ∀p. ∀q. AG(at(p) = crit ∧ at(q) = crit ⇒ p = q). p and q stand for
process indices. AG means that the property is a safety property and at(p) = crit means
that process p is in its critical section.

Unbounded systems often require quantified temporal properties, i.e. temporal prop-
erties with first-order quantification in front. One obtains an instance of φMUTEX by
inserting symbols or values, e.g. if 0 and 1 are process indices, the temporal property
φMUTEX [0][1] = AG(at(0) = crit ∧ at(1) = crit ⇒ 0 = 1) is an instance. A quanti-
fier elimination technique will be presented which instantiates quantified formulas with
symbols. Generally, we consider properties where the first-order quantification domain is
unbounded. Therefore, there is an unbounded number of instances to be shown.

Program TICKET Program ADD

int s = 0,

t = 0;

void P[i] () {

int a = 0

while(true) {

think: atomic{a=t; t=t+1;}

wait: if(a==s) {

crit: ...

s=s+1

}

}

input int x;

input int y;

output int z;

while(true)

z=x+y

Figure 1.1: Running examples. The program on the right is called the Ticket Protocol.
The index i in P [i] ranges over an unbounded domain of process indices. The Ticket
Protocol is the parallel composition of the processes P [i]. Variable s stands for the winner
ticket, and variable t contains a fresh ticket. Local process variable a contains the ticket
of the corresponding process. The program on the right constantly adds its inputs x, y
and returns the result in z. Using our method, we showed mutual exclusion for the Ticket
Protocol. Except for the modeling, the process of verification was completely automatic.

12

1.2 Existing Techniques

In the last decade, much attention has been given to modeling and analyzing systems with
infinite data domains; e.g. [SRW02, SS99, BPR01, McM00, MQS00, NNH99, GHJ01].
Formal methods, and static analysis in particular, play a key role in verifying such systems.
Static analysis explores the states of a program in all possible situations without actually
running it. Instead, the program is run on abstract descriptors that represent collections
of states. Tools based on static analysis have been successfully used to verify systems and
find bugs [BCR, SRW+, McMb, HM, CCG].

1.2.1 Three-valued Logical Analysis

In three-valued analysis, the abstract descriptors are bounded three-valued structures. A
three-valued structure is a logical structure where predicates can valuate to a third truth
value 1/2 which stands for unknown. Boundedness means that the universes of those
structures have bounded size. The static analysis framework [SRW02], implemented in
the tool TVLA [SRW+], allows one to show and discover quantified invariants of both
heap-manipulating programs and systems with an unbounded number of components.
Quantified temporal verification, though, requires additional machinery. Verification of
general first-order temporal properties has been addressed in [YRSW03]; a temporal first-
order linear-time logic, called ETL, and a static analysis for verifying ETL properties
were given. [YR04] describes an analysis based on decomposition of quantified safety
properties. First-order safety properties are safety properties with first-order quantifiers
in front. More general temporal properties are not considered.

1.2.2 Finite instantiation and data type reduction

Quantified temporal properties naturally occur in hardware verification; e.g. one wants
to algebraically specify the outputs in terms of the inputs and the number of steps af-
ter which the result is available for all input values. [McM00] presents a methodology
for hardware verification, implemented in the tool SMV [McMb], based on compositional
reasoning and finite instantiation. The methodology is compositional in two senses: a
verification problem is decomposed into subproblems with finite instantiation, and spuri-
ous counterexamples (cf. SMV tutorial [McMb]) are removed by compositional reasoning.
Quantifiers are eliminated by finding a finite number of sufficient instances of the quan-
tified property; this is called finite instantiation. Instances can be found automatically if
model and specification fulfill certain syntactic criteria (scalarset criteria [ID96]). Sym-
metry means that data values can be permuted while preserving system behavior and
properties of interest. For example, one can exchange the roles of the processes in the
Ticket Protocol without changing the behavior of the program. Symmetry arguments are
used for finding a finite sufficient number of instances of a quantified property in [McM00].
For the mutual exclusion property of the Ticket Protocol, the instances φMUTEX [0][1] are
φMUTEX [0][0] are sufficient. This is because process indices can only be compared using
equality and no arithmetic operations are allowed.

Data type reduction is parameterized by a set of values which are to be kept material,
all other values are collapsed and all information about them is discarded. Data type

13

reduction is used in combination with finite instantiation. The values selected by decom-
position are kept material. For example, when φMUTEX [0][0] is verified the process indices
are abstracted to an abstract process index which stands for 0 and one which stands for
all process indices but 0.

UML models are another example for systems with large data domains and an un-
bounded number of components. [DH01] describes Live Sequence Charts, a specification
formalism for UML models. Instance lines of sequence charts have the semantics of uni-
versal quantification [DPJ03]. [DW03] proposes to use the compositional methodology
[McM00] for the verification of UML models against Live Sequence Chart specifications.

1.2.3 Predicate Abstraction

Predicate abstraction is used to compute a finite-state abstraction of a program. It is
parameterized by a set of properties (predicates). A program is mapped to an abstract
program, a so-called Boolean program [BPR01], which manipulates Boolean variables
corresponding to the predicates. Automated reachability analyses and invariant checking
for sequential C code (and concurrent programs with a bounded and fixed number of
processes) have been addressed by predicate abstraction, e.g., [HM, BCR, CCG, MPC+].
However, these techniques cannot handle systems with an unbounded number of repli-
cated components. Establishing correctness of such systems requires discovering quantified
invariants and verifying quantified temporal properties. Classical predicate abstraction
can only handle quantifier-free problems. There is a method [Lah04] which uses indexed
predicates and can find quantified invariants of unbounded systems.

14

1.3 Summary of the thesis

We formulate models using first-order logic with function symbols, equality and transitive
closure. The framework for three-valued analysis [SRW02] makes use of a predicate logic.
This logic can be obtained by considering the sublogic without function symbols of our
general first-order logic. The logic used in [DW03] lacks transitive closure. Apart from
that, our models strongly resemble symbolic transition systems of [DPJ03, DW03]. The
semantics of a model M is a first-order transition system K. If the states of a transition
system have the same universe, it is termed a constant-domain transition system. A
first-order transition system whose states can have different universes is called a varying-
domain transition system. The framework for three-valued analysis [SRW02] considers
first-order transition systems with varying domains. We give models a constant-domain
semantics.

The constant-domain semantics has the advantage that quantified properties become
more expressive (cf. Section 3.3). We specify properties in a branching temporal logic
augmented with first-order quantification. A model fulfills a property if all of its initial
states fulfill the property. The semantics of first-order properties is straightforward in
a constant-domain setting. First-order quantification is handled by using environments
which are passed into first-order expressions nested in the temporal property. The seman-
tics of temporal operators is standard and taken from [CGP00]. Property preservation is
ensured by a simulation preorder on first-order transition systems.

We want to get rid of quantifiers in front of temporal formulas. Skolemization is a
quantifier elimination technique which syntactically transforms a model and a property. It
is completely independent of an ensuing abstraction step and does not rely on a particular
representation of abstract states. The quantifier elimination is not based on symmetry
arguments; it originates from theorem proving, see e.g. [Ber02, OS03]. The idea is to
instantiate a quantifier with a fresh uninterpreted symbol which is introduced into the
model. The symbol has a free initial valuation and the valuation does not change over
time. For example, the mutual exclusion property of the Ticket Protocol is transformed
to the property φMUTEX = AG(at(ζ1) = crit ∧ at(ζ2) = crit ⇒ ζ1 = ζ2). We have
instantiated two quantifiers with fresh symbols ζ1, ζ2. Predicate logic is a sublogic of
the general first-order logic with function symbols. Skolemization introduces function
symbols. So Skolemization applies to models denoted in predicate logic but it produces
a model with function symbols. One has to adapt Skolemization to predicate logic and
obtains similar syntactical transformation as in the work about decomposing first-order
safety properties [YR04] (for more details see Section 5.4).

Combining predicate logic Skolemization with three-valued analysis yields a method
for verifying models denoted in predicate logic against quantified temporal properties.
The method is staged: it consist of a quantifier elimination step and an abstraction step.
The abstraction is done by three-valued logical analysis [SRW02]. Abstraction makes
the verification problem tractable at the cost of possible false alarms (also called spu-
rious counterexamples). We are given a model described in predicate logic, denoted as
M and a property φ. Skolemization is a syntactical transformation on concrete models,
and produces a model M and a property φ. Skolemization guarantees strong preservation
(symbolized by ⇔), i.e. we obtain an equivalent verification problem. An abstract transi-
tion system K] is computed by running the model M on abstract descriptors. Canonical

15

abstraction [SRW02] ensures termination of the exploration. The figure is to be read from
left to right and depicts the stages of the method.

M, φ � eliminate quantifiers // M,φ
� abstraction // K], φ

M � φ ks equivalent +3 M � φ ks implication
K] � φ

The quantifier elimination introduces symbols. These symbols appear in properties re-
sulting from Skolemization, e.g. φMUTEX . It is a straightforward idea to adapt the
abstraction to these symbols. The individuals referred to by the Skolem symbols and
individuals transitively reachable from those individuals should be distinguished from the
other individuals in order to increase precision. This idea is called heterogeneous abstrac-
tion in [YR04]. We used our analysis to prove mutual exclusion for the Ticket Protocol.
Additional lemmas or instrumentation predicates were not necessary.

As we want to compare three-valued analysis with finite instantiation and data type
reduction, it is interesting to see whether the syntactic restrictions required for finite
instantiation also hold for models of the three-valued analysis framework [SRW02]. Indeed,
models of [SRW02] are per se fully symmetric in a similar way as expressed in [ID96]
(except that the former approach uses a varying-domain and the latter a constant-domain
semantics). This coincides with the idea of a heap semantics where isomorphic 1 structures
are not distinguished because individuals are anonymous. The reasons for symmetry lie
in the predicate logic of [SRW02]. It cannot distinguish between isomorphic structures.
There is exactly one symbol with a fixed valuation: the equality symbol. Equality is
preserved under permutation. Except for equality all symbols are given a valuation by the
interpretation functions of logical structures. There are no symmetry-breaching operations
in the sense of [ID96]. Canonical abstraction maps isomorphic structures to the same
abstract structure. A characterization of canonical abstraction in terms of symmetry is
given in Chapter 6. Since our method and [YR04] is related to [McM00], we compare
the different approaches to verification of three-valued analysis (with decomposition) and
[McM00]. Chapter 7 contains a report of our findings concerning this comparison and
documents our practical experience with finite instantiation, data type reduction and the
verification tool SMV. We model the Ticket Protocol with SMV.

1 Two structures are isomorphic if they are identical up to a permutation of individuals.

16

1.4 Results

A framework for quantifier instantiation. Models are formulated in a many-sorted
first-order logic with function symbols, equality and transitive closure. Temporal proper-
ties can be expressed in a branching temporal logic. A syntactic quantifier instantiation
allows one to eliminate universal first-order quantification in front of temporal properties.
Thus verification of quantified temporal properties can be reduced to the verification of
temporal properties. The quantifier instantiation is a symbolic method which does not
rely on a particular representation of abstract states. (see Chapters 2,3,4)

An analysis for quantified temporal properties. Using the framework for instan-
tiation we construct an analysis for the special case of models formulated in predicate
logic. Three-valued logical analysis is used to check quantified temporal properties. We
describe implementations of state space exploration and give a correctness argument. We
have implemented a prototype with TVLA and verified mutual exclusion of the Ticket
Protocol using this implementation. (see Chapter 5)

Finite instantiation and data type reduction. We discuss how, our analysis in
particular, and three-valued analysis in general relates to data type reduction and finite
instantiation (see Chapter 7). Finite instantiation is based on symmetry arguments.
The concept of anonymous individuals of [SRW02] is a form of symmetry. Canonical
abstraction, the abstraction used in most work concerning three-valued logical analysis,
collapses symmetries. (see Chapter 6)

17

1.5 Overview of the thesis

Chapter 2: Models.

Chapter 3: Properties.

Chapter 4: Quantifier Elimination.

Chapter 5: Analysis.

Chapter 6: Symmetry.

Chapter 7: Finite instantiation and data type reduction.

Chapter 8: Conclusion.

Appendix.

18

Chapter 2

Models

The models we consider can express programs with an unbounded number of processes,
infinite data domains, and unbounded heap structures. Procedures or other complex
control structures are not directly supported. Syntactically, we write models in first-order
logic (our models closely resemble symbolic transition systems of [DPJ03, DW03]). The
first-order logic FOΣ has equality symbols and an operator for transitive closure. The
predicate logic of [SRW02] is the one-sorted sublogic of FOΣ without function symbols.
The semantics of models are transition systems over a state space of first-order structures.
The semantics is a constant-domain semantics which means that the states of transitions
systems induced by models share a common universe. We will discuss this choice later.

2.1 First-Order Logic

2.1.1 Syntax

Signatures define a typed vocabulary with which we write first-order expressions. Symbols
are typed by rank functions r. Types are tuples where the first component is tuple which
gives the domain, the second component is the range, e.g. the successor function succ on
the natural numbers Nat would have rank r(succ) = (Nat, Nat). For a set X, we denote
X∗ =

⋃
0≤i≤n X i. e stands for the empty tuple e ∈ X0.

Definition 2.1.1 (Signature). Let B∪{Bool} be a set of base types such that Bool /∈ B
is the distinguished base type of truth values.

variables. For every sort T ∈ B, there is a countably infinite set of
variables VT . Each variable has rank (e, T). The family
of sets VT is V.

function symbols. Let F be a set of function symbols. The type of each
function symbol f ∈ F is given by r ∈ F → B∗ × B.

equality symbols. For each base type T ∈ B, there is an equality symbol
=T with r(=T) = (TT, Bool).

predicate symbols. There is a set of predicate symbols P and the rank func-
tion r ∈ P → B∗ × {Bool}.

V , P , and F are disjoint. The tuple Σ = 〈B,F , P,V , r〉 is a signature.

19

We define the syntax of many-sorted first-order logic with transitive closure and equal-
ity. Ranks r are extended to the terms of the logic.

Definition 2.1.2 (First-Order Logic). Let Σ = 〈B,F , P,V , r〉 be a signature. We
define terms and expressions over Σ inductively.

terms t ∈ TΣ:
truth values. The literals 0, 1 are terms of rank r(v) = (e,Bool) with-

out free variables.
variable. A variable v ∈ VT is a term of rank r(v) = (e, T) with

free variables FV (v) = {v}.
equality. For terms t1, t2 with r(t1) = r(t2) = (e, T) (T ∈ B),

t1 =T t2 is a term of rank (e,Bool) and has free variables
FV (t1 = t2) = FV (t1) ∪ FV (t2).

compound term. For f ∈ F and p ∈ P with rank r(f) = (T1...Tn, T)
and r(p) = (T1...Tn, Bool), and for terms t1, ..., tn of
rank r(t1) = (e, T1), ..., r(tn) = (e, Tn), the applications
t = f(t1, ..., tn) and t′ = p(t1, ..., tn) are terms of rank
r(t) = (e, T) and r(t′) = (e,Bool), respectively, with free
variables FV (t) = FV (t′) =

⋃
1≤i≤n FV (ti).

expressions e ∈ FOΣ:
term. A term t of rank r(t) = (e,Bool) is an expression.
logical connectives. For expressions e1, e2, conjunction e1 ∧ e2 and negation

¬e1 are expressions. The free variables of a conjunction
are FV (e1 ∧ e2) = FV (e1) ∪ FV (e2) and of negation
FV (¬e1) = FV (e1).

quantification. For a variable x ∈ VT and an expression e with x ∈
FV (e) the universal quantification ∀x : T. e is an expres-
sion with free variables FV (∀x : T. e) = FV (e) \ {x}.

transitive closure. For variables v1, v2, v3, v4 ∈ VT and an expression e with
v3, v4 /∈ FV (e), v1, v2 ∈ FV (e) the transitive closure
(TC v1, v2 : T.e)(v3, v4) is an expression with free vari-
ables FV ((TC v1, v2 : T.e)(v3, v4)) = (FV (e)\{v1, v2))∪
{v3, v4}.

An expression e is closed if FV (e) = ∅.

Constants can be expressed as function symbols of rank r(e, T).

Notation. Let e1, e2 be two expressions. We define the abbreviations:

e1 ∨ e2 ≡ ¬(¬e1 ∧ ¬e2)
e1 ⇒ e2 ≡ ¬e1 ∨ e2

e1 ⇔ e2 ≡ (e1 ⇒ e2) ∧ (e2 ⇒ e1)
∃x : T.e ≡ ¬∀x : T.¬e

We omit the subscript T when writing down the equation symbol =T and write = instead.
This is not problematic because the semantic domains of the base types will be disjoint.

20

2.1.2 Semantics

First-order expressions are interpreted over logical structures. Logical structures provide
a semantic domain ∆(T) for each base type T ∈ B. The universe U of a logical structure
is the disjoint union of all semantic domains (the dot over a union operator ∪ signifies
disjoint union). The elements of the universe are called individuals. The base type
Bool has always the semantic domain B = {0, 1}. Function and predicate symbols are
interpreted as functions over the universe. Let Σ = 〈B,F , P,V , r〉 be a signature.

Definition 2.1.3 (Logical Structure). A logical structure is a tuple 〈U, ∆, ι〉 with

universe. U is a universe of values. The elements of the universe
U are called individuals.

semantic domains. ∆ is a function which maps each base type T to a set of

values ∆(T) ⊆ U . The universe U =
.⋃

T∈B∆(T) is the
disjoint union of all semantic domains.

interpretation. The interpretation ι maps each function symbol f ∈ F
of rank r(f) = (T1...Tn, T) to a function

ι(f) ∈ ∆(T1)× ...×∆(Tn) → ∆(T) .

The interpretation ι maps each predicate symbol p ∈ P
of rank r(p) = (T1...Tn, Bool) to a function

ι(p) ∈ ∆(T1)× ...×∆(Tn) → B .

We denote the set of logical structures over Σ as Struct[Σ]. Sometimes we omit the
universe of a logical structure and write 〈∆, ι〉, since the universe is uniquely determined
by U =

⋃
T∈B\{Bool} ∆(T). Using this notation, we define:

Struct[Σ, ∆] = {s | s = 〈∆, ι〉 ∈ Struct[Σ]} .

which is the the set of logical structures over Σ with fixed semantic domains ∆.

Definition 2.1.4 (Semantics of First-Order Logic). Let s = 〈U, ∆, ι〉 ∈ Struct[Σ, ∆]
be a logical structure. An environment is a function Z ∈ V ⇀ U . We write EnvU for the
set of environments. A complete assignment for an expression e is a function Z ∈ EnvU

such that FV (e) ⊆ dom(Z). The valuation [t] s Z of a term t in state s and with the
complete assignment Z ∈ EnvU is an element of U ∪B. We define the valuation of terms
inductively:

[x] s Z = (Z x)
[t1 = tn] s Z = ([t1] s Z) = ([t2] s Z)
[f(t1, ..., tn)] s Z = ι(f)([t1] s Z, ..., [tn] s Z)
[p(t1, ..., tn)] s Z = ι(p)([t1] s Z, ..., [tn] s Z)

where f ∈ F , p ∈ P .
The valuation [e] s Z of an expression e in a state s ∈ Struct[Σ, ∆] and with the

complete assignment Z is an element of B.

21

We define the valuation of expressions inductively:

[e1 ∧ e2] s Z = min{[e1] s Z, [e1] s Z}
[¬e] s Z = 1− ([e] s Z)
[∀x : T. e] s Z = min{[e] s (Z ∪ {x 7→ v}) | v ∈ ∆(T)}
[c] s Z = c

[(TC v1, v2 : T, e)(v3, v4)] s Z = max
n≥1, w1,...,wn∈∆(T)

Z(v3)=w1,Z(v4)=wn

min
1≤i≤n

([e] s Zwi,wi+1
)

where Zwi,wi+1
= Z ∪ {v1 7→ wi, v2 7→ wi+1}).

Let e ∈ FOΣ be a closed expression and S ′ ⊆ Struct[Σ]. The set denotation of e with
respect to S ′ is the set [[e]]S′ = {s ∈ S ′ | ([e] s ∅) = 1}.

When we mention assignments we will implicitly mean complete assignments from now
on.

2.2 Syntax and Semantics of Models

In order to express transition systems, we also need to denote binary relations upon states.
We denote relations as expressions over primed and unprimed symbols; hence, technically
we are dealing with expressions over the signature Σ ∪ Σ′, which is defined as:

Σ ∪ Σ′ := 〈B,F ∪ {f ′ | f ∈ F}, P ∪ {p′ | p ∈ P},V , r ∪ {f ′ : r(f)} ∪ {p′ : r(p)}〉 .

Given a pair of states s, s′ and expression ρ ∈ FOΣ∪Σ′ the idea is that s valuates unprimed
and s′ primed symbols. The set denotation of ρ is then the set of pairs that valuate ρ to
1. This idea is realized in the ensuing definition.

Definition 2.2.1 (Relations). Let ρ ∈ FOΣ∪Σ′ be a closed first-order expression over
primed and unprimed symbols. Let S ′ be a subset of Struct[Σ, ∆]. We define the deno-
tation [[ρ]]S′×S′ := crossΣ,∆([[ρ]]cross−1

Σ,∆(S′×S′)) where crossΣ,∆ is the one-to-one correspon-

dence

crossΣ,∆ ∈ Struct[Σ ∪ Σ′, ∆] → Struct[Σ, ∆]× Struct[Σ, ∆],

〈∆, ι〉 7→ (〈∆, {c 7→ ι(c) | c ∈ F ∪ P}〉, 〈∆, {c 7→ ι(c′) | c ∈ F ∪ P}〉) .

Let S ′ be a subset of Struct[Σ]. We set [[ρ]]S′×S′ =
⋃

∆[[ρ]]Struct[Σ,∆]∩S′.

Definition 2.2.2 (Transition System). Let S be a set, I ⊆ S and R ⊆ S×S. Further-
more, R fulfills that ∀s ∈ S ∃t ∈ S : R(s, t) (”Every state has a successor”). Then the
tuple K = 〈S, I, R〉 is called a transition system. The elements of S are called states. For
every state s, a state s′ with R(s, s′) is called a successor. The elements of I are called
the initial states of K, and R is called the transition relation of K. We denote the set of
transition systems with state space S as KS.

22

Models, as we will define them, are not entirely syntactic entities. A model consists of
two expressions θ, ρ, and a state space over which the expressions, which denote transitions
and initial states, respectively, are to be evaluated. Alternatively, we could have used a
state space Struct[Σ] or a state space with fixed semantic domains Struct[Σ, ∆]. There is
also the possibility to use constraints to describe the state space. Our motivation is that
we want to have a framework which is flexible enough to account for all the choices just
mentioned.

Definition 2.2.3 (Model). Let Σ be a signature and ∆ semantic domains.

model. A tuple M = 〈S, θ, ρ〉 ∈ P(Struct[Σ])×FOΣ×FOΣ∪Σ′

is called (many-sorted) model if ρ, θ are closed. S is
called the state space of M . The initial states and the
transitions are given as first-order expressions θ and ρ.
We write MΣ for the set of models over signature Σ.

constant-domain model. A model M with state space S ⊆ Struct[Σ, ∆] (for some
semantic domains ∆) is called constant-domain model.

semantics. The semantics of a model M is the transition system
[[M]] = 〈S, [[θ]]S, [[ρ]]S〉 ∈ KS.

The notion of a constant-domain model is that all structures in the state space of
the model share the same semantic domain ∆. The term varying-domain means that
structures may have different or even disjoint semantic domains.

2.3 Predicate Logic

An interesting special case of first-order logic is one-sorted (first-order) predicate logic. For
this sublogic we introduce simplified notation (which matches the notation of [SRW02]).

Definition 2.3.1 (Predicate Logic). We introduce a fixed base type U . A predicate
signature is a signature Σ = 〈{U , Bool}, ∅, P, r〉 (cf. 2.1.1). We write r(p) = k for
r(p) = (Uk, Bool). Syntactically, we can simplify the signature to Σ = 〈P,V , r〉. We use
the meta-variable P for predicate signatures.

Predicate logic expressions FOP can syntactically be simplified by removing type an-
notations. This leads to the syntax:

e ∈ FOP ::= 0 | 1 | v1 = v2 | p(v1, ..., vk) | e ∧ e | ¬e | ∀x. e | (TC v1, v2 : e)(v3, v4)

where p ∈ P , u, v, v1, ..., vk ∈ V and r(p) = k.
A structure of predicate logic is a logical structure over a predicate signature. We

syntactically simplify the notation for logical structures of predicate logic 〈∆, ι〉 to 〈U, ι〉
where U is the meta-variable for the universe U = ∆(U). For a fixed universe U we define
Struct[P , U] = {〈U, ι〉 | 〈U, ι〉 ∈ Struct[P]}.

The definition of valuation and denotation of general first-order expressions (cf. Def.
2.1.4, the valuation agrees with [SRW02]), the definition of models (cf. Def. 2.2.3), and
of properties (cf. Definitions 3.1.1, 3.2.2) carry over, since predicate logic is a sublogic of
first-order logic.

23

2.4 Example

Running Examples. We consider two programs (both depicted in Figure 1.1). One
program, called ADD, adds two numbers. The other program is the Ticket Protocol. The
Ticket Protocol is a small program which has an infinite data domain, and an unbounded
number of processes. The protocol is a solution to the problem of mutual exclusion (more
about that in Chapter 3) between concurrent processes. Mutual exclusion is insured with
counter variables. The counter values are called tickets. The analogy are the numbered
tickets sometimes issued in bureaus of authorities. Each process has a ticket, which is
modeled by the local process variable a. There is always a winner ticket, the value of
global variable s; global variable t holds a fresh ticket that is by one larger than the
greatest ticket issued so far.

We produce a model MTICKET corresponding to the Ticket Protocol, which is writ-
ten down in a tentative C-like syntax in Figure 1.1. We start by finding an appropriate
signature Σ. There are the following sorts: truth values Bool, process indices Proc,
process locations Loc, counter values Nat, i.e., tickets. Thus the set of base types is
{Bool} ∪ {Proc,Nat, Loc}. We model the variables of the program as symbols: there
are global variables s, for the winner ticket, and t for a fresh ticket. Both have rank
(e,Nat). There are local process variables a for each process. We model a as a function
symbol a of rank (Proc,Nat). The location of a process is modeled as a function symbol
at : (Proc, Loc). Implicitly, there is a variable act : (e, Proc), the process that is currently
active (we assume that processes are run in concurrent and interleaved fashion). Further-
more, we need equality predicates and a successor function on the tickets. As a set of
variable we can choose N, the set of natural numbers. We obtain the following signature:

Σ = 〈 {Nat, Proc, Loc}, (base types)
{act, s, t, a, succ}, (function symbols)
∅, (predicate symbols)
N, (variables)
{act : (e, Proc), s : (e,Nat), t : (e,Nat), a : (Proc,Nat), (typing)
at : (Proc, Loc), succ : (Nat, Nat)}〉 (typing cont.)

Next we write down the informal program as a model. The semantic domains are
∆(Nat) = N, ∆(Loc) = {think, wait, crit}. ∆(Proc) ⊆ N is some fixed subset of the
natural numbers. The state space

S = {s = 〈∆, ι〉 | s ∈ Struct[Σ, ∆], ι(succ)(n) = n + 1}

is simply the set of all structures such that the equality symbols have the ”correct” valu-
ation. The initial states are given by the first-order expression:

θ ≡ s = 0 ∧ t = 0 ∧ ∀p : Proc. (a(p) = 0 ∧ at(p) = think)

and the transition relation by:

24

ρ ≡ a(act) = t ∧ at(act) = think∧
at′(act) = wait ∧ t′ = succ(t) ∧ s′ = s∧
∀p : Proc.¬(act = p) ⇒ a′(p) = a(p) ∧ at′(p) = at(p)

∨ a(act) = s ∧ at(act) = wait∧
t′ = t ∧ s′ = s∧
∀p : Proc.¬(act = p) ⇒ a′(p) = a(p) ∧ at′(p) = at(p)

∨ at(act) = crit∧
at′(act) = think ∧ s′ = succ(s) ∧ t′ = t∧
∀p : Proc.¬(act = p) ⇒ a′(p) = a(p) ∧ at′(p) = at(p) .

2.5 Discussion

Note that the state space of a model is not given syntactically. Thus we can account for
several possibilities. In [SRW02], models are considered where the state space is implicitly
given by constraints over Struct[P] (called: ”Compatibility constraints”). This does in
general not produce a constant-domain model. We discuss this aspect within this section.

Leaving the state space open allows one to smuggle symbols of a fixed valuation into
the model, e.g. the successor function on natural numbers in the Example section. The
only symbol of fixed valuation in [SRW02] is the the equality symbol.

Symbolic Transition Systems. The models we consider are very similar to symbolic
transition systems in [DPJ03, DW03]. However, we do not refer to θ, ρ as predicates, since
this would clash with the predicates of our logic. Furthermore, a snapshot corresponds to
a logical structure.

Aspects concerning the framework [SRW02]. The framework uses predicate logic
(as described in Definition 2.3.1). The state space S ⊆ Struct[P] of the concrete model
is implicitly given by constraints. We give a formal description of constraints in Defin-
tion 5.2.1. Notably, S possibly consists of structures with different universes. We need
constant-domain models, so this is a point which deserves some attention.

Models of [SRW02] are given by a predicate signature P , a set of compatibility con-
straints R (cf. 5.2.1), a transition relation ρ, and initial states θ. Unlike our work,
the framework does not consider constant-domain models. Varying-domain models are
considered because allocation and deallocation of heap-manipulating programs is mod-
eled by universe-changing transitions, i.e., transitions between structures with a different
universe (Definition 2.2.3 does not account for universe-changing models). Even if we
consider models which do not change the universe, there remains the discrepancy between
our constant-domain models and the varying-domain models of [SRW02]. We need to
figure out whether that causes a problem. Formally, a model (a varying-domain model
which is not universe-changing) in the sense of Definition 2.2.3 can be obtained by tak-
ing the structures SR = {s ∈ Struct[P] | s � R} which satisfy the constraints. Then
M = 〈SR, θ, ρ〉 is a model with respect to 2.2.3. We need constant-domain models. Noth-
ing detains us from considering constant-domain models. Let us choose a universe U . We
set

SR,U = {s ∈ Struct[P , U] | s � R} = SR ∩ Struct[P , U]

25

and obtain the constant-domain model MU = 〈SR,U , θ, ρ〉. It turns out that the dis-
crepancy between M and MU is not problematic for us, as neither of them are actually
computed. We will use a simulation preorder (cf. 5.1.12) to insure property preservation.
The analysis algorithm of [SRW02] can be used to compute a transition system K] which
simulates [[M]], denoted by [[M]] � K]. Clearly, M simulates MU , [[MU]] � [[M]]. As
simulation is a preorder, we have [[MU]] � K], which is sufficient for our purpose. We do
not even have to consider M in the correctness proof of our analysis in Chapter 5. We
can directly show that the constant-domain model MU is simulated by K].

There is one point in the thesis where the constraint mechanism plays a role. The
quantifier elimination technique for predicate logic in Chapter 4 modifies the state space
of a model. We describe how the appropriate state space can be generated using the
constraint mechanism, and we give the appropriate constraints in Section 4.3 (for readers
who are familiar with [SRW02]).

The form of the transition relation ρ, which is termed transformer in [SRW02], is
also of interest. The transformer consists of actions, which model the semantic effect
of statements of a programming language. Actions can be described as expressions of
predicate logic. An action ac assigns to each predicate symbol its valuation in the next
state, i.e., for each predicate symbol p, there is an update formula up which is evaluated
in the current state (it contains only unprimed predicate symbols). The update formula
up has free variables v1, ..., vr(p) to match the number of arguments r(p) of predicate p.
Furthermore, an action is guarded by a precondition pre, an expression which is evaluated
in the current state (it contains only unprimed function symbols). The preconditions can
be used to model a part of the control structure of a program, such as conditionals. An
action ac corresponds to the following expression eac over primed and unprimed symbols:

eac ≡ pre ∧
∧
p∈P

∀v1, ..., vr(p). p′(v1, ..., vr(p)) = up(v1, ..., vr(p))

where
∧

p∈P is a syntactic to express the conjunction over all predicate symbols. A pro-
gram may consist of several actions ac ∈ Ac. In the shape analysis framework [SRW02]
control and hence the invocation of actions depends not only on preconditions (although
this would be doable) but on a control flow graph. [Yah01] adapts the methods of [SRW02]
to the verification of safety properties of concurrent Java programs. Therefore the concur-
rency model of Java has to be modeled. The nondeterministic choice of the next thread
to be executed is modeled by a system variable. We gloss over some technicalities. Let
us call this variable active. An action is executed by a thread, namely by the thread
referenced by active. An action has to ”know” the active process and may contain active
as a free variable. If we encode the control flow within threads using preconditions, we
obtain the transitions of such a model as the disjunction over all actions:

ρ ≡
∨

ac∈Ac

eac .

The models which are considered in [YRSW03] are the ones discussed [Yah01].

Varying-domain vs constant-domain semantics. We give models a constant-domain
semantics, i.e., transition systems over logical structures that share the same universe.

26

Creation and destruction can be modeled with one-argument predicates that mark indi-
viduals which are live (as described in [DW03]). We do not focus on heap-manipulating
programs. We assume that allocation and deallocation are encoded by a unary predicate
live. Exactly individuals which are allocated are live.

[YRSW03] uses a varying-domain semantics. It is assumed that all structures have
disjoint universes. An individual exists in exactly one logical structure. As the specifi-
cation language used there is a linear-time logic (called ETL), sets of traces rather than
transition systems are used as a semantics of models. The traces are sequences of logi-
cal structures. In order to relate individuals of different states in a trace, and to handle
destruction and creation, annotations are used:

Each structure πi in a trace π is annotated with a subset of its universe Di to be
deallocated and elements Ai that have been allocated at i. Furthermore, a function maps
the elements to be preserved to elements of the universe of the successor πi+1. This
varying-domain semantics is more complex than our constant-domain semantics. Later
on, we will see that the analysis based on the varying-domain semantics requires additional
infrastructure.

Why we have chosen a constant-domain semantics will become clear in the following
two chapters.

27

Chapter 3

Properties

We introduce the syntax and semantics of a first-order branching-time logic in which we
specify properties of models. The branching-time logic can quantify over paths starting
in a state.

CTL∗ is a branching-time logic of which LTL and CTL are sublogics. We augment
CTL∗ with an operator ∀ which expresses first-order quantification across time. This
allows us to refer to individuals in different states, e.g., ∀i : Process. AF at(i) = critical.
This quantification operator has the same semantics, if applied to a first-order expression,
as the universal quantification operator of first-order logic. Therefore we do not distinguish
between the two. We say that a formula contains quantification across time if ∀ is
applied to a formula which is not a first-order expression. Here is a short description of
the meaning of the most interesting temporal operators (we adopted the treatment from
[CGP00], the expressiveness of the logics LTL and CTL is discussed in [CD89]):

the path quantifiers:

• E (”exists”) there exists a path starting in this state that fulfills a path formula.

• A (”for all”) every path starting in this state fulfills a path formula.

temporal operators of path formulas:

• X (”next time”) require that a property holds in the second state of a path.

• F (”eventually”) operator expresses that a property will hold at some state on a
path.

• G (”globally”) specifies that a property holds in every state on a path.

• The U (”until”) operator can be used to combine properties. It holds if there is a
state on a path where the second property holds, and at every preceding state on
the path, the first property holds.

• The R (”release”) is the logical dual of U. It requires that the second property holds
along the path up to and including the first state where the first property holds.
However, the first property is not required to hold eventually.

28

path formulas: state formulas:
U (”until”) and R (”release”) path quantifiers E (”exists”) and A (”all”)

pUq
p holds until q holds

(and q must hold eventually)

| |
p p

| |
p p

| |
q ...

//

pRq
q holds up to and including
the first state where p holds

(p may never hold)

| |
q q

| |
q q

| |
q ...

//

(if p occurs)

| |
q q

| |
q q

| |
p

q ...
//

AG p AF p

/.-,()*+p
zzvvv

vv
$$HHH

HH

/.-,()*+p
����� ��6

66
/.-,()*+p

����� ��6
66/.-,()*+p /.-,()*+p /.-,()*+p /.-,()*+p

...

��������
xxqqq

qq
&&NNNNN

/.-,()*+p

����
�

��6
66

��������
����

�
��7

77

�������� �������� /.-,()*+p /.-,()*+p

...

EG p EF p

/.-,()*+p

zzuuuuu
$$HHH

HH

��������
����

��
��7

77
7 /.-,()*+p

����� ��6
66�������� �������� /.-,()*+p ��������

...

��������
yyrrr

rrr
%%LLL

LLL��������
��		

		
��5

55
5 ��������

��		
		

��5
55

5

�������� �������� /.-,()*+p ��������
...

Figure 3.1: CTL∗ consists of path formulas Φ and state formulas φ. The path formula
FΦ can be obtained from the U operator as 1UΦ. The path formula GΦ can be obtained
as (¬Φ)RΦ.

Figure 3.1 illustrates the temporal operators U and R on the left and the path quantifiers
E and A on the right.

The semantics of FCTL∗ strongly resembles that of CTL∗ as, e.g., given in [CGP00].
The only difference is that because of first-order quantification we need environments Z.

3.1 Syntax

The syntax of the specification language FCTL∗ (”F” stands for ”first-order”) is given by
the following definition:

Definition 3.1.1 (FCTL∗). Let Σ be a signature. We define the logic FCTL∗. It is
composed of state formulas φ, and path formulas Φ. It is defined recursively by:

φ ::= e | ¬φ | φ ∧ φ | φ ∨ φ | AΦ | EΦ | ∀x : T. φ (state)
Φ ::= φ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | XΦ | ΦUΦ | ΦRΦ (path)

where e ∈ FOΣ, x ∈ VT . We denote the set of state formulas φ over signature Σ as
FCTL∗

Σ.
An FCTL∗ formula φ quantifies across time if it has a subexpression ∀x : T. φ′

such that φ′ is not a first-order expression, i.e., φ′ /∈ FOΣ.

29

The sublogic consisting of FCTL∗ formulas φ which do not quantify across time is
called CTL∗. We denote the set of those formulas by CTL∗Σ. QCTL∗ formulas are CTL∗

with an arbitrary number of universal quantifiers in front.

The ”eventually”and the ”globally”operator can be expressed with the ”until”operator
and the ”release” operator :

FΦ ≡ 1UΦ
GΦ ≡ (¬Φ)RΦ

As remarked in [Ber02] ¬Φ1RΦ2 can be interpreted as strong induction on time where Φ1

is the induction hypothesis and Φ2 the conclusion of the induction step. GΦ ≡ (¬Φ)RΦ
is often used in circular reasoning.

We are particularly interested in a sublogic of FCTL∗ we call QACTL∗. The quantifier
elimination and the analysis we will present later allow us to verify QACTL∗ properties.
Relative to FCTL∗ the sublogic QACTL∗ restricts the use of first-order quantification and
forbids existential path quantification. Syntactically excluding the E path quantifier is not
sufficient because negation produces implicit existential path quantification; the E path
quantifier is dual to A. So we push down negation to the level of expressions. Without
loss of generality we can assume that temporal formulas are in positive normal form,
i.e. negation is only applied to first-order expressions. Because of the restricted use of
negation we keep duals of operators, e.g., fRg ≡ ¬(¬fU¬g), lest we lose expressiveness.
We obtain the logic QACTL∗ by allowing an arbitrary number of universal quantifiers in
front of an ACTL∗ formula.

Definition 3.1.2 (QACTL∗). We obtain a logic ACTL∗

ϕ ::= e | ¬e | ϕ ∧ φ | ϕ ∨ ϕ | AΦ (state)
Φ ::= ϕ | Φ ∧ Φ | Φ ∨ Φ | XΦ | ΦUΦ | ΦRΦ (path)

which consists of all CTL∗ formulas in positive normal form that only contain the A path
quantifier. The first-order logic QACTL∗ is defined recursively as:

φ ::= ϕ | ∀x : T. φ (QACTL∗)

where ϕ is an ACTL∗ formula and x ∈ VT .

3.2 Semantics

The following semantics of FCTL∗ is a standard CTL∗ semantics plus first-order quantifi-
cation; universal quantification occurs in state formulas. A model fulfills a formula if all
of its initial states fulfill the formula.

Definition 3.2.1 (Paths). Let K = 〈S, I, R〉 ∈ KS be a transition system. An infinite
path in K is a sequence π ∈ N → S such that ∀i ∈ N : R(πi, πi+1). We denote the set of
infinite paths in K as ΠK. For all paths π ∈ ΠK we define the notation πk := π(k), which
means that we pick the k-th state in a path, and πk := π|{i∈N|i≥k}, which is the postfix of
a path π starting at and including the k-th state.

30

Definition 3.2.2 (Semantics of FCTL∗). Let K = 〈S, I, R〉 ∈ KS be a transition
system such that S ⊆ Struct[Σ, ∆].

state formulas:
K, s, Z � e :⇔ ([e] s Z) = 1
K, s, Z � ¬φ :⇔ ¬(K, s, Z � φ)
K, s, Z � φ1 ∧ φ2 :⇔ K, s, Z � φ1 and K, s, Z � φ2

K, s, Z � φ1 ∨ φ2 :⇔ K, s, Z � φ1 or K, s, Z � φ2

K, s, Z � AΦ :⇔ ∀π ∈ ΠK : π0 = s ⇒ K, π, Z � Φ
K, s, Z � EΦ :⇔ ∃π ∈ ΠK : π0 = s ∧K, π, Z � Φ
K, s, Z � ∀x : T. φ :⇔ ∀u ∈ ∆(T) : K, s, (Z ∪ {x → u}) � φ

path formulas:
K, π, Z � φ :⇔ K, π0, Z � φ
K, π, Z � ¬Φ :⇔ ¬(K, π, Z � φ)
K, π, Z � Φ1 ∧ Φ2 :⇔ K, π, Z � Φ1 and K, π, Z � Φ2

K, π, Z � Φ1 ∨ Φ2 :⇔ K, π, Z � Φ1 or K, π, Z � Φ2

K, π, Z � XΦ :⇔ K, π1, Z � φ
K, π, Z � Φ1UΦ2 :⇔ ∃k ∈ N : K, πk, Z � Φ2 ∧ ∀0 ≤ j ≤ k : K, πj, Z � Φ1

K, π, Z � Φ1RΦ2 :⇔ ∀j ∈ N : (∀i < j : K, πi, Z 2 Φ1) ⇒ K, πj, Z � Φ2 .

The denotation of a closed state formula φ relative to K is [[φ]]K = {s ∈ S | K, s, ∅ � φ}.
We say that:

K fulfills φ, denoted as K � φ, iff I ⊆ [[φ]]K.

Let M ∈ MΣ be a constant-domain model. We say that M fulfills φ, denoted as M � φ,
if and only if [[M]] fulfills φ.

When the transition system K is clear from context, we shall write s, Z � φ and
π, Z � Φ instead of s, Z � φ and K, π, Z � Φ, respectively.

Semantics of sublogics. QCTL∗ and QACTL∗, being sublogics of FCTL∗, have a
semantics through 3.2.2. CTL∗, though being a sublogic, can also be interpreted over
varying-domain transition systems (with a state space where logical structures have inho-
mogeneous universes). Therefore, we drop the limitation S ⊆ Struct[Σ, ∆] in definition
and just require S ⊆ Struct[Σ] in 3.2.2. Furthermore, we ignore the equation for quan-
tification and drop the environments, since environments only make sense in presence of
quantification. Thus we obtain a CTL∗ semantics.

Example 3.2.1. We discuss the QACTL∗ properties shown in Figure 3.2. The figure
contains the property φADD which refers to the addition program MADD and two properties
of the Ticket Protocol MTICKET . Being a solution to the mutual exclusion problem means
that the program is safe, in that no two processes are simultaneously in their critical
section, as expressed by φMUTEX in Figure 3.2.

Liveness means that every process, once it is in location ”think”, will eventually reach
its critical section, as expressed by φLIV E in Figure 3.2.

31

φADD ≡ ∀a : integer. ∀b : integer. AG (x = a ∧ y = b ⇒ AX z = a + b)
φMUTEX ≡ ∀i : Nat. ∀j : Nat. AG ((at(i) = crit ∧ at(j) = crit) ⇒ i = j)
φLIV E ≡ ∀i : Nat. AG (at(i) = think ⇒ AF(at(i) = crit))

Figure 3.2: Example Properties. φ is a property of MTICKET .

3.3 Discussion

Characterization of Logics. In [SRW02], safety properties are considered. The term
safety property refers to properties of the form AG e where e ∈ FOP . As such the
framework supports quantification already. However, one cannot relate individuals in
different states, i.e., one cannot handle quantification across time. Furthermore, safety
properties cannot express liveness and reactivity properties of models. We want to verify
such properties, hence we need to consider temporal logics.

The abstractions we use lead to overapproximating abstract models which have more
branching behavior. We consider three temporal logics with a different capability of ex-
pressing branching behavior. LTL can be embedded into ACTL∗. ACTL∗ is the universal
fragment of CTL∗ (see [CGP00]). We enrich these logics with first-order quantification
across time. By augmenting the branching time temporal logic CTL∗ with nested first-
order quantification, one obtains the logic FCTL∗ (one adds state formulas of the form
∀x : T. φ). Similarly, we obtain the logics FACTL∗ and FLTL. FLTL corresponds to the
logic ETL [YRSW03]. QCTL∗ is the sublogic of FCTL∗ which consists of formulas that
are composed of a CTL∗ formula with an arbitrary number of first-order quantifiers in
front. The difference is that QCTL∗ lacks nesting and existential quantification. Analo-
gously, we obtain QACTL∗ and QLTL. The quantifier elimination Skolemization removes
the quantifiers of a QCTL∗ formula and produces (possibly after several steps) a CTL∗

formula. All these inclusions are depicted below:

CTL∗

��

QCTL∗

��

oo FCTL∗oo

��
ACTL∗

��

QACTL∗

��

oo FACTL∗oo

��
LTL QLTLoo FLTLoo

QACTL∗ = ∀ CTL∗

FLTL = ETL [YRSW03]
QLTL = ∀ LTL [DW03]

Following an arrow means loss of expressiveness. The more one moves right the more
restricted is our ability to quantify. The names of the logics express that. Arbitrarily
nested quantification is expressed by an ”F” in front. Universally quantified temporal
properties are denoted with a ”Q” in front. The more one moves down the less branching
behavior is expressible. That ranges from CTL∗, which allows both universal and exis-
tential path quantification, to ACTL∗, which only has universal path quantifiers, to LTL,
which consists of CTL∗ path formulas with a universal path quantifier in front.

In [YRSW03], a varying-domain trace semantics of ETL is given. To relate individuals
of different states in a trace and to express allocation and deallocation, states are anno-

32

tated with sets, and transitions are annotated with functions (cf. Discussion of Chapter
2). ETL cannot express branching, however, it allows for nested existential and uni-
versal quantification. [DW03] describes the verification of QLTL properties using finite
instantiation and data type reduction.

In the next chapter, we will describe how QCTL∗ problems can be reduced to CTL∗

problems. Due to the analysis in Chapter 5, which introduces more behavior, Skolemiza-
tion and the analysis allow us check QACTL∗ properties.

Varying-domain vs constant-domain semantics (continued). Constant-domain
semantics have the advantage that they make quantified temporal properties more ex-
pressive. A quantification ∀x : T. φ in a QCTL∗ property refers to the individuals within
the initial states of a model. In a varying-domain semantics, it would be possible that
individuals are added later on. We could not refer to such individuals using QCTL∗

formulas, they would be ”out of reach”.
Assume that we are considering a mutual exclusion protocol where processes can be

added and removed. We want to show liveness, i.e., globally every process will eventually
attain its critical section

AG ∀p : Proc. AF at(p) = critical .

This property cannot be expressed using a quantified temporal formula if domains may
vary. The formula is then in particular (unlike than in the constant-domain setting) not
equivalent to

∀p : Proc. AG AF at(p) = critical .

We do not discuss removal and addition in connection with the Ticket Protocol because
we want to keep the examples short and simple. It is, however, possible to handle dynamic
systems using our approach.

33

Chapter 4

Quantifier Elimination

If the semantic domain of a first-order universal quantifier is infinite, one cannot show
every instance of a quantified formula. Finding a finite number of sufficient instances is one
possibility. Symmetry arguments allow one to do this (cf. [DW03, McM00] and Chapters
6 and 7). However, symmetry is a not a prerequisite of every quantifier elimination;
in particular, the quantifier elimination we will present now does not rely on symmetry
arguments. This plays a role if one wants to reason about arithmetics in a model ([McM00]
makes use of uninterpreted functions to abstract away from arithmetics).

Skolemization eliminates quantifiers in front of FCTL∗ formulas. As QCTL∗ is a
sublogic of FCTL∗ (namely the sublogic that consists of universally-quantified CTL∗ prop-
erties), we have a method that allows us to reduce QCTL∗ problems to equivalent CTL∗

problems. QCTL∗ formulas have the form

∀x1 : T1 ... ∀xk : Tk. ϕ(x1, ..., xk) (∗)

where ϕ is a CTL∗ formula. By repeated application quantification across time can be
removed (for an explanation of the term ”quantification across time” cf. Introduction to
Chapter 3 and Definition 3.1.1). CTL∗ formulas can contain nested first-order expressions,
in so far CTL∗ formulas need not be free of any quantification. (cf. Definition 3.1.1).

The quantifier elimination technique we use originates from theorem proving and is
sometimes called Skolemization. We will also call it Skolemization. The idea is to instan-
tiate the quantification variable with a fresh uninterpreted function symbol ζ that ranges
over the quantifier domain. The symbol ζ is often called Skolem constant. Skolemization
can be expressed by the tentative proof rule (∀ζ) :

ζ fresh, Mζ � ϕ(ζ)

M � ∀x : T. ϕ(x)
(∀ζ)

which will be formalized in Theorem 4.1.1. The model Mζ is the original model M with
the Skolem constant ζ added. ϕ has free variable x; this is expressed by the notation
ϕ(x). We replace the free variable x with ζ and obtain property ϕ(ζ). The proof rule
says that the premise Mζ � ϕ(ζ) implies M � ∀x : T. ϕ(x) (in fact, the converse also
holds). The initial valuation of ζ in Mζ is unconstrained and thus takes on every possible
value in the quantification domain ∆(T). Furthermore, the valuation of ζ does not change
over time. The term uninterpreted constant expresses this notion. By proving that every

34

initial state of Mζ fulfills ϕ(ζ), we show that every instantiantion of ∀x : T. ϕ(x) holds in
M . A universally quantified formula holds if and only if all of its instances hold.

4.1 Skolemization

Skolemization is in principle very simple but the idea can easily get buried under notation.
Maybe an example can best illustrate the technique.

Example 4.1.1. We consider model MADD (which corresponds to program ADD in Fig-
ure 1.1) and property φADD (cf. Figure 3.2). We need to apply Skolemization twice in
order to remove the quantifiers. Instantiating quantifier variables a, b with fresh function
symbols ζ1, ζ2 yields the property: φADD ≡ AG (x = ζ1 ∧ y = ζ2 ⇒ AX z = ζ1 + ζ2) and
the model MADD with the same syntactic description of the initial states as MADD and
transitions ρ ≡ z′ = x + y ∧ ζ ′1 = ζ1 ∧ ζ ′2 = ζ2 (the expression describing the transitions of
MADD is z′ = x + y).

We want to specify that the Ticket Protocol MTICKET is ”live” (φLIV E of Figure 3.2)
- every process will eventually become critical. This can be expressed as:

φLIV E ≡ ∀i : Proc. AG (at(i) = think ⇒ AF (at(i) = crit)) .

Let us apply quantifier elimination (∀ζ). We introduce a constant ζ into our model. This
yields a model MTICKET = 〈S, θ, ρζ〉 where the transition relation is defined such that ζ
has a fixed valuation, i.e. ρζ ≡ ρ∧ ζ ′ = ζ. The state-space of the original Ticket Protocol
is augmented with ζ, i.e. S = {〈∆, ι ∪ {ζ 7→ v}〉 | v ∈ ∆(T), 〈∆, ι〉 ∈ S} and the
constraint that describes the initial states θ is left unchanged. The modified property

φLIV E ≡ AG (at(ζ) = think ⇒ AF (at(ζ) = crit))

is checked against MTICKET . We have the following equivalence

MTICKET � φLIV E ⇔ MTICKET � φLIV E .

We have eliminated the quantifier and obtained an equivalent verification problem.

In the example, we have overlined models and properties obtained from Skolemization.
However, when we argue about correctness of Skolemization, we are interested in the
particular Skolem constant. We will denote models which result from Skolemization as
Mζ where ζ is the Skolem constant. We name Mζ the ζ-augmentation of M . The ζ-
augmentation of MTICKET is MTICKET . Analogously, for a property φ = ∀x : T. ϕ, we
call the property which results from Skolemization the ζ-instance of φ, denoted as ϕ(ζ).
The ζ-instance of φLIV E is φLIV E. We do not annotate with an explicit Skolem constant
outside this Chapter because that simplifies our notation, in particular if Skolemization
has been applied more than once, and if names of models or properties already have a
subscript, such as φLIV E.

Again we consider the Skolemization proof rule (∀ζ).

ζ fresh, Mζ � ϕ(ζ)

M � ∀x : T. ϕ(x)
(∀ζ)

35

Now it should be more comprehensible, and we want formalize and prove it. The syntac-
tical transformations used in Skolemization, namely the exact form of Mζ and ϕ(ζ), are
given in the next definition.

Definition 4.1.1. Let Σ = 〈B,F ,V , r〉 be a signature and φ an FCTL∗Σ formula of the
form

φ = ∀x : T. ϕ

where T ∈ B is a base type. Let ζ be a fresh symbol (ζ /∈ F ∪ P ∪ V). Adding the fresh
symbol ζ to Σ yields the augmented signature Σζ = 〈B,F ∪{ζ}, P,V , r ∪{ζ : T}〉. The ζ-
instance of φ is the formula ϕ(ζ) we obtain by replacing x with ζ in ϕ, i.e. ϕ(ζ) = ϕ[x/ζ].

Let M = 〈S, ρ, θ〉 ∈ MΣ be a model with state space S ⊆ Struct[Σ, ∆]. We obtain
a model Mζ = 〈Sζ , ρζ , θ〉 ∈ MΣζ

with transitions ρζ = ρ ∧ ζ ′ = ζ and state space
Sζ = {〈∆, ι∪ {ζ 7→ v}〉 | v ∈ ∆(T), 〈∆, ι〉 ∈ S} 1. We call Mζ the ζ-augmentation of M .

Theorem 4.1.1 (Skolemization).
Let M ∈MΣ be model and φ an FCTL∗Σ formula of the form

φ = ∀x : T. ϕ

where T ∈ B is a base type. Then the equivalence

M � φ ⇔ Mζ � ϕ(ζ)

holds, where ϕ(ζ) is the ζ-instance of φ and Mζ the ζ-augmentation of M as
described in Definition 4.1.1.

The idea underlying Skolemization reminds of case splitting in mathematics. One shows
a universally quantified formula φ = ∀x : T. ϕ by showing each of its instances, i.e. by
inserting each possible value (values are called individuals in our setting). We do not insert
values, instead we replace x with ζ and set the instantation value as a valuation of ζ in
a transition system. Let K be the transition system induced by model M . Furthermore,
for an individual in the quantification domain we denote the transition system where the
valuation of ζ is fixed to u as Ku. A verification problem Ku � ϕ(ζ) is one instance of
the original verification problem K � φ. The correctness argument of case splitting is the
following equivalence:

K � φ ⇔ ∀u ∈ ∆(T) : Ku � ϕ(ζ) (CASE) .

The validity of Mζ � ϕ(ζ) is equivalent to the right side of the equivalence above. Why is
that? The initial valuation of ζ is unconstrained and hence initially every possible value is
taken on. The valuation remains fixed. The transition system induced by Mζ is disjointly
composed of the transition systems Ku. A model fulfills a property if all of its initial
states do, and therefore if all Ku fulfill ϕ(ζ). The proof of Theorem 4.1.1 is based on the
argument we have just given.

1Note that (Struct[Σ,∆])ζ = Struct[Σζ ,∆] holds.

36

Proof of Theorem 4.1.1. Let S, Sζ be as in Definition 4.1.1. We abbreviate the tran-
sition systems resulting from the denotation K := 〈S, I, R〉 := [[M]] of M , and Kζ :=
〈Sζ , Iζ , Rζ〉 := [[Mζ]] the transition system induced by Mζ .

For u ∈ ∆(T) we denote the subset of Sζ in which the valuation of symbol ζ is u as

Su = {〈∆, ι〉 ∈ Sζ | ι(ζ) = u} .

We need this to define a transition system Ku which is identical to Kζ except that initially
ζ has valuation u:

Ku := 〈Sζ , Ru, Iu〉 := 〈Sζ , [[ρζ]]Sζ
, [[I]]Sζ

∩ Su〉 ∈ KSζ
.

Ku stands for a subproblem in a case splitting. The following equivalence holds

K � φ ⇔ ∀u ∈ ∆(T) : Ku � ϕ(ζ) (CASE) .

The equivalence (CASE) can be proved by a straightforward structural induction on φ.
It is an analog of case splitting as it is common in mathematical proofs. We check a
first-order formula by inserting every possible value. Each insertion yields a subproblem,
here Ku � ϕ(ζ). The validity of the first-order formula is equivalent to the validity of all
subproblems; this is what the equivalence (or proof rule) (CASE) expresses.

The claim follows by the following sequence of equivalences:

M � φ
def⇔ K � φ

(CASE)⇔ ∀u ∈ ∆(T) : Ku � ϕ(ζ)
def⇔ ∀u ∈ ∆(T) : Iu ⊆ [[ϕ(ζ)]]Ku

(∗)⇔ ∀u ∈ ∆(T) : Iu ⊆ [[ϕ(ζ)]]Kζ

(∗∗)⇔ Iζ ⊆ [[ϕ(ζ)]]Kζ

def⇔ Kζ � ϕ(ζ)
def⇔ Mζ � ϕ(ζ)

thereby the following intermediate steps need to be explained:

(∗) For every formula ϕ ∈ FCTL∗
Σζ

we have

[[ϕ]]Kζ
= [[ϕ]]Ku

since the definition of [[.]] only depends on Rζ = Ru.

(∗∗) The initial states can be decomposed into a disjoint union:

Iζ =
.⋃

u∈∆(T)

Iu .

37

Rewriting formulas. Some properties can be rewritten into QCTL∗. The benefit is
that this makes them amenable to Skolemization. For example, φLIV E is equivalent to

AG (∀i : Proc. at(i) = think ⇒ AF (at(i) = crit)) .

φLIV E is a QCTL∗ formula, the latter formula is not.
By ”shifting the universal quantification outward” some properties which are not

QCTL∗ formulas can be transformed to equivalent QCTL∗ formulas. This idea is ex-
pressed in the following Lemma:

Lemma 4.1.2 (Rewrite Rules). Let K = 〈S, I, R〉 be a transition system. Then we
have:

• [[AG ∀x : T.φ]]K = [[∀x : T.AG φ]]K

• [[AX ∀x : T.φ]]K = [[∀x : T.AX φ]]K

• [[AF ∀x : T.φ]]K ⊆ [[∀x : T.AF φ]]K and in general ⊇ does not hold.

Read from left to right, the equations above give rewrite rules for bringing formulas
into a form that allows for Skolemization. The rewrite rules are not meant to be complete.

4.2 Predicate Logic Skolemization

Our predicate logic FOP does not offer general function symbols. Skolemization intro-
duces Skolem constants. As a result, we would obtain models which are not predicate
logic models any more. So we need to find a variation of Skolemization that makes use of
a predicate instead, in order to remain within predicate logic. The use of predicates com-
plicates rewriting the property φ compared to Skolemization for first-order logic. Having
seen the more generic version of Skolemization, this transformation will, however, become
clear.

First, let us look at the idea and then at the technical details. We can exploit that
predicate logic is an instance of first-order logic. So a model M in predicate logic can be
seen as a particular model of general first-order logic. We can apply Skolemization (cf.
Theorem 4.1.1) and obtain a general first-order model M which is not a predicate model
anymore because it has been augmented with a Skolem constant ζ. There is machinery (cf.
B.2) that allows us to encode general first-order models and general first-order properties
in predicate logic such that we lose no information, i.e. a one-to-one correspondence. The
result of these steps is an equivalent verification problem where the quantifier is gone.
This was just a plausibility argument. There is no need for such a sequence of conversions
in practice.

Predicate logic Skolemization can again be described as a tentative proof rule:

η fresh, M [η] � ϕ[η]

M � ∀x. ϕ(x)
(∀η)

38

where ϕ[η] is ϕ(x) with each occurrence of a first-order expression e with x ∈ FV (e)
replaced with the first-order expression ∃u. η(u)∧ e[x/u]. The technical difference is that
η is now a unary predicate rather than a constant. M [η] is M with the transition relation
ρ changed to ρ[η] = ρ ∧ ∀u. η′(u) = η(u).

Definition 4.2.1. Let P = 〈P,V , r〉 be a signature and φ an FCTL∗ formula of the form

φ = ∀x. ϕ .

Let η be a fresh symbol (η /∈ P ∪ V). We call η a Skolem predicate. Adding the fresh
predicate symbol η to P yields the augmented predicate signature P [η] = 〈P ∪ {η},V , r ∪
{η 7→ 1}〉. The predicate logic η-instance of φ is the formula ϕ[η] we obtain by replacing
each occurrence of a first-order expression e with x ∈ FV (e) with the first-order expression
∃u. η(u)∧e[x/u]. We express this transformation with the expression-level transformation
function τP,P[η] from Figure 4.1 by setting

ϕ[η] = τP,P[η](ϕ, λe. if (x ∈ FV (e)) (∃u. η(u) ∧ e[x/u]) else e)

where u ∈ V is a fresh variable which does not appear in φ.
Let M = 〈S, ρ, θ〉 ∈ MP be a model with state space S ⊆ Struct[U]. We obtain a

model M [η] = 〈S[η], ρ[η], θ〉 ∈ MP[η] with transitions ρ[η] = ρ ∧ ∀u. η′(u) = η(u) and
state space S[η] = {〈∆, ι ∪ {η 7→ v}〉 | v ∈ U, 〈U, ι〉 ∈ S}. We call M [η] the predicate
logic η-augmentation of M .

Theorem 4.2.1 (Predicate Logic Skolemization).
Let M ∈MP be model and φ an FCTL∗P formula of the form

φ = ∀x. ϕ .

Then the equivalence
M � φ ⇔ M [η] � ϕ[η]

holds, where ϕ[η] is the η-instance of φ and M [η] the predicate logic η-
augmentation of M as described in Definition 4.1.1.

Proof. The proof can be found in Appendix B.2.

Predicate logic Skolemization introduces existential quantifiers only at the level of expres-
sions. It does not introduce quantification across time. Therefore, one can reduce QCTL∗

verification problems to equivalent CTL∗ verification problems by using Skolemization.
In many cases, multiple quantifiers occur in front of a temporal formula. We consider

a simple example formula and apply predicate logic Skolemization.

Example 4.2.1. We will give a more concise description of how the Ticket Protocol can
be modeled in predicate logic in Section 5.3. Here we give only a short description which
should be sufficient to understand the transformations of predicate logic Skolemization.
Types are modeled as unary predicates: predicate symbol process stands for processes, and
predicate symbol number for tickets. The local variable ”a” of each process is the ticket of
the particular process. This is modeled by a binary predicate a. The ticket of a process p
is the number j such that a(p, j). The following property expresses that two numbers have
distinct tickets:

39

φUNEQ = ∀p1. ∀p2. ∀j. (number(j) ∧ process(p1) ∧ process(p2) ∧ p1 6= p2) ⇒
AG(¬(a(p1, j) ∧ a(p2, j)))

The property φUNEQ contains two nested first-order expressions e1, e2 and its structure is
∀p1. ∀p2. ∀j. e1 ⇒ AG e2 where

e1 = (number(j) ∧ process(p1) ∧ process(p2) ∧ p1 6= p2)
e2 = (¬(a(p1, j) ∧ a(p2, j))) .

We eliminate the first quantifier, the one with quantification variable p1. We compute the
η1-instance of φUNEQ. Variable p1 is free in e1 and e2. We demonstrate the transforma-
tions on the two first-order expressions e1 and e2. The transformations produce first-order
expressions e′i = ∃u1. η1(u1) ∧ ei[p1/u1] for i = 1, 2:

e′1 = ∃u1. η1(u1) ∧ e1[p1/u1]
= ∃u1. η1(u1) ∧ number(j) ∧ process(u1) ∧ process(p2) ∧ u1 6= p2

e′2 = ∃u1. η1(u1) ∧ e2[p1/u1]
= ∃u1. η1(u1) ∧ ¬(a(u1, j) ∧ a(p2, j))

The η1-instance of φUNEQ[η1] is ∀p2. ∀j. e′1 ⇒ AG e′2. Now we eliminate the first
quantifier in φUNEQ[η1], the quantifier with quantification variable p2. We compute first-
order expressions e′′i = ∃u2. η2(u2) ∧ e′i[p2/u2] for i = 1, 2:

e′′1 = ∃u2. η2(u2) ∧ e′1[p2/u2]
e′′2 = ∃u2. η2(u2) ∧ e′2[p2/u2]

where e′1[p2/u2] = ∃u1. η1(u1) ∧ number(j) ∧ process(u1) ∧ process(u2) ∧ u1 6= u2 and
e′2[p2/u2] = ∃u1. η1(u1)∧¬(a(u1, j)∧a(u2, j)). The η2-instance of φUNEQ[η1] is φUNEQ[η1][η2] =
∀j. e′′1 ⇒ AG e′′2. We can remove the quantifier in front of φUNEQ[η1][η2] analogously
and finally we obtain the ACTL∗ property

φUNEQ[η1][η2][η3] = ∀j. e′′′1 ⇒ AG e′′′2

with

e′′′1 = ∃u3. η3(u3) ∧ e′′1[j/u3]
= ∃u3. η3(u3)∧

∃u2. η2(u2)∧
∃u1. η1(u1) ∧ number(u3) ∧ process(u1) ∧ process(u2) ∧ u1 6= u2

e′′′2 = ∃u3. η3(u3) ∧ e′′2[j/u3]
= ∃u3. η3(u3)∧

∃u2. η2(u2)∧
∃u1. η1(u1) ∧ ¬(a(u1, u3) ∧ a(u2, u3)) .

We have so far neglected the model. Let MTICKET = 〈S, θ, ρ〉 ∈ MP be the model that
corresponds to the Ticket Protocol. The η1-augmentation of MTICKET is MTICKET [η1] =
〈Sη1 , θ, ρ ∧ ∀v. η′(v) = η(v)〉. Applying η2 and η3-augmentation to this model, we get

MTICKET [η1, η2, η3] = 〈 ((Sη1)η2)η3 , θ,
ρ ∧ ∀v. η′1(v) = η1(v)

∧ ∀v. η′2(v) = η2(v)
∧ ∀v. η′3(v) = η3(v) 〉 .

40

φUNEQ[η1][η2][η3] is an ACTL∗ property. Theorem 4.2.1 guarantees that

MTICKET [η1, η2, η3] � φUNEQ[η1][η2][η3] ⇔ MTICKET � φUNEQ

We have thus entirely eliminated quantification across time and reduced a QACTL∗ veri-
fication problem to an ACTL∗ verification problem. We have introduced existential quan-
tification at the level of expressions only.

As we have seen in the previous example, when Skolemization is applied three times
the resulting formula contains subexpressions of the form

e = ∃u3. η3(u3) ∧ ∃u2. η2(u2) ∧ ∃u1. η1(u1) ∧ e1

where e1 is the original subexpression before Skolemization. We can rewrite this to the
equivalent expression

e′ = ∃u3. ∃u2. ∃u1. η1(u1) ∧ η2(u2) ∧ η3(u3) ∧ e1

where the newly introduced quantifiers appear in a cascaded form. The cascaded form can
be more readable. The following proof rule describes Skolemization for multiple quantifiers
such that subexpressions with cascaded existential quantification, as in e′, are produced.

η1, ..., ηn fresh, M [η1, ..., ηn] � ϕ′[η1, ..., ηn]

M � ∀x1. ... ∀xn. ϕ(x1, ..., xn)
(∀η1,...,ηn)

where ϕ′[η1, ..., ηn] is ϕ with each occurrence of a first-order expression e such that
{xi1 , ..., xin} ⊆ FV (e) replaced with the first-order expression

∃xi1 ∃xin . ηi1(xi1) ∧ ... ∧ ηin(xin) ∧ e[xij/uij] .

4.3 Discussion

Skolemization2 removes universal quantifiers in front of temporal formulas and has been
described in, e.g., [Ber02, OS03]. Skolemization is related to finite instantiation [McM00,
DW03] and the decomposition of [YR04]. Finite instantiation enumerates particular
individuals of a fixed universe while Skolemization instantiates with symbols. Meth-
ods performing finite instantiation compute a finite number of sufficient instances of a
QLTL property, provided that the system obeys certain syntactic restrictions (the syn-
tactic restrictions are not too severe because of the character of the abstraction used in
[DW03, McM00]). The instantiation decomposes one QLTL verification problem into sev-
eral LTL problems, the number of which is determined by the possible equality relations
among the quantification variables. We will see that models of [SRW02] also fulfill the
syntactic restrictions. However, these models have a varying-domain semantics and in-
dividuals are anonymous. Skolemization instantiates with symbols. This can be useful
(future work) if one wants to prove the following method correct: [YR04] instantiates with
individuals of three-valued structures. As finite instantiation assumes a constant-domain
semantics and enumerates particular concrete individuals, [YR04] is not a special case of
finite instantiation (see Section 5.4).

2This is a name clash with the quantifier elimination for existential quantifiers which is used for the
computation of the prenex form.

41

Implementation. We want to use the framework [SRW02] and methods from [YRS03]
for computing abstract transition systems. We therefore need to implement the state space
transformation (from S to Sη) of predicate logic Skolemization by means of constraints.
When we use [SRW02] the state space S of a the concrete model M is implicitly determined
through constraints. We consider constant-domain models with a state space of the form
S = {s ∈ Struct[P , U] | s � R}. The constraints R pertain to the model M and S is
determined by the set of constraints R. We have to model the state space of the model
M [η] using constraints. Fortunately, one can let M [η] inherit the constraints R of M plus
an addition. It is sufficient to add constraints which insure that a Skolem predicate η
always refers to exactly one individual of the universe. In the language of [SRW02], these
are the constraints rη,1 ≡ η(u1)∧ η(u2).u1 = u2 and rη,2 ≡ ∀u. ¬η(u).0. The constraints
of model M [η] are R[η] = R ∪ {rη,1, rη,2}. We get M [η] = 〈{s ∈ Struct[P [η], U] | s �
R[η]}, θ, ρ[η]〉, in particular the constraints exactly model Definition 4.2.1, i.e.

S[η] = {s ∈ Struct[P [η], U] | s � R[η]} .

Thus we have implemented Skolemization as an entirely syntactic transformation.
As predicate logic is one-sorted, it is sometimes useful to introduce sorts by unary

predicates which have a constant valuation in the model. Let us assume that p is such a
predicate. One wants to write ∀x : p. ϕ(x) which is notation for ∀x. p(x)∧ϕ(x). However,
Theorem 4.2.1 makes no statement about such properties. One can, however, prove such
a variation. For this purpose one has to modify instantiation. Instead of replacing each
occurrence of a first-order expression e with x ∈ FV (e) with the first-order expression
∃u. η(u) ∧ e[x/u], one replaces e with ∃u. p(u) ∧ η(u) ∧ e[x/u].

Applicability of Skolemization. Live Sequence Charts [DH01] can be translated to
QLTL formulas [DW03]. Therefore, Skolemization can be used for the verification of
UML models. Quantified temporal properties such as φLIV E and quantified invariants
such as φMUTEX are amenable to Skolemization. Some properties which are not QCTL∗

properties can be transformed to equivalent QCTL∗ formulas with the rewrite rules of
Lemma 4.1.2.

Skolemization and abstraction Skolemization is independent of a particular abstrac-
tion technique. This allows one to deploy different finitary abstraction techniques. It
seems natural to tailor the abstraction to the function symbols introduced by Skolemiza-
tion, since these function symbols occur in the property we want to prove.

M, φ � eliminate quantifiers // M,φ
� abstraction // M̃, φ̃

M � φ ks equivalent +3 M � φ ks implication
M̃ � φ̃

One interesting effect of case splitting, decomposition, and Skolemization is that they
shrink the scope a property refers to. [YR04] proposes to use heterogeneous abstractions
to benefit from this effect. Heterogeneous abstraction means that for distinguished regions
of the universe more information is kept than elsewhere. Skolemization produces regions

42

The expression-level transformation function:

τΣ,Σ′ ∈ FCTL∗
Σ × (FOΣ → FOΣ′) → FCTL∗

Σ′

is defined by (for brevity we omit the signature subscripts):

τ(φ, f) =

f(e) ; φ = e

¬(τ(φ′, f)) ; φ = ¬φ′

(τ(φ1, f)) ∧ (τ(φ2, f)) ; φ = φ1 ∧ φ2

(τ(φ1, f)) ∨ (τ(φ2, f)) ; φ = φ1 ∨ φ2

A(τ(Φ, f)) ; φ = AΦ

E(τ(Φ, f)) ; φ = EΦ

∀x. (τ(φ, f)) ; φ = ∀x. φ

τ(Φ, f) =

τ(φ, f) ; Φ = φ

¬(τ(Φ′, f)) ; φ = ¬Φ′

(τ(Φ1, f)) ∧ (τ(Φ2, f)) ; Φ = Φ1 ∧ Φ2

(τ(Φ1, f)) ∨ (τ(Φ2, f)) ; Φ = Φ1 ∨ Φ2

(X(τ(Φ′, f)) ; Φ = XΦ′

(τ(Φ1, f))U(τ(Φ2, f)) ; Φ = Φ1UΦ2

(τ(Φ1, f))R(τ(Φ2, f)) ; Φ = Φ1RΦ2

τ is given two arguments: a temporal property and a function f which transforms
expressions. The function recursively descends to expressions and applies f to
expressions and returns the resulting property.

Figure 4.1: Expression-level transformation function τ .

of particular interest, namely the surroundings of an individual referenced by a Skolem
constant, as this is the region a property that has evolved from Skolemization directly
refers to. The surroundings of an individual are the individuals connected with it via
binary predicates, e.g., a ticket i belongs to the surrounding of process p if it is connected
to p by a(p, i). Data type reduction of [McM00] is an example of heterogeneous abstraction
(more on that in Chapter 7).

43

Chapter 5

Analysis

The goal of this chapter is to obtain an analysis for QACTL∗ properties using Three-
Valued Logical Analysis [SRW02]. Skolemization is a symbolic method, while the analysis
technique we use is explicit-state. We model Skolemization by nondeterministic choice and
the constraint mechanism described in [SRW02]. The transition system computed by our
analysis is an approximation of the model one obtains from Skolemization. The chapter
is concluded by a case study we conducted using the Three-Valued Logical Analyzer
(TVLA).

How does our QACTL∗ approach work? We are given a QACTL∗ property φ (cf. 3.1.2)
and a model M ∈ MP denoted in predicate logic (cf. Definitions 2.2.3 and 2.3.1). The
quantifier elimination technique of Chapter 4 gives us an equivalent verification problem
consisting of a model M ∈ MP and an ACTL∗ formula φ. The analysis we will present
in Section 5.2 allows us to solve this verification problem. In order to make verification
feasible, we use canonical abstraction. Canonical abstraction maps a logical structure to a
bounded logical structure by collapsing individuals to equivalence classes. The computa-
tion of the equivalence classes is based on the valuation of individuals under one-argument
predicates. The equivalence classes form the universe of the resulting bounded structure.
Canonical abstraction resolves conflicting valuations of predicate symbols within an equiv-
alence class of individuals by introducing a third truth value 1/2 (it stands for unknown)
and by using a join-operator. Logical structures with the third value are called three-
valued logical structures, because the valuation of a predicate symbol may yield 1/2. We
obtain a transition system over three-valued logical structures by executing the concrete
model M over three-valued logical structures. We want to prove that the model M fulfills
the ACTL∗ property φ. Therefore it is necessary to talk about property preservation. We
achieve property preservation by means of a simulation preorder on three-valued logical
structures. The transition system resulting from evaluating M over three-valued logical
structures simulates the transition system [[M]], the semantics of M .

5.1 Three-Valued Analysis

We discuss three-valued logical structures, which are the abstract states of the transition
systems on which we check temporal properties. An information order on three-valued
logical structures will, among other things, allow us to relate abstract states with con-

44

crete states. The use of bounded three-valued logical structures ensures termination of
the analysis algorithm. Canonical abstraction is a means to obtain bounded structures.
All of these definitions are excerpts from [SRW02] (cf. the Kleene domain 5.1.4, three-
valued logical structures 5.1.5, the Embedding Order 5.1.7, tight embeddings 5.1.9, the
Embedding Theorem 5.1.1, Canonical Abstraction 5.1.11). Since we consider general tem-
poral logic properties and not only safety properties, we relate transition systems via a
simulation preorder (cf. Definition 5.1.12, and Theorem 5.1.2).

Basics. We need some basic notions such as partial orders, join-lattices, and the Kleene
domain in order to proceed.

Definition 5.1.1 (Partial ordering). Let L be a set and v⊂ L × L a binary relation
on L. v is a partial ordering of L iff it is reflexive (i.e. ∀l ∈ L : l v l), transitive (i.e.
∀l1, l2, l3 ∈ L : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3), and antisymmetric, (i.e. ∀l1, l2 ∈ L : l1 v
l2 ∧ l2 v l1 ⇒ l1 = l2).

For l1, l2 ∈ L the expression l2 w l1 is a syntactic equivalent for l1 v l2.
A tuple 〈L,v〉 is a partially-ordered set iff v is a partial ordering of L.

Definition 5.1.2 (Lower and Upper Bounds). Let 〈L,v〉 be a partially-ordered set.
Let Y ⊂ L. An element l ∈ L is an upper bound of Y iff ∀y ∈ Y : y v l. An element
l ∈ L is a lower bound of Y iff ∀y ∈ Y : l v y. An upper bound l of Y such that for all
upper bounds u holds l v u is called least upper bound of Y , written tY . A lower bound
l of Y such that for all lower bounds u holds l w u is called greatest lower bound of Y ,
written

d
Y . An upper bound l of Y such that for all lower bounds u holds u w l is called

least upper bound of Y , written
⊔

Y .

Note that a set Y ⊆ L can have at most one least upper bound and greatest lower
bound, respectively.

Definition 5.1.3 (Lattice). A join-lattice is partially order set 〈L,v〉 such that all
subsets Y of L have a least upper bound

⊔
Y .

A complete lattice is a partially-ordered set 〈L,v〉 such that all subsets Y of L have
a least upper bound

⊔
Y and a greatest lower bound

d
Y .

For any set X its power set P(X) together with the subset order ⊆ is a complete
lattice 〈P(X),⊆〉.

Definition 5.1.4 (Kleene domain). We define the Kleene domain K = {0, 1, 1/2}. We
consider two orders on K: the partial order 0 v 1/2, 1 v 1/2, called information order
(the greatest value is the indefinite value), and the total order ≤ given by 0 ≤ 1/2 ≤ 1.

We denote the least upper bound and greatest lower bound operator with respect to
information order as t,u. For the least upper bound and greatest lower bound operator
with respect to ≤, we use the common syntax max, min.

Sometimes it is convenient to interpret elements of K as rational numbers, K =
{0, 1, 1/2} ⊆ Q. 1 ∈ K can be interpreted as 1 ∈ Q, 1/2 ∈ K, which stands for un-
known, is interpreted as the fraction 1

2
∈ Q, and 0 ∈ K as 0 ∈ Q. The minimum and

45

maximum of a set of Kleene values, the functions min, max ∈ P(K) → K, are the great-
est lower bound and least upper bound operators, respectively, with respect to the total
order ≤. They correspond to the minimum and maximum induced by the inclusion of K
in the rational numbers. Note that for a Kleene value k ∈ K the arithmetic expression
(1− k) ∈ K interpreted in the rational numbers yields a Kleene value, because

1− 0 = 1 1− 1/2 = 1/2 1− 1 = 0 .

Observation: 〈K,v〉, 〈K,≤〉 are join-lattices.

Three-valued structures. Two-valued predicate logical structures give predicate sym-
bols a valuation that maps into the Boolean values. Three-valued structures give predicate
symbols a valuation that maps into the Kleene values. As the Boolean values 0, 1 are spe-
cial Kleene values, two-valued logical structures of predicate logic are special three-valued
logical structures.

Definition 5.1.5 (Three-valued Logical Structure). A three-valued logical structure
over predicate signature P = 〈{sm} ∪ P,V , r〉 is a tuple 〈U, ι〉 where U is a set (U for
universe), and ι is an interpretation function such that ι(p) ∈ U r(p) → K. We denote the
state of three-valued logical structures over signature P as 3Struct[P].

The special predicate sm expresses that an individual represents multiple concrete
individuals. We define a semantics of predicate logic expressions e ∈ FOP on three-
valued structures.

Semantics. The valuation of a first-order expression on a logical structure can be de-
fined almost as before 1. The interpretation of the equality symbol is changed. The
meaning of equality is defined in terms of the sm predicate and the identically-equal
relation on individuals (denoted by the symbol =):

• Nonidentical individuals are unequal.

• A non-summary individual must be equal to itself.

• In all other cases, we say 1/2.

Definition 5.1.6 (Semantics). The valuation of [e] s Z of an expression e in a state
s = 〈U, ι〉 ∈ 3Struct[P] and with the complete assignment Z is an element of K. We can
re-use the inductive definitions of Definition 2.1.3 with the change:

[x1 = x2] s Z =

0 ; Z(x1) 6= Z(x2)

1 ; Z(x1) = Z(x2) and ι(sm)(x1) = 0

1/2 ; otherwise

1We can evaluate expressions 1 − k where k ∈ K and the minimum and maximum functions for the
Kleene domain.

46

We term transition systems K ∈ KS over a state space S ⊆ 3Struct[P] of three-
valued logic structures abstract transition systems. We need an ACTL∗ semantics on
those transition systems. We take the ACTL∗ semantics from Definition 3.2 and evaluate
it on three-valued logical structures. The difference between concrete transition systems
and abstract transition systems is that a first-order expression evaluated in a state may
result in an indefinite result 1/2. The indefinite 1/2 value is interpreted as false:

K, s � e :⇔ ([e] s ∅) = 1 .

This is because we want to prove properties.

Embedding Order. We will now recapture the notion of information order on three-
valued logical structures introduced in [SRW02]. Two-valued structures are three-valued
structures, too. The inclusion Struct[P] ⊆ 3Struct[P] holds. Therefore embeddings also
relate two-valued with three-valued structures.

Definition 5.1.7 (Embedding Order). Let s, s′ ∈ 3Struct[P] where s = (U s, ιs),
s′ = (U s′ , ιs

′
). Let f ∈ U s → U s′ be a surjective function. We say that f embeds s into

s′, denoted as s vf s, iff

(i) for all predicate symbols p ∈ P of arity n = r(p) and all u1, ..., un ∈ U s

ιs(p)(u1, ..., un) v ιs
′
(p)(f(u1), ..., f(un))

(ii) (|{u | f(u) = u′}| > 1) v ιs
′
(sm)(u′)

hold.
We say that s can be embedded into s′, denoted as s v s′, if there exists an embedding

function f such that s vf s.

The use of metavariable f for embedding functions collides with the use of this
metavariable for function symbols. The reason why we use f nevertheless is that this is
the notation used in [SRW02] and because we are currently only working with predicate
logic. General function symbols do not occur in predicate logic, and predicate symbols
are denoted with metavariable p.

v is a preorder, i.e. it is a reflexive and transitive relation. The concretization of a
three-valued logical structure is the (possibly infinite) set of logical structures it represents.

Definition 5.1.8 (Concretization). We define the concretization function

γ3 ∈ 3Struct[P] → Struct[P], γ3(s̃) = {s ∈ Struct[P] | s v s̃} .

Tight Embedding. A tight embedding is a special kind of embedding s vf where in-
formation loss is minimized when multiple individuals are mapped to the same individual.

Definition 5.1.9. Let s, s′ ∈ 3Struct[P] where s = (U s, ιs), s′ = (U s′ , ιs
′
). Let f ∈ U s →

U s′ be a surjective function. s′ is a tight embedding iff

47

(i) for all predicate symbols p ∈ P of arity n = r(p) and all u1, ..., un ∈ U s

ιs
′
(p)(u′1, ..., u

′
k) =

⊔
{ιs(p)(u1, ..., uk) | u1, ..., uk ∈ U, f(u1) = u′1, ..., f(uk) = u′k}

(ii) ιs
′
(sm)(u′) = (|{u | f(u) = u′}| > 1) t

⊔
u∈U, f(u)=u′

ιs(sm)(u) .

s′ is uniquely determined by s and f and we write s′ = f(s).

It is clear from Definition 5.1.7 that the tight embedding of a structure s by a function
f embeds s in s′, i.e. s vf f(s).

The Embedding Theorem. The Embedding Theorem ensures that evaluating a pred-
icate logic expression over a logical structure s′ is safe with respect to the valuation of
the expression over the logical structures s v s′ it approximates (v thereby denotes the
embedding order).

Informally, the Embedding Theorem says:
If s vf s′, then validity/invalidity of e in s′ implies validity/invalidity of e in s.

Theorem 5.1.1 (Embedding Theorem).
Let s = 〈U s, ιs〉 ∈ 3Struct[P] and s = 〈U s′ , ιs

′〉 ∈ 3Struct[P] be two three-valued
logical structures and let f ∈ U s → U s′ be a function such that U s vf U s′. Then for
every expression e ∈ FOP and complete assignment Z for e, holds

([e] s Z) v ([e] s′ (f ◦ Z)) .

Proof. see [SRW02]

The v is used in two different senses in the Embedding Theorem: as the embedding order
on logical structures, thereby it bears a subscript f , and as the information order on the
Kleene domain in the claim (the last line).

Abstraction. We fix a predicate signature P , and a set of pairwise distinct unary pred-
icate symbols A := {a1, ..., ak} ⊆ {p ∈ P | r(p) = 1} termed abstraction predicates.

To guarantee that the analysis terminates, we make sure that the number of potential
structures is finite. We make the following definition:

Definition 5.1.10. A bounded logical structure is a structure s = 〈U s, ιs〉 ∈ 3Struct[P]
such that for every pair of distinct individuals u1, u2 ∈ U s there exists an abstraction
predicate a ∈ A such ιs(a)(u1) 6= ιs(a)(u2).

We denote the set of bounded structures as BStruct[P].

There is an upper bound on the size of the universe of a bounded structure, namely
3|A| (where |A| is the number of abstraction predicates). Therefore, there are only finitely
many bounded structures. One way of obtaining a bounded structure is by canonical
abstraction.

48

Definition 5.1.11 (Canonical Abstraction). Let s = 〈U s, ιs〉 ∈ 3Struct[P] be a three-
valued logical structure. The canonical name of an element u ∈ U s with respect to A,
denoted as κA

s (u), is the vector

(ιs (a1)(u), ... , ιs (ak)(u)) ∈ Kk .

Let Ũ s be the set of canonical names of all elements of U s. Let κA
s ∈ U s → Ũ s be the

function which maps elements of U s to their respective canonical name.
We define the canonical abstraction of s as κA

s (s) where κA
s (s) is a tight embedding

of s induced by the embedding function κA
s (cf. Definition 5.1.9). We obtain the canonical

abstraction function

αP,A
can : 3Struct[P] → 3Struct[P], s 7→ κA

s (s) .

Property preservation. We introduce simulation preorder on transition systems with
predicate logic structures. Simulation preorder can be seen as an approximation order on
transition systems. It allows us to check properties of the concrete model in the abstract.

When K ′ simulates K, denoted by K � K ′, this means that K ′ approximates K.

If an ACTL∗ property holds in K ′, then it also holds in K (but not necessarily vice versa).
We define simulation preorder.

Definition 5.1.12 (Simulation). Let P ,P ′ be signatures such that P ⊆ P ′. Let S ⊆
3Struct[P], S ′ ⊆ 3Struct[P ′] and K = 〈S, I, R〉 ∈ KS, K ′ = 〈S ′, I ′, R′〉 ∈ KS′ two transi-
tion systems.

A simulation relation H ⊆ S × S ′ between K and K ′ is a relation such that for all
(s, s′) ∈ H we have

(i) ∀t ∈ S : R(s, t) ⇒ ∃t′ ∈ S ′ : H(t, t′) ∧R(s′, t′)

(ii) for all closed first-order expressions e ∈ FOP holds s′ � e ⇒ s � e .

We say that K ′ simulates K (denoted by K � K ′) if there exists a simulation relation
H between K and K ′ such that for every initial state s ∈ I there exists an initial state
s′ ∈ I ′ such that H(s, s′).

This is almost the standard definition. Condition (i) coincides with the classical def-
inition. Condition (ii) does not. Classical simulation is a relation on Kripke structures,
e.g., [CGP00]. Kripke structures are transition systems over a state space of proposi-
tional states. Propositional means that states are labeled with atomic propositions, as
opposed to the states in this work which are logical structures. Such propositional states
correspond to logical structures over a signature with 0-place predicates only, i.e. pred-
icates that do not take an argument. Consequently, condition (ii) on states s, s′ such
that H(s, s′) deviates from the classical condition L(s′) ⊆ L(s) (where L is the labelling
function for states). We could have used the embedding order on logical structures, i.e.
we could have required s v s′ in (ii). However, by the Embedding Theorem that would be
a stronger condition. We will use the embedding order v to establish simulation relations.
The current definition is sufficient, though, for our purpose:

49

Theorem 5.1.2 (Simulation preserves ACTL∗). Let φ be an ACTL∗ state formula
and K, K ′ two transition systems such that K � K ′. Then K ′ � φ ⇒ K � φ.

Proof. The proof can be found in the Appendix in Section B.3.

Lemma 5.1.3. Simulation order � is a preorder.

Proof. Let K, K ′, K ′′ be transition systems. We need to show that K � K. Clearly, the
identity relation is a witness for this simulation. K � K ′ � K ′′ holds because the product
{(s, s′′) | ∃s′ : (s, s′) ∈ H, (s′, s′′) ∈ H ′} of the simulation relations H and H ′, which are
witness of the simulation K � K ′ and the simulation K ′ � K ′′, respectively, is a witness
of the simulation between K and K ′′.

Being a preorder means reflexivity and transitivity. Antisymmetry does in general
not hold, e.g., two isomorphic transition systems (in the sense of a graph isomorphism)
simulate each other, however they are not necessarily identical.

5.2 Implementation

In this subsection, we give a meta-algorithm which, given a model computes a transition
system over three-valued logical structures that simulates the semantics of the model.
When the transition system has been computed, standard model checking procedures for
ACTL∗ can be applied to check the property, e.g., [CGP00].

Function explore, which is written out in pseudo-code in Figure 5.1, is an algorithm
that computes a transition system K] = 〈S], I], R]〉 where S ⊆ BStruct[P] ⊂ 3Struct[P].
Its interface to the framework of [SRW02] are the two functions next and join, which are
passed as arguments. Furthermore, a set of initial states init ⊆ 3Struct[P] is provided as
an argument.

The function next computes the successors of an abstract state next ∈ 3Struct[P] →
2BStruct[P]. The function join is used to add a transition (s, s′) to the transition system.
The algorithm consists of a simple fixed point iteration. For this purpose, it maintains a
set of processed states X, a workset W which is a set of states W ⊂ 3Struct[P] whose
successors are yet to be explored.

As expected, the arguments init and next of the algorithm depend on the model being
analyzed. So let us fix such a constant-domain model M and a choice of abstraction pred-
icates A. The state space S ′ of M = 〈S ′, θ, ρ〉 is given implicitly by a set of compatibility
constraints R which are evaluated over Struct[P , U], so S ′ = {s ∈ Struct[P , U] | s � R}.
Typically, A will contain Skolem predicates. Let K = 〈S ′, I, R〉 = [[M]] be the transition
system induced by model M , the skolemized version of M . We abbreviate α = αP,A

can .

Constraints. Three-valued structures that arise during an analysis sometimes represent
structures which correspond to impossible states of the concrete system. In particular, im-
possible structures arise after the application of the focus operation. In order to improve
the accuracy of the analysis, TVLA provides mechanisms for constraint processing and
generation. Thereby constraints may be used to make a structure more precise, by turning
a 1/2 to a definite value. This can happen if the value of one predicate can be derived

50

1 transition system

2 explore (init: set of states,

3 next: state * set of states,

4 join: transition system * state * state) {

5 transition system K = <init,init,emptyset>;

6 set of states W = init,

7 X = emptyset;

8 while(size(W)>0) {

9 forall(s in W) {

10 forall(s’ in next(s)) {

11 K := join(K,s,s’);

12 }

13 W := W - {s};

14 X := X + {s};

15 W := W + (next(s) - X)

16 }

17 }

18 return K;

19 }

Figure 5.1: Algorithm explore. It is a parameterized algorithm which constructs an
abstract transition system.

51

from another predicate. If a structure breaches a constraint, it is ruled out. Some con-
straints are generated automatically but one can also provide constraints by hand. These
constraints often express domain-specific knowledge, e.g., a variable has exactly one value
and hence the predicate symbol which models the variable cannot evaluate to 1 on two
distinct individuals. Constraints can also be used to filter out undesirable results of the
focus operation when one implements nondeterminism. We implemented Skolemization in
TVLA this way. The Skolem predicates are set to 1/2 and the focus operation enumerates
possible choices, but it also generates impossible cases where a Skolem predicate refers to
a summary individual, to no individual at all, and so forth.

Definition 5.2.1 (Compatibility Constraints). A compatibility constraint r has the
form e1 . e2 where e1 ∈ FOP is a first-order expression, and e2 is a term (an element of
TP) or the negation of a term. We say that a three-valued structure s and an assignment
Z satisfy e1 . e2, denoted s, Z � e1 . e2, if ([e1] s Z) = 1 ⇒ ([e2] s Z) = 1. We say
that s satisfies e1 . e2 if for all assignment Z holds s, Z � e1 . e2. If R is a finite set of
constraints, we say that s satisfies R, if s satisfies all constraints r in R.

Computing initial states: init. The method corresponds to nondeterministically se-
lecting individuals and instantiating the quantified property with them. The framework
[SRW02] assumes that the initial states are given explicitly rather than syntactically. We
can use [YRS03] to compute the most precise (with respect to the embedding order)
bounded logical structure sθ that fulfills θ. We assume that we want to quantify over
individuals marked with predicate symbols p1, ...pn, i.e. ∀x : p1 ... ∀x : pn : φ. There
are Skolem predicates η1, ..., ηn. In sθ, we set the valuation of ηi to 1/2 on the individuals
marked by pi for each i and obtain s′θ. This structure conservatively overapproximates I,
i.e. I ⊂ γ3(s

′
θ). We use the partial concretization operation of [SRW02] called focus with

arguments {η1, ..., ηn} and apply it to s′θ. Thus we obtain a set of initial states I] from s′θ.
This makes sure that the union over the concretizations of the structures in I] contains
I, i.e. I ⊆

⋃
{γ3(s) | s ∈ I]}.

The diagram below depicts the idea behind our implementation the step from the
initial state sθ to the set I] consists in selecting values.

M
skolemize //

��

M

�

M � φ ks +3 M � φ

K] � φ

^f EEEEEEEE

EEEEEEEE

8@yyyyyyyy

yyyyyyyy

sθ
selection

// I]
explore

// K]

Computing successors: next. Currently, there are two ways in which one can com-
pute a successor function, one can either use the method from [SRW02] or the decision
procedure of [YRS03]. [SRW02] provides a method to compute a successor function only

52

for a ρ as described in the paragraph about actions in Section 2.5. This is not the case
for the decision procedure [YRS03].

Both methods have in common that one provides them with ρ and an abstract state
s ∈ 3Struct[P]. The successors of s are computed using the syntactic description of the
transition relation ρ of the concrete model. Compatibility constraints are used to rule
out impossible structures and refine structures which satisfy the constraints. It should
be noted that next returns sets of bounded logical structures. This is important for the
termination of our algorithm.

More details concerning the algorithm follow in the next section.

Join methods: join. The function join can be chosen in several ways. The relational
join operation is defined as join1(〈S, I, R〉, s, s′) = 〈S ∪ {s′}, I, R ∪ {s, s′}〉 and partial
embedding

join2(〈S, I, R〉, s, s′) =

{
〈S, I, R ∪ {s, s′′}〉 ; ∃s′′ ∈ S : s′ v s′′

join1(〈S, I, R〉, s, s′) ; otherwise

Using partial embedding as a join method leads to a potentially less precise transition sys-
tem. In practice, particularly when safety properties are being checked, partial embedding
can lead to a tremendously smaller state space.

Correctness. We need to show partial correctness and termination. Partial correctness
means that the transition system computed by state space exploration simulates the
concrete transition system, i.e. K � K]. The Local Safety Theorem (Theorem 6.29
of [SRW02]) and the Embedding Theorem show directly that v ∩S × S] is a simulation
relation between K and K] 2. The fact that I ⊆

⋃
{γ3(s) | s ∈ I]} makes sure that

K � K].
The algorithm explore terminates if and only if W will eventually be empty. We give

a brief plausibility argument based on the boundedness of the state space (consisting of
bounded structures).

X and W are disjoint. X contains exactly all values the iterator of the outer forall
loop (lines 9-16) has ever taken on. For every structure s′, the iterator s of the outer forall
loop is equal to s′ at most once during a run of explore. Let us assume there be a run
in which a structure s′ appears twice. After the first time s′ appeared it must be in X
(and remains in X). When s′ is picked a second time it must be in W . At this moment,
X and W would not be disjoint. Contradiction. Now we know that the size of X is
increasing strictly monotonously with each iteration of the out-most forall loop. However,
X ⊆ BStruct[P] and hence X stabilizes eventually (|BStruct[P]| < ∞). We need to
show that W will eventually be empty. If this were not so, there would be infinitely many
iterations of the outer forall loop. Contradiction. Therefore the exploration terminates.

2If the relational join method is used. However, when the partial embedding join method is used the
resulting transition system simulates the transition system obtained by using relational join. And by
transitivity of simulation preorder, we obtain correctness for this case as well.

53

Optimality Considerations. The transition system computed by explore may not be
the most precise transition system. In this paragraph, we discuss aspects of optimality.
It would seem a consideration with little value if one could only mathematically describe
optimal abstraction transition systems without being able to compute them. However, the
use of decision procedures, e.g., satisfiability checks, allows one to approximate optimal
abstract transition systems. This differs substantially from the methods of [SRW02],
where the model is literally executed on logical structures.

An ideal decision procedure would produce the optimal transition system. The more
computational effort is invested into the computation the closer one comes to the opti-
mal transition system. Such a form of approximation has been reported for predicate
abstraction, e.g., [GHJ01, HJS01]. The work on optimal transformers for shape analysis
[YRS03] is an effort with a similar goal ([YRS03] does not explicitly consider transition
systems though). Because of the potential practical relevance of optimal abstract transi-
tion systems, we relate the notion of optimality given through the best transformer and
the notion of optimality from [GHJ01, HJS01].

The crucial component is the computation of successors, i.e. the function next. We
define a post operator: postR(S ′) = {t ∈ S | ∃s ∈ S ′ : R(s, t)}. Using the post
operator we can define the best transformer α ◦ postR ◦ γ3 and the transition relation
Rbt = {(s̃, t̃) | t̃ ∈ α ◦ postR ◦ γ3(s̃)}. One can extend a function h ∈ M → M on a set M

to the power set 2M by consider the function ĥ ∈ 2M → 2M where ĥ(S) = {h(m) | m ∈ S}.
This allows us to define Sbt as the least fixpoint of

F = λS ⊂ BStruct[P].
⋃
s∈S

α̂(postR(γ3(s)))

(which is a monotone function on a finite domain, therefore the fixpoint exists). By
choosing Ibt = α(I) we obtain an abstract transition system Kbt = 〈Sbt, Ibt, Rbt〉. The
transition system corresponds to choosing next(s) = α(postR(γ3(s))) and the relational
join operation in the exploration algorithm explore. The sequence of simulations K �
Kbt � K] holds.

The following lemma describes another way how one can systematically construct an
abstract transition system for which property preservation holds. The idea is taken from
[GHJ01, HJS01]. We will see that this concept provides an even more precise abstract
system.

Lemma 5.2.1. Let K = 〈S, I, R〉 be a transition system, P ′ ⊇ P another signature,

S̃ ⊆ 3Struct[P ′] a state-space, and Ha ∈ S × S̃ such that for all pairs (s, s̃) ∈ Ha and
closed first-order expressions e ∈ FOP holds s̃ � e ⇒ s � e.

Then the transition system K̃ = 〈S̃, R̃, Ĩ〉 ∈ KS̃ defined as

R̃(r̃, s̃) ⇔ ∃r ∈ S ∃s ∈ S : R(r, s) ∧Ha(r, r̃) ∧Ha(s, s̃)

Ĩ(r̃) ⇔ ∃r ∈ S : Ha(r, r̃)

simulates K and Ha is a simulation between K and K̃.

Relation Ha = {(s, s̃) | α(s) = s̃} yields an abstract transition system K̃ (s v α(s) for
every s ∈ 3Struct[P] which implies by the embedding theorem that for closed first-order
expressions e ∈ FOP holds s̃ � e ⇒ s � e).

The relation v ∩(α(S)× Sbt) is a simulation relation between Kbt and K̃.

54

Proof. Clearly, because of the Embedding Theorem, we have for each closed first-order
expression e ∈ FOP that s̃ � e ⇒ s � e. Let (α(s), α(s′)) ∈v ∩(α(S) × Sbt). As-
sume that there exists a t ∈ S such that R(s, t). We have γ3(α(s)) ⊆ γ3(α(s′)) and
hence t ∈ postR(γ3(α(s))) ⊆ postR(γ3(α(s′))). Hence α(t) ∈ α(postR(γ3(α(s)))) ⊆
α(postR(γ3(α(s′)))) ⊆ Sbt.

Kbt is in general not simulated by K̃. One reason is that the concretization of a 3-
valued structure may yield structures that are not in S, the state space of the concrete
system. We extend the sequence of simulations K � K̃ � Kbt � K].

5.3 Case Study

We conducted the case study using TVLA. TVLA implements concepts of the static
analysis framework [SRW02]. Models are described in predicate logic. The syntactic form
of those models was discussed in Paragraph 2.5. The initial states of the abstract system
are given explicitly instead of using a constraint. There are several modules in TVLA,
there is a module for intraprocedural program analysis which computes the set of reachable
structures for each control flow node of a program (which is used in [SRW02]), but there
is also a module, called TV MC (for Three-Valued Model Checker) which performs a pure
reachability analysis. Module TV MC applies the actions described in Paragraph 2.5 until
a fixpoint is reached, transitions are not being recorded during exploration.

The focus operation. Simply evaluating the concrete model on three-valued structures
produces too much imprecision (cf. [SRW02], Strawman Semantics). In order to increase
precision, a partial concretization function, called focus is used. The focus operation is
parameterized in a set of formulas. It is applied to three-valued logical structures and
produces a set of three-valued structures. The operation produces a set of structures in
which the input formulas evaluate to a definite value (0 or 1). Each action (see Section
2.5) has its own set of focus formulas. Finding appropriate formulas is nontrivial and
may require experience. However, for existing analyses involving linked data structures
there exist suitable formulas (we have made use of this existing knowledge when modeling
the ticket domain of the Ticket Protocol). The focus algorithm enumerates structures
on which the formula produces definite values and which cover the concretization of the
input structure. This is done by splitting up summary individuals, i.e. abstract individ-
uals which represent multiple concrete individuals. A simple example is a three-valued
structure with a single node, a summary node on which a unary predicate p evaluates to
1/2. By applying the focus operator, parameterized with predicate p, we obtain several
structures. Structures with two individuals {u, v} where ι(p)(u) = 1, ι(p)(v) = 0 (there
are three possibilities because of the sm predicate). Structures with a single individual on
which p either evaluates to 0 or 1 and which is a summary individual or not. The focus
operation can be used to implement nondeterminism, as it produces multiple states. The
nondeterministic choice of the currently active process in TV MC is done with the focus
operation.

55

Core and Instrumentation Predicates. Core predicates are used to model the se-
mantic effect of actions of a program. In case of the Ticket Protocol, we model the
global and local variables by core predicates, and we describe the effect of incrementing
a variable by predicate update formulas. Sometimes the core predicates are not sufficient
to prove a property. Then it is necessary to provide auxiliary predicates either manu-
ally or by automatic abstraction refinement. These predicates cache the valuation of a
certain formula. Technically, the valuation of these so-called instrumentation predicates
is described by this formula in terms of other predicates. A conservative valuation of
instrumentation predicates can thus be obtained by re-evaluating this defining formula.
However, maintaining the value and modeling the effect of operations by update formulas
leads to drastic gains in precision compared to re-evaluation in each state. An exam-
ple for an instrumentation predicate is the transitive closure of the successor function
on natural numbers. The defining formula of this instrumentation predicate t[succ] is
t[succ](m, n) = TC(v1, v2 : succ(v1, v2))(m, n). Given the successor predicate succ, we
can evaluate the defining formula of t[succ] but that would be less precise than caching
the value (cf. Figure 5.4 where t[succ] has a definite valuation but succ has an indefinite
valuation). Finding the right instrumentation predicates can be crucial for an analysis,
but it often requires knowledge about the program and about the analysis engine. [RSL03]
describes the maintenance of instrumentation predicates, i.e. how update formulas can
be computed from the defining formula and the predicate update formulas of the other
predicates.

Computing next. In the framework [SRW02], the successor function is a composition
of the canonical abstraction function α, the focus operation focus, the application of the
update formulas upd, and constraint checks constr. We used the following sequence of
operations focus−upd− coerce−α. First, the focus operation is applied. This operation
materializes, e.g., the process which is to execute an action and possibly some data fields
of it. That yields a collection of three-valued structures. The precondition of the action is
checked. Structures which do not fulfill the precondition are ignored. The update formulas
are applied to the remaining structures. The update formulas implement the semantic
effect of an action. Then the constraint checks, denoted by coerce 3, are used to re-gain
precision or rule out impossible structures. Finally, canonical abstraction is applied to
ensure termination. It is also possible to perform a constraint check after focusing, but
since constraint checks are expensive we omitted this step. Our experience was that this
second constraint check did not lead to better results in our examples.

[YRS03] promises to be an approach with a higher degree of automation where θ and
ρ suffice to compute the transition system. Whether that is a practical solution remains
to be verified.

Running Example. The Ticket Protocol (cf. Figure 1.1) is a solution to the problem
of mutual exclusion, i.e. it is safe and live. We were only able to prove safety using
TVLA, since, at the time of this writing, TVLA did not produce transition systems. This
restrained us from showing φLIV E. As mentioned in [YR04], quantifier elimination can

3 meaning and etymology according to [FB95], coerce: (formal) constrain by superior force, coercere
(Latin): restrain, ward off

56

predicate intended meaning

{x(l) | x ∈ {process, number}} type of node l
succ(i, i′) number i′ is the successor of number i
{at[loc](t) | loc ∈ {think, wait, crit}} thread t is at location loc
a(p, i) a-field of process p has value i
s(i) variable s has value i
t(i) variable t has value i

Figure 5.2: Ticket Protocol: intended meaning of the core predicates.

predicate intended meaning

t[succ] reflexive, transitive closure of succ
r[s, succ](i) number i is transitively reachable from variable s
r[t, succ](i) number i is transitively reachable from variable t

Figure 5.3: Ticket Protocol: intended meaning of the instrumentation predicates. In
words r[s, succ](i) means that s has a value that is less or equal i.

be a useful means to produce more compact and possibly more precise abstractions. We
observed such effects while verifying the Ticket Protocol.

We have already formulated safety and liveness of the Ticket Protocol as QACTL∗

formulas in Figure 3.2. However, there we referred to a model in general first-order logic
and not in predicate logic. Before we come to re-formulating properties, we need to talk
about how we model the Ticket Protocol in predicate logic. We have seen some predicates
already in Example 4.2.1. We go through the predicates and repeat some things that have
been mentioned before. We give individuals a type using unary predicates process and
number. We model the global variables s and t as unary predicates s, t and the a-field
as a binary predicate a. The core and instrumentation predicates we used are listed in
Figure 5.2 and Figure 5.3, respectively.

Safety, i.e. mutual exclusion, is expressed by the property:

∀p1. ∀p2. AG(at[crit](p1) ∧ at[crit](p2) ⇒ p1 = p2)

The three-valued structures at the start of the analysis are of particular interest since they
illustrate the Skolemization step. The implementation in TVLA is that we nondetermin-
istically pick the value of the Skolem predicate. TVLA output showing a three-valued
structure as it occurred during the verification of property MUTEX is depicted in Fig-
ure 5.4. The figure shows how Skolemization was implemented in TVLA by the focus
operation.

MUTEX is a safety property and TVLA comes with means to check safety properties
directly without Skolemization. However without using additional instrumentation predi-
cates or Skolemization we were not successful. Without Skolemization, we had to use the
following instrumentation predicate to verify MUTEX:

ins(n) = number(n) ∧ ∀p1.∀p2.process(p1) ∧ process(p2)
∧a(p1, n) ∧ a(p2, n) ∧ ¬at[think](p1) ∧ ¬at[think](p2) ⇒ p1 = p2

57

We successfully verified MUTEX using Skolemization and heterogeneous abstraction.
More aggressive heterogeneous abstraction which loses all information about summary
individuals, as in [DW03], leads to spurious changes of counter variable s, and thus to a
spurious counterexample. We will discuss this in more detail in Chapter 7.

Update Formulas. Finding update formulas for the core predicates is quite straight-
forward in this example. The command 〈a := t; t := t + 1〉 can be translated as:

a(p, i) = p = tr ∧ t(i) ∨ ¬(p = tr) ∧ a(p, i)) (a:=t)
t(i2) = ∃i1. succ(i1, i2) ∧ t(i1) (t:=t+1)

where tr denotes the process that is currently active. The condition a = s translates to
∃i : a(tr, i) ∧ s(i). The command s := s + 1 analogously can be modeled as:

s(i2) = ∃i1 : succ(i1, i2) ∧ s(i1) .

The instrumentation predicates (except those used to implement heterogeneous abstrac-
tion) are listed in Figure 5.3. The TVLA files are made available together with this
document.

Heterogeneous Abstraction. We want to distinguish the tickets of the processes ref-
erenced by Skolem predicates from other tickets. The Skolem predicates which refer to
processes are in our case p1, p2. The following instrumentation predicates ap1 , ap2 are used
to implement that:

ap1(i) = ∃p. p1(p) ∧ a(p, i)
ap2(i) = ∃p. p2(p) ∧ a(p, i) .

The right-hand sides of the equations above are the defining formulas of the instrumen-
tation predicates. This kind of instrumentation is systematic in that we want to distin-
guish all individuals in connection with the individuals referenced by Skolem predicates.
However, it is only an implementation of heterogeneous abstraction. A more generic im-
plementation would be more efficient because then less constraint checks and predicates
would be necessary.

5.4 Related 3-valued analyses

Aspects of temporal verification in the context of three-valued analysis have been dis-
cussed in earlier work, e.g. [YRSW03, YR04, YRS01]. We are concerned with three-
valued program analysis and first-order (temporal) verification which goes beyond the
invariant checking of [SRW02]. We do not discuss the work concerning LTL model check-
ing using TVLA; it does not allow verifying quantified temporal properties (just temporal
properties). We have claimed that our method is an improvement compared to previous
3-valued analysis based on the framework [SRW02] because our method allows checking
temporal properties using decomposition. Our method is related to [YR04]; a difference
is that they consider safety properties and we consider general temporal properties.

58

(a) The initial state. s, t
and the a-fields have
value zero.

(b) We set all quantifi-
cation variables p1, p2

to 1
2 on the domain over

which we want to quan-
tify. Then we focus on
the quantification vari-
ables and obtain the
two cases below.

(c) The quantification variables point to
distinct processes

(d) The quantification variables
point to the same process

Figure 5.4: MUTEX. The nodes labeled with at[now], at[notyet] are an artifact of the
way we implemented Skolemization in TVLA. Namely, the nodes represent the TVMC
thread that produces the cases by focusing on the quantification predicates p1, p2 . After
the Skolemization we need to show AG(∃u. ∃v. η1(u)∧ η2(v)∧ at[crit](u)∧ at[crit](v) ⇒
p1 = p2) for each of the two cases 5.4(c) and 5.4(d). Which yields two verification
problems. (Note that in the picture η1 and η2 are called p1 and p2.)

59

Heterogeneous Abstraction and Decomposition Strategies. [YR04] is about de-
composition strategies for the verification of first-order safety properties and heterogeneous
abstraction. The analysis is aimed verifying so-called first-order safety properties which re-
semble quantified safety properties. The ideas are illustrated with a Java example (JDBC
library and Easl specifications). We have adopted the term heterogeneous abstraction
from this article. The treatment of heterogeneous abstraction is orthogonal to our work.
Decomposition is done by instantiation in the abstract. Similar syntactic transformations
for quantifier instantiation are employed as we use. Computing the abstract transition
system of a Skolemized model, can also be implemented by decomposition and yields sub-
goals (in our method, the subgoals appear in one first-order transition system K]). This
can be seen in Figures 5.4.

Summarizing the relation between our work and [YR04] one can say that:

• Skolemization is a general-purpose method which does not rely on a particular ab-
stract representation of states (or the heap).

• We use a form of selection (within one transition system) to approximate the con-
crete model M created by Skolemization. Our implementation is related to the
method sketched in [YR04].

• First-order safety properties expressible by safety properties AG e (e ∈ FOP) with
universal quantifiers in front. [YR04] is a verification method for first-order safety
properties. General quantified temporal properties are not considered.

• The semantics of models is a varying-domain semantics, i.e. allocation is modeled
as adding an individual. We implement allocation by making a dead individual live,
i.e. by changing a unary predicate.

Our work focuses more on the formal side, i.e. semantics and models, while [YR04] is
concerned with practical aspects of decomposition. Our current practical experience does
not go beyond quantified safety properties because TVLA did not offer transitions systems
at the time of this writing.

3-valued ETL verification. [YRSW03] gives a language, called ETL, in which one
can specify heap-evolution properties. ETL is given a varying-domain trace semantics (we
have discussed aspects of this method in Chapter 2). We want to focus on the analysis
which was proposed for ETL verification. The analysis has conceptual shortcomings in
terms of precision. The fact that quantification is a source of imprecision is inevitable.
We illustrate this in Figure 5.5. The imprecision is inevitable because, at many points,
indefiniteness has to hold otherwise the analysis would not be conservative. In order to
understand this, it is necessary to descend into the details of the implementation of the
analysis. Another less severe issue will be discussed afterwards.

The ETL checking problem is reduced to valuating an expression of first-order logic
with transitive closure in a three-valued structure. Traces are encoded in a single logical
structure. States (there they are called worlds) are individuals of the logical structure
and transitions are modeled as a successor predicate succ (not to be confused with the
successor on natural numbers we used in our example).

60

A simplified concrete partial trace belonging to the Ticket Protocol is shown. The
up-most process is at location think in the leftmost state. In the middle it enters
location wait. In the rightmost state it has become critical.

Canonical abstraction is applied. The abstraction predicates relevant for processes
are {at[loc] | loc ∈ {think, wait, crit}}. The transworld-equality predicate must be
indefinite (1) between the abstract process in the leftmost state and the process
which is at wait in the middle state (2) between the summary processes. Instrumen-
tation cannot prevent this because 1/2 is the only conservative value.

Figure 5.5: One inherent imprecision of [YRSW03] is illustrated above. The oval shapes
stand for states (worlds). The gray arrows depict transworld equality; solid lines de-
note definite information, dashed lines represent indefiniteness. The hexagons stand for
processes. Transworld equality becomes indefinite very quickly: (1) between summary
individuals it must be indefinite to be conservative (cf. dashed lines in the lower picture)
(2) as soon as one process leaves a cluster of abstract processes (in our example this is
when interesting things happen). As quantification is implemented via transitive closure
over transworld equality indefinite transworld equality propagates and produces indefinite
answers. Instrumentation cannot remedy this weakness. The imprecision springs from the
need of transworld equality to be conservative. It is not specific to this particular example,
it is inherent.

61

The individuals within states are also individuals in the encoding. A predicate ex-
presses that an individual belongs to a world. In order to relate individuals in different
worlds, a binary evolution predicate, called transworld-equality, is used. Every two states
which are conceptually equal valuate to 1 under the predicate. Existential and universal
quantification are implemented using this predicate. The problem is that the predicate
becomes indefinite quickly. Such a situation is described in Figure 5.5. The pictures illus-
trate the situation nicely. Whenever individuals leave a summary individual, transworld
equality must become indefinite between the original summary individual and those in-
dividuals who have left it. This is necessary to be conservative, since not all individuals
represented by the summary node leave the partition. The authors propose to use instru-
mentation, as previously discussed in this Chapter, to make the analysis more precise.
Among other things, they propose to use instrumentation to record the transitive closure
of transworld-equality. However, even if instrumentation is used, the analysis still has to
be conservative. Transworld-equality has to be indefinite here in order to be conservative.
This problem leads to the effect that quantification produces indefiniteness. If we have
universal quantification, transworld equality (or more precisely its transitive closure) will
produce the value 1/2 when a cluster of individuals is split up.

Our method does not have such a problem. Quantifier instantiation in combination
with the abstraction which distinguishes individuals selected by the instantiation cannot
contribute indefiniteness.

Transitions produce indefiniteness. However, this is a problem which could be fixed.
We explain what the problem is. In abstract traces, the predicate which encodes transi-
tions may have an indefinite valuation. succ and its transitive closure are used to model
temporal operators in the encoding. If succ has an indefinite value, indefiniteness propa-
gates to temporal properties. It should be noted that the analysis in [YRSW03] is biased,
i.e. 0 does not necessarily mean that the concrete model does not fulfill the specification.
Other approaches, e.g., [CGL94, GHJ01, HJS01, SS99], which use modality on transitions
are not biased. It seems as if the use of the succ predicates does not bring a benefit
but rather produces unnecessary imprecision. Furthermore, the conservative interpreta-
tion of predicates by canonical abstraction differs from the conservative interpretation of
abstract modal transitions as described in [GHJ01, HJS01]. This is best illustrated with
an example. Transitions on states are reprented as a binary predicate succ. There are
are two pairs s1, s2 and s3, s4 of concrete states {s1, s2, s3, s4}. There are transitions
succ(s1, s3), succ(s1, s3). Now, let us assume that each pair falls together to an abstract
state u1 = {s1, s2}, u2 = {s3, s4}. Canonical abstraction yields succ(u1, u2) = 1/2. How-
ever, in the sense of [CGL94, GHJ01, HJS01] succ(u1, u2) = 1, i.e. in the lingo of modal
transitions: it is a must-transition. This situation is illustrated in 5.6. For the existence
of a must transition from u1 to u2 it is sufficient that all concrete states in u1, namely
s1, s2, can move to any of the concrete states in u2, here either s3 or s4. Canonical ab-
straction requires that all states in u1 can move to all states in u2 (succ(u1, u2) requires
succ(s1, s3), succ(s1, s4), succ(s2, s3), succ(s2, s4)).

62

canonical abstraction concrete modal transition rela-
tion

Figure 5.6: Canonical abstraction and modal transitions.

5.5 Discussion

Preservation of QCTL∗. We consider abstract transition systems which overapprox-
imate the behavior of the concrete system. Therefore we can show QACTL∗ formulas
and not full QCTL∗. By means of modal transitions systems [GHJ01, HJS01, SS99], it is
also possible to preserve CTL∗ (using Skolemization we could show QCTL∗ properties of
models). Thereby an over- and an underapproximation of the concrete transition relation
is computed. The underapproximation can often be computed as the dual of the overap-
proximation [SS99]. We will not go into detail here. It is not difficult to mathematically
define best over- and underapproximating abstract transition systems. Algorithms for
computing such underapproximating relations for canonical abstraction were not known
to us at the time of this writing. This might be more difficult than in case of predicate
abstraction [SS99] since the computation of duals is more complicated 4 (complementa-
tion of a set of 3-valued structures cannot be implemented as efficiently). Addressing this
problem goes beyond the scope of this thesis.

Strong and Weak Preservation. Simulation only guarantees weak preservation, i.e.
only validity can be shown on the abstract model, not invalidity. Strong preservation
for first-order expressions between a logical structure and the structures it represents
is guaranteed by the Embedding Theorem. In [YRSW03, YRS01], there are theorems
([YRSW03]: Theorem 2, ETL,[YRS01]: Theorem 52, LTL) which claim that simulation
guarantees strong preservation. That, however, cannot be, since a simulation K � K ′ only
guarantees that transition system K ′ overapproximates the behavior of K. Consequently,
there can be paths in the overapproximating transition system for which there is no
counterpart (cf. Definition B.3.1) in K. If there is a path starting with an initial state in
K ′ which does not fulfill a path formula Φ, it can happen that K � AΦ holds nonetheless.
At other points in [YRSW03, YRS01], it is said that for the analysis only weak preservation
holds. This ambiguity is mentioned because we only show weak preservation in Theorem
5.1.2. This is not a deficiency of our work compared to [YRSW03, YRS01]. The methods

4We conjecture that this may be done using decision procedures and without using complementation.

63

discussed in the previous paragraph would make it possible to obtain strong preservation.

64

Chapter 6

Symmetry

This chapter has several purposes. It conveys an intuition of symmetry. We explain why,
in case of our predicate logic, symmetry coincides with isomorphism. Thereby symbols
whose valuation is determined by the logic play an important role. Last but not least, we
motivate, formalize and prove the notion that canonical abstraction collapses symmetries
(Theorem 6.2.2).

6.1 Intuition.

?>=<89:;1 n
// ?>=<89:;2 n

// ?>=<89:;3 n
// ?>=<89:;4

p

OO

logical structure s1 over universe
{1, 2, 3, 4}

?>=<89:;1 n
// ?>=<89:;4 n

// ?>=<89:;2 n
// ?>=<89:;3

p

OO

logical structure s2 over universe
{1, 2, 3, 4}

?>=<89:;1 n
// ?>=<89:;2 n

// ?>=<89:;3

p

OO

logical structure s3 over universe
{1, 2, 3}

76540123u n
// 76540123'&%$!"#v nff

p

OO

three-valued logical structure s4 over
universe {u, v}

Figure 6.1: Four logical structures.

Figure 6.1 shows two labeled graphs s1 and s2. They are isomorphic, which means that
s1 can be obtained from s2 by swapping the labels U = {1, 2, 3, 4}. The graphs symbolizes
logical structures s1 and s2. We interpret the labels as individuals of the universe U of
those two structures. The labeled edges give the valuation of two predicate symbols n, p.
We can imagine that s1 and s2 are lists on the heap with root pointer p and next field n.
The individuals are heap nodes. Suppose we want to obtain the tail of the two lists. We
simply advance the root pointer. If we do this with each of the two structures s1 and s2,
we obtain two structures s′1 and s′2, respectively. s′1 and s′2 are isomorphic again (s′1 is s1

65

with p pointing to 2, s′2 is s2 with p pointing to 4). One can observe the same effect with
other list operations which can be expressed in terms of the predicates p, n. They do not
care about labels.

From the perspective of the predicates n and p, we have changed their valuations on
the universe U by re-labeling the nodes. One can say that we permuted the predicate
valuations. This is not always desirable. It would be irritating if 1 ≤ 2 ≤ 3 ≤ 4 would hold
in s1 and 1 ≤ 4 ≤ 2 ≤ 3 in s2, but this is how we treated n and p. Such symbols are not
to be permuted. Usually, their valuation is a part of the logic, and is not determined by
the interpretation of the structure. The valuation of the equality symbol in our first-order
logic is such an example. Equality is a bad example in terms of understanding symmetry; it
is invariant under permutation. If we augment the predicate logic with the fixed ≤-symbol
with the conventional valuation, the formula ∃u. ∃v. ∃w. p(u)∧ n(u, v)∧ n(v, w)∧ v ≤ w
evaluates to true in s1 (2 ≤ 3) and to false in s2 (not 4 ≤ 2). As the predicate logic
of [SRW02] is traditionally used for models which do not look at node labels (names of
heap nodes), the only fixed symbol is equality. Therefore, this predicate logic 2.3.1 cannot
distinguish between isomorphic structures (formally in Lemma 6.2.4).

Observation 6.1.1. The question whether a logic can distinguish between two logical
structures becomes intricate as soon as symbols come into play which have a fixed valuation
different from identity.

We call structures which cannot be distinguished by our logic symmetric. Symmetry is
an equivalence relation. The idea of symmetry reduction [ID96, GS99, ES96] is to look at
as few states of the same symmetry class as possible, thus reducing the size of the searched
state space. As indicated in Observation 6.1.1, fixed symbols pose a problem, because
then it can happen that not all permutations preserve the logic. Checking symmetry
on-the-fly can eat up the savings from the reduced state space.

Syntactical Criteria. The authors of [ID96] (and others) discovered that there are
syntactical criteria (they called them ”scalarset criteria”) which ensure that permutations
yield symmetric structures, structures which cannot be distinguished. The idea is to forbid
all fixed-valuation symbols but equality. Arrays and variables are allowed. They corre-
spond to predicates in our predicate logic. Constant symbols of fixed valuation, arithmetic
operations and comparison operators (other than equality) are forbidden. The predicate
logic of Definition 2.3.1 fulfills these syntactic restrictions. Predicate symbols correspond
to arrays and variables. There are no symbols of fixed valuation except equality. In case
of the first-order logic of Definition 2.1.2, we consider two structures isomorphic if indi-
viduals of the base types are interchanged. The first-order logic cannot distinguish such
isomorphic structures. As the consideration for the general first-order logic is analogous
to the one-sorted case of predicate logic, we omit a treatment of general first-order logic.
Though, often, many-sorted logics are considered in verification. For example, [ID96]
considers subranges of the integers. Operations on this domain look at data. So the re-
striction to equality is not acceptable, and so is mixing up numbers with other individuals
through permutations. As a consequence, permutations are restricted to so-called sym-
metric types on which permutation is allowed. The user has to supply type annotations
and the according criteria are checked for annotated types.

66

Observation 6.1.2. First-order logic (2.1.2) with equality abides to the scalarset criteria
[ID96].

There is an application of the scalarset other than symmetry reduction. We discussed
instantiations of universally quantified formulas in Chapter 4. In [McM00], it was discov-
ered that, if the scalarset criteria hold for model and universally quantified property, it
suffices to show finitely many instantiations. The number of these instantions is deter-
mined by the equality relations among the quantification variables. The use of symmetry
arguments for decomposition as in [McM00] is discussed in Chapter 7.

6.2 Canonical Abstraction and Symmetry

Our idea of symmetry (Definition 6.2.1) is simple:

Two states are symmetric if predicate logic cannot distinguish between them.

We have motivated this choice in the previous section. Symmetry reduction does not ab-
stract infinite to finite structures, while canonical abstraction does. Symmetry reduction
in our setting, is the map [.]∼. Often, the equivalent of [.]∼ is hard to compute and finer
reductions with less compression are used. [.]∼ yields the best compression one can obtain
with a symmetry reduction. If states which are distinguishable by predicate logic would
be considered symmetric, relevant states would be overlooked. Canonical Abstraction
compresses symmetric structures automatically without annotations, syntax checks, or
any extra cost.

The following definition formalizes our intuition.

Definition 6.2.1 (Symmetry). Let s, s′ ∈ 3Struct[P]. s and s′ are symmetric iff there
exists a bijection f ∈ U s → U s′ such that ∀e ∈ FOP ∀Z : [[e]](s)(Z) = [[e]](s′)(f ◦ Z).

Let ∼:=∼P := {(s, s′) | s, s′ ∈ 3Struct[P], s and s′ are symmetric}

Structures are symmetric if they are isomorphic and our logic cannot distinguish the
structures. Two-valued structures which can be uniquely described up to isomorphism
by a predicate logic expression (this does not hold for three-valued structures), e.g. s1 of
Figure 6.1 has the encoding:

∃u, v, w, x.
∧

a,b∈{u,v,w,x},a 6=b ¬(a = b)

∧p(u) ∧
∧

a∈{v,w,x} ¬p(a)∧
n(u, v) ∧ n(v, w) ∧ n(w, x) ∧ ¬(n(v, u) ∨ ...) .

Indistinguishable structures fulfill the same formulas, therefore they also fulfill formulas
which uniquely determine a structure up to isomorphism. For two-valued structures, the
intuition coincides with the definition, because indistinguishable structures are isomorphic.

The symmetry relation ∼P is parameterized in the predicate signature P . For brevity
we shall write ∼ within this section. It is common that symmetry is relative to properties
of interest.

Lemma 6.2.1. ∼ is an equivalence relation.

67

Definition 6.2.2. We write [s]∼ for the equivalence class of s ∈ 3Struct[P] with respect
to ∼.

The following theorem states the relation between Canonical Abstraction and [.]∼:

Theorem 6.2.2 (Canonical Abstraction and Symmetry).
Let P be a predicate signature with abstraction predicates A. Then the canonical
abstraction function αP,A

can fulfills the following properties:

(i) ∀s, s′ ∈ 3Struct[P] : s ∼ s′ ⇒ αP,A
can (s) = αP,A

can (s′)

(ii) ∀s ∈ Struct[P] : [s]∼ ⊆ γ3(α
P,A
can (s))

Proof. The proof can be found in Lemma 6.2.4.

The first statement (i) says that canonical abstraction maps symmetric structures to
the same abstract structure. The implication arrow indicates that canonical abstraction
is coarser than [.]∼ (which would have an equivalence arrow in the middle). This is not
surprising since finite symmetric structures have the same size (however, our theorem and
Canonical Abstraction do not impose finiteness). An abstract structure may represent
multiple symmetry equivalence classes. Of course, (i) also holds for 2-valued structures
since Struct[P] (3Struct[P].

Figure 6.1 shows logical structures over the predicate signature P = 〈{p, n}, N, {p 7→
1, n 7→ 2}〉. The logical structures s1, s2, s3 could, e.g., stand for lists with a pointer
variable p and a next pointer n. Structures s1 and s2 are symmetric, denoted as s1 ∼ s2,
since s2 can be obtained from s1 by the permutation {1 7→ 1, 2 7→ 4, 3 7→ 2, 4 7→ 4}. s1 and
s3 are not symmetric because they have a different universe. Now, we consider canonical
abstraction with the abstraction predicates A = {p}. We have αP,A

can (s1) = αP,A
can (s2) =

αP,A
can (s3) = s4. Among other things, that shows that in (i) the direction ⇐ does in general

not hold, e.g. αP,A
can (s2) = αP,A

can (s3) but s2 � s3.
The second statement (ii) says that the canonical abstraction of a 2-valued structure

s automatically represents its entire symmetry class [s]∼, e.g. s2 ∈ [s1]∼ (γ3(s4).

Corollary 6.2.3. The concretization of a 3-valued structure s̃ is the disjoint
union

γ3(s̃) =
.⋃

i
[si]∼

of suitable symmetry classes [si]∼.

Proof. This is because ∼ is an equivalence relation and because of 6.2.2 (ii).

Let us turn to the proof of Theorem 6.2.2. The following lemma characterizes symmetric
structures in terms of canonical abstraction and the concretization function γ3.

Lemma 6.2.4 (Symmetry Lemma). Let P ,A be defined as in 6.2.2. Let s, s′ ∈
3Struct[P] be two symmetric structures , s ∼ s′ such that f ∈ U s → U s′ is a bijec-
tion with ∀e ∈ FOP ∀Z : [[e]](s)(Z) = [[e]](s′)(f ◦ Z).

(a) ∀e ∈ FOP ∀Z ′ : [[e]](s′)(Z ′) = [[e]](s)(f−1 ◦ Z ′)

68

(b) αP,A
can (s) = αP,A

can (s′)

(c) s vf s′ is a tight embedding.

(d) if s ∈ Struct[P] we have [s]∼ ⊆ γ3(α
P,A
can (s))

Proof. see B.5

69

Chapter 7

Finite Instantiation and Data Type
Reduction

Finite instantiation and data type reduction are a part of the compositional methodology
[McM00]. The methodology is implemented in the verification tool SMV, SMV is mainly
used for hardware verification. The verification of a model in SMV consists of several
techniques which are used in combination. Therefore we do not consider data type re-
duction in isolation. Canonical abstraction (5.1.11) is part of the three-valued analysis
framework [SRW02]. We compare data type reduction with canonical abstraction.

Logics and Models. Data type reduction is defined in a first-order logic with function
symbols (the first-order logic of Definition 2.1.2 without transitive closure). A constant-
domain semantics is considered. The models of [DW03] correspond to the models we
consider (Definition 2.2.3).

Canonical abstraction (5.1.11) is defined in a first-order logic without function symbols
but with transitive closure (Definition 2.3.1). A varying-domain semantics is used to model
allocation and deallocation. Models used in three-valued logical analysis are action-based
and can modify the universe.

The syntactic restrictions imposed in [DW03, McM00] (scalarset criteria) are implic-
itly given in the predicate logic of [SRW02]. This is explained in Chapter 6.

We tried to bridge the gap in terms of logics by finding a counterpart of canonical
abstraction for first-order logic with function symbols. We did not find a method for
general first-order logic which subsumes the concept of canonical abstraction. One can
give an embedding order, however it does not subsume its predicate logic counterpart as
a special case. We discuss this in Appendix A.

Mechanism. Data type reduction is parameterized by sets of individuals that are pro-
vided as inputs. For each base type T , a subset DT of the semantic domain ∆(T) is given.
This partition remains fixed during the entire analysis. We will refer to this choice of
individuals as the partition. The complement of DT in ∆(T) is abstracted to one abstract
summary individual sumT . The abstract semantic domain consists of singletons from DT

and the summary individual plus a top element, i.e. ∆̃(T) = {{u} | u ∈ DT}∪{sumT ,>T}
is the abstract semantic domain of T . The values>T are needed to account for uncertainty.

70

Abstract models are constant-domain models. The valuations of the function symbols are
adjusted to be conservative. Equality and function symbols have to be modified. The
comparison sumT = sumT cannot be conservatively answered with true or false, so >Bool

is returned. The interpretation of equality is

[[t1 = t2]] =

>Bool ; sum ∈ {[[t1]], [[t2]]}
1 ; [[t1]] = [[t2]] = {v}
0 ; otherwise

Data type reduction loses all information about summary individuals. A function symbol
f of rank r(f) = (T1, T2) has to return a conservative result so f(sumT1) = >T2 . An
abstract model is extracted from the concrete model which simulates the concrete model.
The abstract model is constant-domain with the semantic domains described above.

Canonical abstraction is parameterized by a set of unary abstraction predicates. It
computes a normal form on three-valued logical structures. Individuals are mapped to
equivalence classes according to their valuation under abstraction predicates. The equiv-
alence classes are interpreted as individuals of a new abstract universe. An interpretation
which is conservative with respect to the input state is computed with minimal infor-
mation loss. The result is the canonical abstraction of the input structure. Abstraction
predicates can change their valuation. Canonical abstraction is applied during state space
exploration to ensure termination. Thus the universes are dynamically computed during
the analysis. Unlike in case of data type reduction there can be multiple summary indi-
viduals and there is no fixed partition. Canonical abstraction preserves information about
summary individuals. In so far, canonical abstraction preserves information globally and
data type reduction preserves information only locally. Furthermore, regions with more
information can move dynamically when canonical abstraction is used. For example, when
we verified the Ticket Protocol active processes and their ticket were materialized (using
the focus operation).

Sources of the parameters. Data type reduction is used in combination with finite
instantiation. Finite instantiation provides instantiation values, but one can also give
individuals which are to be kept material. So the user provides the partition directly or
indirectly through the property and finite instantiation.

Abstraction predicates are provided by hand or by abstraction refinement heuristics.
For particular applications, there exists a suitable vocabulary and actions which model
entire program statements.

Complexity and Running Times. The fact that data type reduction uses a fixed
partition and that syntactic restrictions hold (scalarset criteria) facilitates the computa-
tion of abstract models. The abstract model can be transformed into a Boolean program.
For each data variable, one needs logarithmically1 many Boolean variables. Arrays are
considered as a collection of variables. The state space of the Kripke structure has size
2n where n is the number of Boolean variables. Symbolic model checking can be used.

1logarithmic in the size of the corresponding semantic domain

71

The state space of three-valued logical analysis consists of logical structures (this has
an effect on the worst-case running time). The abstraction function and the constraint
mechanism are used during state space exploration. During our case study the constraint
mechanism was often the most expensive operation. Practical experience indicates that
the predicate choice is the most important factor. Sometimes more predicates lead to
shorter analysis times. How forecasts about the running time of three-valued logical
analysis can be made, is being investigated. As both SMV and TVLA use BDDs, variable
ordering plays a role. Thus the problem of determining average-case running times is
hard.

Trading precision for running time. As SMV uses a symbolic model checker, re-
leasing constraints and introducing more nondeterminism leads to smaller BDDs and
thus shorter analysis times. In TVLA, more nondeterminism would mean longer analysis
times. Releasing constraints (consistency constraints) can mean longer analysis times be-
cause more structures are visited or a shorter analysis time because less constraints have
to be checked. Obviously, the tendency is that the less predicates are used the shorter the
analysis time.

Strategy. Verification following the methodology [McM00] is a compositional process.
A correctness proof is broken down into small parts. The idea is that the smaller parts are
more manageable because a smaller portion of the system is involved. There are several
methods in SMV which support the user in this process.

• Refinement means that a concrete processor model is checked against a simpler
abstract model. For example, one can verify that a router corresponds to a simpler
model of end-to-end data transfer. Refinement maps relate signals of the concrete
with the signals of the abstract model. Each signal provides a separate subgoal.

• Case splitting allows one to split cases on the value of a variable. One shows that a
property holds for each value i variable v can take on. The idea is that

∀i. AG(v = i ⇒ φ) implies AG φ.

Finite instantiation applies to these properties, i.e. they are decomposed into sub-
goals. Case splitting ensures that data type reduction does not collapse the value v
has.

• Spurious counterexamples are removed by providing lemmas and proving them.

• SMV comes with a proof assistant which allows for circular proofs, induction on
time and compositional reasoning.

[McM00] considers data type reduction as one building block. Data type reduction is
more predictable and simpler than canonical abstraction. This makes it less flexible while
computations are much cheaper. Our experience is that most work goes into finding the
right lemmas. Data type reduction leads to counterexamples which, in general, cannot be
removed by changed parameters to data type reduction.

72

The strategy in most work about shape analysis with three-valued logical analysis is to
verify a property in one verification run and to refine the abstraction until the analysis runs
through. Verification problems are in general not decomposed (an exception is [YR04]).
Spurious counterexamples can be removed by

• providing instrumentation predicates.

• changing the parameters to the focus operation.

• constraints.

Abstraction is at the center of the concept of three-valued analysis. Finding good predi-
cates is the challenge.

Non-interference. When using data type reduction the number of components about
which information is maintained is decreased to but a few distinguished ones. All informa-
tion about the other components is lost. However, the abstracted components corrupt the
data of the components kept material. The case studies [JM01, McMa, McMb], where pro-
cessors and cache protocols were verified with SMV, have in common that there are mostly
exclusive pair relationships among components, e.g. a processor has its own cache [McMa],
”while a reservation station is expecting a result from a given execution unit not other
execution unit returns a result for that particular reservation station” [McMb, JM01]. For
a period of time, there is an exclusive relation between components, i.e. other components
do not interfere. These system properties need to be provided as so-called non-interference
lemmas (of course, they need to be proved as well).

However, if there are no exclusive relations among a few components, there can be in-
terference. The Ticket Protocol is an example. All processes manipulate counter variables
and the behavior of all processes depends on those counter variables. Therefore, it is hard
to separate two processes and show mutual exclusion for them. It is not sufficient to prove
that two processes have distinct tickets. Assume that one of the two processes is critical.
The abstract processes can increase the winner ticket, allowing the second process to enter
its critical section. We discuss this example in detail (Section 7.1). It is not necessary
to know SMV well to understand our explanations. The crucial difference compared to
verification with canonical abstraction is that canonical abstraction preserves invariants
about all processes including summary individuals.

7.1 Case Study: SMV

What follows is a description of our case study with SMV. The complete code can be
found in Appendix C.2, and will be made available with this document.

We cannot use [DW03] alone. As there is a successor function on the tickets and thus
the tickets are not fully symmetric (this breaches the scalarset criteria). Fortunately, we
can use the data type ordset of SMV which gives us an unbounded counter type with a
successor function.

Modeling the Ticket Protocol in SMV is easy. SMV models are very similar to our
formal models (cf. Definition 2.2.3). We start by giving a signature. The type definitions
consist of a type PROC for processes, a type TICKET and a type LOC for locations.

73

scalarset PROC undefined;

ordset TICKET 0..;

typedef LOC {think,wait,crit};

The process indices PROC are a scalarset type, i.e., a type with full symmetry. Next we
define symbols.

s : TICKET;

t : TICKET;

a : array PROC of TICKET;

at: array PROC of LOC;

act:PROC;

We come to the initial states, θ, speaking in terms of formal models of Definition 2.2.3.
The keyword init means that the initial valuation is specified. Initially, we set all counters
to zero and the locations to think:

init(s):=0;

init(t):=0;

forall (p in PROC){

init(at[p]):=think;

init(a[p]):=0;

}

We define the transition relation ρ. The keyword next corresponds to primed symbols
and thus to the valuation of a symbol in the next state, e.g., next(a[act]) := t; means
a′(act) = t. Below the code of a process is shown:

switch(at[act]){

think: { next(a[act]):=t;

next(t):=t+1;

next(at[act]):=wait;

}

wait: { if(a[act]=s) {

next(at[act]):=crit;

}

}

crit: { next(s):=s+1;

next(at[act]):=think;

}

}

which also agrees with the pseudo-code and our formalization of the Ticket Protocol. Note
that act is the process which is currently active. act is a free unconstrained symbol and
thus nondeterministically picks a process which is to be executed.

Our goal is to show mutual exclusion. In the SMV language, we can write mutual
exclusion as:

74

forall(p in PROC) forall(q in PROC)

mutex[p][q]: assert G (at[p]=crit & at[q]=crit)->p=q)

Since there was no bound on the number of processes, the above specification consists of
infinitely many subgoals. However, symmetry arguments reduce the above problem to a
finite number of instances. The idea is the following:

”... exchanging the roles of any two values of the type has no effect on the semantics of
the program. In order to ensure that this symmetry exists, there are a number of rules

placed on the use of variables of a scalarset type. ”

Ken McMillan, SMV tutorial, [McMb]

One cannot use symbols of fixed valuation on a scalarset type, the only operation allowed
on scalarset quantities is equality. In addition, one cannot mix scalarset values with
values of any other type. One can, however, declare a function or predicate symbol
with scalarset arguments. This makes it legal to make PROC a scalarset. When SMV
encounters an array of properties whose index is of scalarset type, it chooses instances to
prove, since if it can prove these cases, then by symmetry it can prove all of them, i.e.,
here it suffices to prove mutex[0][0] and mutex[0][1]. There is more than one quantifier.
The two quantification variables could have the same value. As equality is allowed, it is
necessary to distinguish between the cases where the quantifier variables are equal and
unequal, respectively. Showing either of the instances mutex[0][1] and mutex[0][0] alone
would not account for all cases. SMV produces two verification problems mutex[0][1] and
mutex[0][0] which account for all equality relations between p and q. The individuals
of the base type PROC are collapsed to 0, 1 and one summary individual (SMV calls
it NaN). The tickets are collapsed to one summary individual. As expected, we get a
spurious counterexample as the abstraction is too coarse. Two processes can possibly
have the same ticket and become critical simultaneously.

We perform temporal case splitting on the value of ticket a[p] of process p, which
means that we add a quantifier i to the mutual exclusion property and a premise to the
mutual exclusion temporal formula:

a[p]=i ->((at[p]=crit & at[q]=crit)->p=q).

The idea is that, if we can show the property for each value the variable can take on, the
property holds. This is done in order keep the tickets of p and q apart:

forall (p in PROC) forall(q in PROC) forall (i in TICKET)

{ mutex[p][q][i]:

assert G(at[p]=crit & at[q]=crit)->p=q) for a[p]=i;

using TICKET -> {i} prove mutex[p][q][i];

}

The using-prove construct usually specifies assumptions but also the abstraction. We
abstract the tickets TICKET → {i}, namely i is kept material. The other tickets are
abstracted to a summary individual.

Unfortunately, there is still a spurious counterexample. The first material process 0
enters its critical section. Now the chaos process, the summary process which represents all

75

processes except p and q interferes. It increments the global variable s, which contains the
winner ticket. Thus the other material process 1 can also enter its critical section. When
canonical abstraction was used this counterexample could not occur because canonical
abstraction maintains information about summary individuals.

We added another lemma. It claims that, while a process is critical, the winner ticket
remains the same:

forall (p in PROC) forall(i in TICKET){

remain[p][i]: assert G((at[p]=crit&a[p]=i) -> (s=i)U(at[p]=think));

}

Using this lemma, one can prove mutex. However, SMV was not able to show remain.
We were not able to successfully use compositional techniques to show mutual exclusion.

Spurious Counterexamples. Data type reduction allows only one static summary
individual, and discards all information about this summary individual. If process in-
dices are abstracted, the effect is that this results in a ”chaos” process (pertaining to the
summary process index). It manipulates the winner ticket, global variable s. Thus one
more process can enter its critical section. In case of spurious counterexamples, [DW03]
proposes to use non-interference lemmas. It was not clear to us how to apply the concept
of non-interference to the Ticket Protocol.

76

Chapter 8

Conclusion

A method for checking quantified temporal properties of systems with infinite data do-
mains and an unbounded number of components was given. It is based on a symbolic
quantifier elimination technique, called Skolemization. We have approximated models
produced by Skolemization with three-valued logical analysis. Furthermore, we have dis-
cussed advantages and disadvantages of using finite instantiation and data type reduction
compared to our three-valued logical analysis.

8.1 Future Work

Skolemization does not require a particular abstraction. Combining our methods with
Symbolic Shape Analysis (cf. [Wie04]) is a promising idea because Skolemization is a
symbolic method. In three-valued shape analysis, often varying-domain semantics are
used. Extending Skolemization to a varying-domain semantics is another challenge. A
more generic implementation of Skolemization and heterogeneous abstraction in TVLA
(due to costly constraint checks the analysis is currently slowed down), would improve
the performance of the three-valued analysis we have presented. Decision procedures
[YRS03] promise more automation and more precise transition relations. In order to take
full advantage of our method, one needs transition systems. TVLA did not compute
transitions systems at the time of this writing.

The construction of abstractions which make use of the embedding order for first-order
logic with function symbols is still to be done (see Appendix A).

77

Bibliography

[BCDR04] Thomas Ball, Byron Cook, Satyaki Das, and Sriram Rajamani. Refining
approximations in software predicate abstraction. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 388–403. Springer-
Verlag, March 2004.

[BCG95] Bhat, Cleaveland, and Grumberg. Efficient on-the-fly model checking for
CTL. In LICS: IEEE Symposium on Logic in Computer Science, 1995.

[BCR] Thomas Ball, Byron Cook, and Sriram Rajamani. SLAM project.

[Ber02] Sergey Berezin. Model Checking and Theorem Proving: A Unified Framework.
PhD thesis, Carnegie Mellon University, January 2002.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of C programs. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 203–213, 2001.

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Carte-
sian abstraction for model checking C programs. Lecture Notes in Computer
Science, 2031:268+, 2001.

[BPR02] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Relative complete-
ness of abstraction refinement for software model checking. In Joost-Pieter
Kaoen and Perdita Stevens, editors, Proceedings of TACAS02: Tools and Al-
gorithms for the Construction and Analysis of Systems, volume 2280 of LNCS,
pages 158–172. Springer-Verlag, 2002.

[BR00] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for
boolean programs. In SPIN, pages 113–130, 2000.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 238–252, Los An-
geles, California, 1977. ACM Press, New York, NY.

[CC00] Patrick Cousot and Radhia Cousot. Temporal abstract interpretation. In
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 12–25. ACM Press, 2000.

78

[CCG] Sagar Chakar, Edmund Clarke, and Alex Groce. MAGIC project.

[CD89] Edmund M. Clarke and I.A. Draghicescu. Expressibility results for linear-
time and branching-time logic. In J. W. de Bakker, Willem P. de Roever, and
Grzegorz Rozenberg, editors, REX Workshop, volume 354 of Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency,
School/Workshop, Noordwijkerhout, The Netherlands, May 30 - June 3, 1988,
Proceedings, LNCS, pages 428–437. Springer, 1989.

[CDEG03] M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. Multi-valued
symbolic model-checking, 2003.

[CG03] Edmund M. Clarke and Orna Grumberg. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, September 1994.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 2000.

[Cou96] Patrick Cousot. Abstract interpretation. ACM Comput. Surv., 28(2):324–328,
1996.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of
reactive systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[DH01] Werner Damm and David Harel. LSCs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1):45–80, 2001.

[DK01] Werner Damm and Jochen Klose. Verification of a radio-based signaling
system using the STATEMATE verification environment. Formal Methods in
System Design, 19(2):121–141, 2001.

[DL97] Ekaterina Dolginova and Nancy A. Lynch. Safety verification for automated
platoon maneuvers: A case study. In HART, pages 154–170, 1997.

[DPJ03] Werner Damm, Amir Pnueli, and Bernhard Josko. Understanding uml: A
formal semantics of. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever, editors, Formal Methods for Components and
Objects, First International Symposium, FMCO 2002, Leiden, The Nether-
lands, November 5-8, 2002, Revised Lectures, volume 2852 of Lecture Notes
in Computer Science, 2003.

[DW03] Werner Damm and Bernd Westphal. Live and Let Die: LSC-based veri-
fication of UML-models. In Formal Methods for Components and Objects,
FMCO 2002, volume 2852 of Lecture Notes in Computer Science, pages 99–
135. Springer, 2003.

79

[ES96] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Form.
Methods Syst. Des., 9(1-2):105–131, 1996.

[FB95] G.W.S. Friedrichsen and R.W. Burchfield. The Oxford Dictionary of English
Etymology. Number 0-19-861112-9. Oxford at the Clarendon Press, 1995.

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based
model checking using modal transition systems. Lecture Notes in Computer
Science, 2154:426+, 2001.

[GS99] Viktor Gyuris and A. Prasad Sistla. On-the-fly model checking under fairness
that exploits symmetry. Formal Methods in System Design: An International
Journal, 15(3):217–238, November 1999.

[HJS01] Michael Huth, Radha Jagadeesan, and David Schmidt. Modal transition
systems: A foundation for three-valued program analysis. Lecture Notes in
Computer Science, 2028:155+, 2001.

[HM] Thomas Henzinger and Rupak Majumdar. BLAST.

[HP95] Gerard J. Holzmann and Doron Peled. An improvement in formal verification.
In Proceedings of the 7th IFIP WG6.1 International Conference on Formal
Description Techniques VII, pages 197–211. Chapman & Hall, Ltd., 1995.

[ID96] C. N. Ip and D. L. Dill. Better verification through symmetry. Form. Methods
Syst. Des., 9(1-2):41–75, 1996.

[JM01] Ranjit Jhala and Kenneth L. McMillan. Microarchitecture verification by
compositional model checking. In G. Berry, H. Comon, and A. Finkel, editors,
Computer-Aided Verification (CAV’01), number 2102 in Lecture Notes in
Computer Science, pages 396–410, Paris, France, jul 2001. Springer-Verlag.

[Lah04] Shuvendu Lahiri. Unbounded System Verification using Decision Procedure
and Predicate Abstraction. PhD thesis, Carnegie Mellon University, Septem-
ber 2004.

[Lon93] David E. Long. Model Checking, Abstraction, and Compositional Verification.
PhD thesis, Carnegie Mellon, 1993.

[LSW] Kim G. Larsen, Bernhard Steffen, and Carsten Weise. A constraint oriented
proof methodology based on modal transition systems. pages 13–28.

[McMa] Kenneth L. McMillan. Parameterized verification of the flash cache coherence
protocol by compositional model checking. In CHARME 2001.

[McMb] Kenneth L. McMillan. SMV.

[McM92] Kenneth L. McMillan. Symbolic model checking: an approach to the state
explosion problem. PhD thesis, Carnegie Mellon University, 1992.

80

[McM00] Kenneth L. McMillan. A methodology for hardware verification using com-
positional model checking. Sci. Comput. Program., 37(1-3):279–309, 2000.

[MP95] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems:
safety. Springer-Verlag New York, Inc., 1995.

[MPC+] Madanlal Musuvathi, David Park, Andy Chou, Dawson Engler, and David
Dill. CMC model checker.

[MQS00] Kenneth L. McMillan, Shaz Qadeer, and James B. Saxe. Induction in com-
positional model checking. In Computer Aided Verification, pages 312–327,
2000.

[MYRS05] Roman Manevich, Eran Yahav, G. Ramalingam, and Mooly Sagiv. Predi-
cate abstraction and canonical abstraction for singly-linked lists. In Radhia
Cousot, editor, Proceedings of the 6th International Conference on Verifi-
cation, Model Checking and Abstract Interpretation, VMCAI 2005, Lecture
Notes in Computer Science. Springer, jan 2005.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-
gram Analysis. Springer-Verlag, 1999.

[OS03] Sam Owre and N. Shankar. Writing pvs proof strategies. In Myla Archer,
Ben Di Vito, and César Muñoz, editors, STRATA 2003, number CP-2003-
212448 in NASA Conference Publication, pages 1–15, Hampton, VA, Septem-
ber 2003. NASA Langley Research Center.

[RSL03] T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for
static analysis, 2003.

[SRW+] Mooly Sagiv, Thomas Reps, Reinhard Wilhelm, E. Yahav, and Roman
Manevich. TVLA.

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Transactions on Programming Languages and
Systems, 2002.

[SS99] Hassen Säıdi and Natarajan Shankar. Abstract and model check while you
prove. In Nicolas Halbwachs and Doron Peled, editors, Computer-Aided Veri-
fication (CAV’99), number 1633 in Lecture Notes in Computer Science, pages
443–454, Trento, Italy, jul 1999. Springer-Verlag.

[Wie04] Thomas Wies. Symbolic Shape Analysis. Master’s thesis, Universität des
Saarlandes, 2004.

[Yah01] E. Yahav. Verifying safety properties of concurrent Java programs using 3-
valued logic. ACM SIGPLAN Notices, 36(3):27–40, March 2001.

81

[YR04] E. Yahav and G. Ramalingam. Verifying safety properties using separation
and heterogeneous abstractions. In Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementation, pages 25–
34. ACM Press, 2004.

[YRS01] E. Yahav, T. Reps, and M. Sagiv. LTL model checking for systems with
unbounded number of dynamically created threads and objects. Technical
Report TR-1424, Computer Sciences Department, University of Wisconsin,
Madison, WI, March 2001.

[YRS03] Greta Yorsh, Thomas Reps, and Mooly Sagiv. Symbolically computing most-
precise abstract operations for shape analysis. Technical report, School of
Computer Sciences, Tel Aviv University, Sept. 2003.

[YRSW03] E. Yahav, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Verifying
Temporal Heap Properties Specified via Evolution Logic. In European Sym-
posium on Programming, volume 2618 of Lecture Notes in Computer Science,
pages 204 – 222. Springer-Verlag, 2003.

[Zha04] Lijun Zhang. Logic and model checking for hidden markov models. Master’s
thesis, Universität des Saarlandes, Dependable Systems and Software Group,
Prof. Hermanns, March 2004.

82

Appendix A

Extended Embedding Order

Canonical abstraction is based on the concept of embeddings and tight embeddings (see
Definition 5.1.9). It merges together values to clusters, which make up the abstract
universe, and computing a best conservative interpretation of the predicate symbols on the
abstract universe. We want to give an Extended Embedding Order (cf. Definition 5.1.7)
for first-order logic with general function symbols. This means that function symbols
may return individuals. Hence, if we want to resolve inconsistencies by a join-operator,
we need a semi-lattice structure on the universe, too.

As an example, we consider an array. The table below shows the valuation ι(a) of a
function symbol a which models an array A with index and data domain {1, ..., 4}.

i 1 2 3 4
A[i] = ι(a)(i) 1 3 2 4

We abstract 1 to an abstract value u and 2 is abstracted to v, 3 and 4 we merge together
to an abstract value w. So we have an abstract index and data domain {u, v, w} where
u stands for γ(u) = {1}, v for γ(v) = {2} and w for γ(w) = {3, 4}. What valuation ι̃
should be given to a in the abstract ? For u it must be ι̃(a)(u) = u and for v it must be
ι̃(a)(v) = w. But what about ι̃(a)(w)? Clearly, none of the candidates v, w is conservative.
2 abstracts to v and 4 to w. Somehow we would like to take both v and w. However,
what value should that be?

i u v w
γ(i) {1} {2} {3, 4}

ι̃(a)(i) u w ?

Being conservative means that information extracted from an abstract state also holds for
all the concrete states represented by the abstract state. The abstract state s̃0 we obtain
by choosing an interpretation of p which is always 0 is not conservative. The formula
∃u, v : p(u, v) evaluates to 1 in the concrete state s above and to 0 in s̃0. Obtaining
a conservative abstraction of s given just the truth values 0, 1 is problematic. There is
”contradictory” information as to p(w, w) because ι(p)(3, 3) = 0, ι(p)(4, 4) = 1.

Note that we cannot find a conservative interpretation of a on the three abstract values
u, v, w since we can only assign one value to ι̃(p)(w).

83

Finding optimal conservative interpretations. Conservativeness and optimality
are obtained by abstract interpretation. A representation function β ∈ D → L maps
”concrete” values to ”abstract” values. The abstract values are elements of a lattice L
with partial order v and join operator

⊔
. v expresses information order, i.e., l1 v l2 if l2

conveys less information than l1. Given a subset L′ ⊆ L the join operator
⊔
∈ P(L) → L

returns the least upper bound of L′ with respect to v. This gives rise to a Galois connec-
tion (cf. Definition B.1.1)

〈P(D), α, γ, L〉
between P(D) and L defined by

α(D′) =
⊔
{β(v) | v ∈ D′}

γ(l) = {v ∈ D | β(v) v l}

for D′ ⊆ D and l ∈ L (proof see B.1, the approach is taken from [NNH99]). α(D′) is the
least lattice element which represents D′ and γ(l) is the greatest set which is represented
by l. Furthermore, α({v}) = β(v). We obtain the following diagram:

P(D) L

D

γ
oo

α //

{.}

__????????????
β

??�������������

Canonical Abstraction. In pure-predicate calculus the array A is modeled as a binary
predicate p. The concrete valuation of a corresponds to a predicate valuation of p. This
is displayed in the following figure:

concrete valuation of the predicate p abstract valuation given the embedding
function 1 7→ u, 2 7→ v, 3, 4 7→ w

ι′(p) 1 2 3 4
1 1
2 1
3 1
4 1

ι̃′(p) u v w
u 1
v 1/2
w 1/2 1/2

/.-,()*+1p 99 /.-,()*+2
p

����
��

��
��

/.-,()*+3
p

@@�������� /.-,()*+4 pee

76540123up 88
76540123v

p

��?>=<89:;/.-,()*+w pff

the edges model the valuation of p dashed edges stand for indefinite valu-
ation

After merging together concrete individuals of a universe U , we want to compute con-
servative interpretations for predicate symbols over the abstract universe W . Merging
individuals is described as a surjection h ∈ U → W , here h ∈ {0, 1, 2, 3, 4} → {u, v, w}

84

where h(1) = u, h(2) = v, h(3) = h(4) = w. For some predicate symbol p its interpreta-
tion in the concrete is a function f ∈ Un → K. The predicate that models array A is a
two-place predicate, i.e., n = 2. The most precise conservative interpretation of predicate
symbol p is a function function F ∈ W n → K. We want to obtain this interpretation
using the idea of a representation function.

K = {0, 1, 1/2} lacks a least element1. A least element would stand for the empty set
of Boolean values. ⊥ never occurs, hence it is ignored2. So we set D = K = L and choose
β as the identity on K.

Conservative means

∀u1, ..., un ∈ U : f(u1, ..., un) v F (h(u1), ..., h(un)) .

The best possible interpretation is

F (w1, ..., wn) =
⊔
{f(u1, ..., un) | ∀i ∈ {1, ..., n} : ui ∈ U ∧ h(ui) = wi}

= α({f(u1, ..., un) | ∀i ∈ {1, ..., n} : ui ∈ U ∧ h(ui) = wi}) .

for all w1, ..., wn ∈ W . In [SRW02], this best interpretation is termed tight embedding.
We compute the abstract valuation of p on (w,w) as

ι(p)(w, w) =
⊔
{ι′(p)(3, 3), ι′(p)(3, 4), ι′(p)(4, 3), ι′(p)(4, 4)}

=
⊔
{0, 1} = 1/2

and analogously ι(p)(w, v) = 1/2.

General function symbols. Before coming to the general case we consider the simple
case where there is just one base type. We assume that the concrete universe is D and
the abstract universe is a lattice L. For an interpretation of an n-place function symbol,
a function f ∈ Dn → D, we want to find a precise and conservative interpretation
fL ∈ Ln → L of f . Conservative, means ∀l1, ...ln ∈ L ∀v1 ∈ γ(l1) ... ∀vn ∈ γ(ln) :
f(v1, ..., vn) ∈ γ(fL(l1, ..., ln)). This is equivalent to ∀l1, ...ln ∈ L ∀v1 ∈ γ(l1) ... ∀vn ∈
γ(ln) : α({f(v1, ..., vn)}) v fL(l1, ..., ln). Now it is clear that the most precise (v-least)
conservative interpretation of f is

fL(l1, ..., ln) = α({f(v1, ..., vn) | ∀1 ≤ i ≤ n : vi ∈ γ(li)})

for all l1, ..., ln ∈ L.
Let us apply our newly gained knowledge. In our example, the set of concrete values is

D = {1, 2, 3, 4}. It seems easy: we just have to find a complete lattice and a representation
function β, the rest follows automatically. We play the idea through with two different
lattices L1 = {⊥, u, v, w, uv, uw, vw, uvw} and L2 = {⊥, u, v, w, uvw}. L1 is P({u, v, w})
up to isomorphism and L2 is {u, v, w} plus a bottom and a top element. We begin with

1 Leaving out the ⊥ element is allowed because an embedding function h ∈ U → W is surjective and
∅ 6= {f(u1, ..., un) | ∀i ∈ {1, ..., n} : ui ∈ U ∧ h(ui) = wi} ⊆ {0, 1, 1/2}.

2Similar to relational abstraction in [BPR01].

85

L1. The ordering v1 is given graphically as

uvw

uv

wwwwwwwww
uw vw

HHHHHHHHH

u

wwwwwwwww
v

GGGGGGGGG

vvvvvvvvv
w

HHHHHHHHH

⊥

FFFFFFFFF

wwwwwwwww

The representation function β1 is given as β1(1) = u, β1(2) = v, β1(3) = w, β1(4) = w.
The concretization function is given by

l ⊥ u v w uv vw uw uvw
γ1(l) ∅ {1} {2} {3,4} {1,2} {2,3,4} {1,3,4} D

and the abstraction function is

∅ ⊥
{1} u
{2} v
{3} w
{4} w
{1,2} uv
{1,3} uw
{1,4} uw
{2,3} vw
{2,4} vw
{3,4} w
{1,2,3} uvw
{1,2,4} uvw
{1,3,4} uw
{2,3,4} vw

D uvw

With ι(a) we have a function D → D and we want to find an interpretation ι̃(a) on L1

that is conservative to ι(a) and most precise. The formula we obtain from our earlier
consideration is:

ι̃(a)(l) = α1({ι(a)(v) | ∀v ∈ γ1(l)})
for all l1, ..., ln ∈ L. We obtain for the value w the image

ι(a)(w) = α1({ι(a)(v) | ∀v ∈ γ1(w)})
= α1({ι(a)(v) | ∀v ∈ {3, 4}})

= α1({3, 4}) =
⊔
{v, w} = vw

and as a whole we get:

l ⊥ u v w uv vw uw uvw
ι̃(a)(l) ⊥ u w vw uw vw uvw uvw

86

Obtaining a Lattice from a Partition. A partition is essentially a surjective func-
tion h ∈ D → D̃ where D̃ is some set. The canonical naming schema from canonical
abstraction computes a partition based on abstraction predicates. Given such a partition
of D, we can choose the power set L = P(D̃) or augment D̃ with a top and a bottom

element, L = D̃ ∪ {⊥,>}. In the previous example, the first choice corresponded to L1

and the second choice to L2.

Formalization. We have the intuition and want to formalize it. First, we need a notion
of abstract logical structures.

Definition A.0.1 (Extended modal logical structure).
Let Σ = 〈B,F , P,V , r〉 be a signature.

A modal logical structure is a tuple 〈U, ∆, ι〉 such that

universe. U is a universe of values. The elements of the universe
U are called individuals.

semantic domains. ∆ is a function which maps each base type T to a join-
lattice (cf. 5.1.3) ∆(T) ⊆ U . We write vT for the
partial order of ∆(T) and

⊔
T for its join operator. The

universe U =
.⋃

T∈B∆(T) is the disjoint union of seman-
tic domains.

interpretation. The interpretation ι maps each function symbol f ∈ F
of rank r(f) = (T1...Tn, T) to a function

ι(f) ∈ ∆(T1)× ...×∆(Tn) → ∆(T) .

The interpretation ι maps each predicate symbol p ∈ P
of rank r(p) = (T1...Tn, Bool) to a function

ι(p) ∈ ∆(T1)× ...×∆(Tn) → K .

The interpretations are monotone.

We denote the set of modal logical structures over Σ as MStruct[Σ]. Sometimes we omit
the universe of a logical structure and write 〈∆, ι〉 since the universe is uniquely determined
by U =

⋃
T∈B\{Bool} ∆(T). Using this notation we define the set of logical structures over

Σ with fixed ∆
MStruct[Σ, ∆] = {s | s = 〈∆, ι〉 ∈ MStruct[Σ]} .

Definition A.0.2 (Extended embedding).

Let s = 〈U, ∆, ι〉 ∈ Struct[Σ] ∪ MStruct[Σ] and s̃ = 〈W, ∆̃, ι̃〉 ∈ MStruct[Σ]. We say
that β ∈ U → W embeds s into s̃, denoted as s vβ s̃, iff

• β decomposes into maps βT = β|∆(T) ∈ ∆(T) → ∆̃(T). We define concretization
functions γT (l) = {v ∈ D | βT (v) v l} for each base type T .

• For every T there exists a subset KT ⊆ ∆̃(T) with pre-image β−1(KT) = ∆(T) and

∀l ∈ ∆̃(T) ∃k ∈ KT : k v l. We write vT for the partial order of ∆̃(T) and
⊔

T

for its join operator.

87

• For each f ∈ F with rank r(f) = (T1...Tn, T) holds:

∀l ∈
n∏

i=1

∆̃(Ti) ∀u ∈
n∏

i=1

γTi
(li) : βT (ι(f)(u)) vT ι̃(f)(l)

• For each predicate symbol p ∈ P with rank r(p) = (T1...Tn, Bool) holds:

∀l ∈
n∏

i=1

∆̃(Ti) ∀u ∈
n∏

i=1

γTi
(li) : ι(p)(u) vK ι̃(p)(l)

where is the least upper bound operator of the Kleene domain vK. We say that s can be
embedded in s̃, denoted by s v s̃, if there exists a function β such that s vβ s̃.

Theorem A.0.1 (Extended Embedding Theorem).
If s vβ s̃ and e ∈ FOΣ then we have for every complete assignment Z that [e] s Z v
[e] s̃ (β ◦ Z). An alternative formulation is that validity of e in s̃ implies validity of e in
s, i.e., ([e] s̃ (β ◦Z)) = 1 implies ([e] s Z) = 1, and invalidity of e in s̃ implies invalidity
of e in s, i.e., ([e] s̃ (β ◦ Z)) = 0 implies ([e] s Z) = 0.

Proof. see B.4

Definition A.0.3 (Extended Tight Embedding). We say that s̃ = 〈W, ∆̃, ι̃〉 ∈
MStruct[Σ] is a tight embedding of s = 〈U, ∆, ι〉 ∈ Struct[Σ] ∪ MStruct[Σ] if there
exists a function β ∈ U → W such that

• β decomposes into maps βT = β|∆(T) ∈ ∆(T) → ∆̃(T). We define concretization
functions γT (l) = {v ∈ D | βT (v) v l} for each base type T .

• For every T there exists a subset KT ⊆ ∆̃(T) with pre-image β−1(KT) = ∆(T) and

∀l ∈ ∆̃(T) ∃k ∈ KT : k v l. We write vT for the partial order of ∆̃(T) and
⊔

T

for its join operator.

• For each f ∈ F with rank r(f) = (T1...Tn, T) holds:

∀l ∈
n∏

i=1

∆̃(Ti) : ι̃(f)(l) =
⊔
T

{βT (ι(f)(u)) | u ∈
n∏

i=1

γTi
(li)}

• For each p ∈ P with rank r(p) = (T1...Tn, Bool) holds:

∀l ∈
n∏

i=1

∆̃(Ti) : ι̃(p)(l) =
⊔
T

{ι(p)(u) | u ∈
n∏

i=1

γTi
(li)}

Remark A.0.1 (Embedding and Tight Embedding). If a function β tightly embeds

a structure s into a structure s̃ then s vβ s̃. s̃ is uniquely determined by s, a function ∆̃ ∈
B → W and the embedding function β if s̃ tightly embeds s. We write s̃ = embed∆̃,β(s).

88

Appendix B

Proofs

B.1 Galois connection induced by representation func-

tion

Definition B.1.1 (Galois connection (cf. [Cou96, CC77])). Let 〈L,vL〉, 〈M,vM〉
be complete lattices, and α ∈ L → M , γ ∈ M → L total functions. 〈α, γ〉 is a Galois
connection iff

∀l ∈ L ∀m ∈ M : α(l) vM m ⇔ l vL γ(m)

holds.

The following equivalences hold:

α(D′) v l ⇔
⊔
{β(v) | v ∈ D′} v l

⇔ ∀v ∈ D′ : β(v) v l

⇔ D′ ⊆ γ(l) .

B.2 Skolemization for predicate logic

The translation helps understand and prove Skolemization for the pure-predicate setting.
Models denoted in predicate logic are special models of first-order logic. Skolemization
as in Theorem 4.1.1 is hence applicable to them. However, the introduction of Skolem
constants produces a model which is not formulated in predicate logic. We just translate
this model back to predicate logic. The encoding which is mentioned (but not formalized)
in the Observation below provides a more general encoding which can be used for this
purpose.

Observation B.2.1 (Encoding). For every many-sorted model M there is a correspond-
ing predicate model M] and for every formula φ ∈ FCTL∗

Σ one can compute a formula
φ] such that

M � φ ⇔ M] � φ].

Proof. The claim follows immediately from Theorem B.2.4 (Preservation Theorem for
Encodings) and Lemma B.2.5 (Existence of Encodings).

89

Lemma B.2.1. The result of successively applying skolemization and then the Encoding
within this proof produces predicate logic skolemization.

In this section we will reduce many-sorted problems to one-sorted pure predicate prob-
lems. The rewrite method for expressions is quite generic.

Many-sorted logical structures are encoded as one-sorted pure-predicate logical struc-
tures. This encoding is then ’lifted’ to a models over a state-space by means of a trans-
lation of many-sorted first-order expressions. But let us first deal with the encoding of
structures. Pure predicate first-order logic lacks sorts and function symbols; these we will
encode. We encode sorts as unary predicates and non-predicate n-place function symbols
as n + 1-place predicates. That yields pure-predicate signatures. We give an injective en-
coding function from many-sorted to pure-predicate logical structures. Furthermore, we
give a syntactic transformation function that maps many-sorted first-order expressions to
equivalent first-order expression.

Definition B.2.1. Let Σ = 〈B,F , P,V , r〉 be a many-sorted signature. We define the
predicate signature PΣ = 〈P ′,V , r〉 consisting of the predicate symbols.

P ′ = P
.
∪ { p[f] | f ∈ F}
.
∪ { t[T] | T ∈ B}

and the arity function r ∈ P ′ → N defined as

r(x) =

n + 1 ; x = p[f], rΣ(f) = (T1...Tn, T)

n ; x = p ∈ P

1 ; x = t[T]

.

Definition B.2.2 (Encoding of a Structure). Let Σ be a many-sorted signature. We
define the encoding function encΣ ∈ Struct[Σ] 7→ Struct[PΣ] as follows

〈U, ∆, ιmany〉 → 〈U, ιone〉

where for each predicate f ∈ F with r(f) = n we set for all u1, ..., un ∈ U

ιone(f)(u1, ..., un) =

{
ιmany(f)(u1, ..., un) ; (u1, ..., un) ∈ dom(ιmany(f))

0 ; otherwise

and for each non-predicate function symbol f ∈ F of arity r(p[f]) = n + 1 and all
u1, ..., un, u ∈ U

ιone(p[f])(u1, ..., un, u) =

{
ιmany(f)(u1, ..., un) = u ; (u1, ..., un) ∈ dom(ιmany(f))

0 ; otherwise
.

For each sort T we set ∀u ∈ U : ιone(t[T])(u) ⇔ u ∈ ∆(T).

We show a technical lemma: encΣ is one-to-one.

90

Lemma B.2.2. encΣ is injective.

Example B.2.1. Let us assume that our signature contains the usual symbols and types
for reasoning about natural numbers: addition add : Nat × Nat → Nat, incrementa-
tion succ : Nat → Nat and equality eq : Nat × Nat → Nat. The first-order for-
mula that expresses that every natural number n has a successor m, ∀n : Nat. ∃m :
Nat. eq(m, succ(n)) is translated to ∀n. ∃m. t[Nat](n)∧t[Nat](m)∧∃vsucc. p[succ](n, vsucc)∧
eq(m, vsucc).

The algorithm below1 computes such a translation function.

Definition B.2.3 (Translation Algorithm). Let Σ be a signature. The translation
procedure Trans ∈ FOΣ → FOPΣ

for first-order expressions uses an auxiliary procedure
for translating terms

Trans(e) =

TransTerm(t) ; e = t

c ; c ∈ B
Trans(e1) ∧ Trans(e2) ; e = e1 ∧ e2

¬Trans(e′) ; e = ¬e′

∃x. t[T](x) ∧ Trans(e′) ; ∃x : T. e′

(TCv1, v2.T rans(e′))(v3, v4) ; e = (TCv1, v2 : T.e′)(v3, v4)

The translation procedure TransTerm ∈ TermΣ → FOPΣ
for terms is given below:

TransTerm(t) =e := t

QV := ∅
while (there is a subterm t = f(v1, ..., vn) of e

where f ∈ F is a non-predicate function symbol)

pick a fresh variable v

bind := bind ∧ p[f](v1, ..., vn, v)

QV := QV ∪ {v}
e := e[v/t] ,i.e., substitute v for t in e

return ∃x1. ... ∃xn. bind ∧ e

where QV = {x1, ..., xn}

where the set QV are the newly created variables.

Lemma B.2.3. The algorithm in B.2.3 defines a function trΣ = λe. Trans(e) . The
translation function trΣ is correct, i.e.,

∀e ∈ FOΣ ∀s ∈ Struct[Σ] ∀Z : s, Z � e ⇔ encΣ(s), Z � trΣ(e) .

Proof. We give a plausibility argument here. The function Trans itself is straightforward.
TransTerm is more interesting. The interpretation of predicates p[f] are functions, that
is if u1, ..., un are individuals p[f](u1, ..., un, u) uniquely determines u. In TransTerm we
insert the variable that refers to the value of f(u1, ..., un) in place of f(u1, ..., un).

1An equivalent deterministic recursive linear-time algorithm can be implemented.

91

Definition B.2.4 (Encoding of a Model). Let M = 〈S, θ, ρ〉 many-sorted model. A
pure-predicate model M] = 〈S], θ], ρ]〉 is an encoding of M iff:

∀s], t] ∈ S] :
[[ρ]]]S](s], t]) ⇔ encΣ(s) = s] ∧ encΣ(t) = t] ∧ [[ρ]]S(s, t)
[[θ]]]S](s]) ⇔ encΣ(s) = s] ∧ [[θ]]S(s)

and encΣ(S) ⊆ S].

We extend trΣ to temporal formulas. trΣ(φ) for a temporal formula φ is φ with each
first-order expression e replaced with trΣ(e).

Theorem B.2.4 (Equivalence Theorem). Let M = 〈S, θ, ρ〉 be many-sorted model
and M] = 〈S], θ], ρ]〉 an encoding of M . Then for every first-order temporal formula φ
the equivalences ∀s ∈ S : s � φ ⇔ encΣ(s) � trΣ(φ) and M � φ ⇔ M] � trΣ(φ) hold.

Lemma B.2.5 (Existence of Encodings). Let M = 〈S, θ, ρ〉 be a many-sorted model.
The pure-predicate model M] = 〈encΣ(S), θ], ρ]〉 with

ρ] = trΣ∪Σ′(ρ)

and
θ] = trΣ(θ)

is an encoding of M .

Example B.2.2. This is taken from the Ticket Protocol Example that follows later:

∀i2. p[t′](i2) ≡ ∃i1. p[t](i1) ∧ p[succ](i1, i2)

and corresponds to t′() := succ(t()). The right-hand side of the ≡ is exactly trΣ(succ(t())).
So, even in restricted cases trΣ can be used for the right-hand sides of assignments :=.

B.3 Preservation by Simulation

Claim. Let φ be an ACTL∗ state formula and K,K ′ two transition systems such that
K � K ′. Then K ′ � Φ ⇒ K � Φ.

Proof. Let K = 〈S, I, R〉, K ′ = 〈S ′, I ′, R′〉 be transition systems such that K � K ′ and
H is a simulation between K and K ′.

Definition B.3.1. Two paths π ∈ ΠK, π′ ∈ ΠK′ correspond, denoted as π ∼H π′, iff
∀i ∈ N : H(πi, π

′
i).

Lemma B.3.1. For every pair of states (s, s′) ∈ H, holds that for every path in K that
starts with s there exists a corresponding path in K ′ that starts with s′, i.e.,

∀(s, s′) ∈ H ∀π ∈ ΠK : π0 = s ⇒ ∃π′ ∈ ΠK′ : π′0 ∧ π ∼H π′ .

Proof. Let (s, s′) ∈ H and π ∈ ΠK such that π0 = s. We exploit the fact that H is a
simulation relation and inductively construct a path that corresponds to π. We show that
there is a family of maps (mi)i∈N such that

92

(i) mi is a finite path of length i in K ′, i.e., mi ∈ {0, ..., i} → S ′ and ∀k ∈ {0, ..., i−1} :
R′(mi(k), mi(k + 1))

(ii) mi+1 is prolongation of mi, i.e., mi+1|{0,...i} = mi for all i.

(iii) ∀i ∈ N ∀k ∈ N : H(πk, m
i(k)).

We can then define π′ = λk ∈ N : mi(k) and π′ ∈ ΠK′ Let us turn to the induction. The
base case is simple. Since R(π0, π1) there exists a t′ such that R′(s′, t′) and H(π1, t

′). We
set m0 = t′. Let us assume that m0, ...,mj have been constructed. Since H(πj, m

j(j))
there exists exists a t′′ such that R′(mj(j), t′) and H(π1, t

′). We set

mj+1 = λk ∈ {0, ..., j + 1} :

{
t′′ ; k = j + 1

mj(k) ; otherwise
.

Apparently, criteria (i)-(iii) hold. This concludes our proof.

Statement (I) of the following lemma is exactly the claim in Theorem 5.1.2. We use
Lemma B.3.1 to prove it.

Lemma B.3.2 (Preservation Lemma). The following two claims hold:

Let φ be an ACTL∗ state formula and (s, s′) ∈ H then s′ � φ ⇒ s � φ. (I)
Let Φ be an ACTL∗ state formula and π ∼H π′ then π′ � Φ ⇒ π � Φ. (II)

Proof. We prove (I) and (II) by simultaneous structural induction on state and path
formulas.

φ ::= e | ¬e | φ ∧ φ | φ ∨ φ | AΦ (state)
Φ ::= φ | Φ ∧ Φ | Φ ∨ Φ | XΦ | ΦUΦ | ΦRΦ (path)

We assume (I) to prove (II) and vice versa. This is well-founded since we always decrease
the size of the formulas. One could give a correctness argument directly using the Knaster-
Tarski Fixpoint Theorem. We omit that.

state formulas φ: Let (s, s′) ∈ H. Assume that s′ � φ.

φ = e: The claim holds by definition of simulation.

φ = ¬e: The claim holds by definition of simulation, since ¬e is an expression, too (or,
at least, has the same semantics).

φ = φ1∧φ2: We assume that s′ � φ, i.e., s′ fulfills φ1 and φ2, then by induction hypothesis
s also fulfills both, and therefore s � φ.

φ = φ1 ∨ φ2: We assume that s′ � φ, i.e., s′ fulfills either of φ1 and φ2. If s′ fulfills
φ1, then by induction hypothesis s also fulfills φ1 . If s′ fulfills either φ2 by induction
hypothesis s also fulfills φ2. Hence we have s � φ.

93

φ = AΦ: Lemma B.3.1 comes into play. s′ � φ, i.e., every path starting in s′ fulfills Φ.
By Lemma B.3.1 for every path starting in s there exists a corresponding path starting in
s′. Let π be a path starting in s. There exists a corresponding path π′ starting in s′. By
assumption π′ � Φ and by induction hypothesis π � Φ. Every path starting in s fulfills
Φ. Therefore, s � φ.

path formulas φ: Let π ∼H π′. Assume that π′ � φ.

Φ = φ: Since π′ � Φ holds, we get π′0 � φ and by induction hypothesis π0 � φ. So π � Φ
holds also.

Φ = Φ1 ∧ Φ2: We assume that π′ � Φ, i.e., π′ fulfills Φ1 and Φ2, then by induction
hypothesis π also fulfills both, and therefore π � Φ.

Φ = Φ1 ∨ Φ2: We assume that π′ � Φ, i.e., π′ fulfills either of Φ1 and Φ2. If π′ fulfills
Φ1, then by induction hypothesis π also fulfills Φ1 . If π′ fulfills either Φ2 by induction
hypothesis π also fulfills Φ2. Hence we have π � Φ.

Φ = XΦ′: The postfix of π′ fulfills Φ′, i.e., π′1 � Φ′. The postfix π1 of π corresponds to
π′1, i.e., π1 ∼H π′1. Therefore, by induction hypothesis, π1 � Φ′ and π � Φ.

Φ = Φ1UΦ2: We have that π′ � Φ1UΦ2, which means that there exists a k ∈ N such
that

π′
k � Φ2 ∧ ∀0 ≤ j ≤ k : π′

j � Φ1 .

We have that πk ∼H π′k and ∀0 ≤ j ≤ k : πj ∼H π′j. By induction hypothesis

πk � Φ2 ∧ ∀0 ≤ j ≤ k : πj � Φ1

holds, which proves the claim.

Φ = Φ1RΦ2: π′ � Φ1RΦ2 which means that

∀j ∈ N : (∀i < j : π′
i 2 Φ1) ⇒ π′

j � Φ2

holds. Again we get the correspondences ∀j ∈ N : (∀i < j : πi ∼H π′i ∧ πj ∼H π′j) and
apply the induction hypothesis:

∀j ∈ N : (∀i < j : πi 2 Φ1) ⇒ πj � Φ2

which proves the claim.

94

B.4 Extended Embedding

Proof. It is easy to see that since the interpretation of function symbols in a modal logical
structure is monotone, the interpretation of expressions e ∈ FOΣ is monotone as well,
i.e.,

∀s̃ ∈ MStruct[Σ] : (∀x ∈ V : Z(x) v Z ′(x)) ⇒ [e] s̃ Z v [e] s̃ Z ′

where Z,Z ′ are complete assignments for e.
s, s̃ and β be defined as in the Theorem. For every term t we prove

β([t] s Z) v [t] s̃ (β ◦ Z) (∗)

for every complete assignment Z and use this as a lemma to prove

[e] s Z v [e] s̃ (β ◦ Z) (∗∗)

for every complete assignment Z.
We give proofs by structural induction

t ::= x | f(t1, ..., tn) (terms)
e ::= t | e ∧ e | ¬e | ∀x : T. e | TC(v1, v2 : T.e)(v3, v4) (expressions)

We begin with (∗):
The base case is the case where the term is a variable t = x. By definition we have :

β([x] s Z = β(Z(x)) = β([x] (s̃) (β ◦ Z) and the claim follows because v is reflexive.
The inductive case is t = f(t1, ..., tn). We make use of the induction hypothesis and

our assumption:

β([e] s Z) = β(ιs(f)([t1] s Z, ..., [tn] s Z))
v ιs̃(f)([t1] s̃ (β ◦ Z), ..., [tn] s̃ (β ◦ Z)) .

Proving (∗∗) is a bit more involved because of quantification and transitive closure.

Term: e = t. The claim follows from the fact that β(0) = 0, β(1) = 1 and (∗).

Conjunction: e = e1 ∧ e2. We apply the induction hypothesis:

[e] s Z = min([e1] s Z, [e2] s Z)
v min([e1] s̃ Z, [e2] s̃ Z)) .

Negation: e = ¬e′. We apply the induction hypothesis:

[e] s Z = 1− [e′] s Z
v 1− [e′] s̃ Z .

Universal quantification: e = ∀x : T.e′. There are two interesting cases [e] s̃ (β◦Z) =
1 and [e] s̃ (β ◦ Z) = 0. If [e] s̃ (β ◦ Z) = 1/2 nothing is to be shown.

case: [e] s̃ (β◦Z) = 1. This means that for all ṽ ∈ ∆̃s̃(T) holds ([e′] s̃ ((β◦Z)∪{x 7→
ṽ})) = 1. Since by assumption there is a subset of ∆s̃(T) with pre-image ∆s(T) and
because of the inductive assumption the claim follows.

95

case: [e] s̃ (β ◦ Z) = 0. This means that there exists a ṽ ∈ ∆s̃(T) such that
([e′] s̃ ((β ◦ Z) ∪ {x 7→ ṽ})) = 0. Without loss of generality we can assume that ṽ ∈ KT

(otherwise we pick a KT 3 w̃ 3 ṽṽ and by monotonicity we have ([e′] s̃ ((β ◦ Z) ∪ {x 7→
w̃})) v ([e′] s̃ ((β ◦ Z) ∪ {x 7→ ṽ})) = 0). There is a value v ∈ ∆s(T) such that β(v) = ṽ
and by induction hypothesis we have:

[e] s̃ (Z ∪ {x 7→ v})) v ([e′] s̃ ((β ◦ (Z ∪ {x 7→ v})))
= ([e′] s̃ ((β ◦ Z) ∪ {x 7→ ṽ})) = 0

which proves our claim.

Transitive Closure: e = TC(v1, v2 : T.e′)(v3, v4).

case: [e] s̃ (β◦Z) = 1. There exist ũ1, ..., ũn+1 ∈ ∆(T) such that for all 1 ≤ i ≤ n [e′]
we have s̃ ((β ◦Z)∪{v1 7→ ũi, v2 7→ ũi+1}), β ◦Z(v3) = ũ1, and β ◦Z(v4) = ũn+1. Without
loss of generality ũ1, ..., ũn+1 ∈ KT (otherwise we can choose values from KT which fulfill
the aforesaid three conditions by monotonicity). Because the pre-image of KT under β is
∆(T) there exist u1, ..., un+1 ∈ ∆(T) such that β(ui) = ũi for all 1 ≤ i ≤ n+1. Therefore,
Z(v3) = u1, Z(v4) = un+1 and by induction hypothesis, for all 1 ≤ i ≤ n,

[e′] s (Z ∪ {v1 7→ ui, v2 7→ ui+1}) v [e′] s (β ◦ (Z ∪ {v1 7→ ui, v2 7→ ui+1}))
= [e′] s ((β ◦ Z) ∪ {v1 7→ ũi, v2 7→ ũi+1})) = 1 .

case: [e] s̃ (β◦Z) = 0. Assume that [e] s Z 6= 0. Then there exist u1, ..., un+1 ∈ ∆(T)
such that Z(v3) = u1, Z(v4) = un+1, and for all 1 ≤ i ≤ n,

[e′] s (Z ∪ {v1 7→ ui, v2 7→ ui+1}) 6= 0 .

Hence, by the induction hypothesis, there exist ũ1, ..., ũn+1 ∈ ∆̃(T) such that β ◦Z(v3) =
ũ1, β ◦ Z(v4) = ũn+1 and for all 1 ≤ i ≤ n, [e′] s̃ (β ◦ Z) 6= 0. Therefore, [TC(v1, v2 :
T.e′)(v3, v4)] s̃ (β ◦ Z) 6= 0 holds which is a contradiction.

B.5 Symmetry Lemma

Proof.
Claim (a):
Apparently, the inverse f−1 of f is a bijection too. We choose e ∈ FOP and Z ′. Let
Z := f−1 ◦ Z ′. Hence

[[e]](s)(f−1 ◦ Z ′) = [[e]](s)(Z)

= [[e]](s′)(f ◦ f−1 ◦ Z)

= [[e]](s′)(Z ′) .

Claim (b):
Let s̃ := αP,A

can (s), s̃′ := αP,A
can (s′). First, we show that U s̃ = U s̃′ . It suffices to prove the

inclusion U s̃ ⊆ U s̃′ since the other direction is analogous due to (a).

96

The function that computes canonical names with respect to A := {a1, ..., an}.

κA,s ∈ U → K|A|, u 7→ 〈ιs(a1)(u), ..., ιs(ak)(u)〉 .

Let
→
x ∈ U s̃ = κA,s(U

s). We need to prove
→
x ∈ U s̃′ . There exists u ∈ U s such that

κA,s(u) =
→
x has canonical name

→
x.

Now, we exploit the symmetry:

∀k ∈ N ∀u1, ..., uk ∈ U s ∀p ∈ Pk ∀ν1, ..., νk ∈ V ar :

ιs(p)(u1, ..., uk) = [[p]](ν1, ..., νk) s {νi 7→ ui}
= [[p]](ν1, ..., νk) s′ {νi 7→ f(ui)}
= ιs

′
(p)(f(u1), ..., f(uk)) (I)

which yields

κA,s(u) =
→
x = ιs(a1)(u), ..., ιs(ak)(u)〉

= ιs
′
(a1)(f(u), ..., ιs

′
(ak)(f(u))〉 = κA,s′(f(u)) ∈ U s̃′ (II) .

It remains to prove that ιs̃ = ιs̃
′
. Again we use (I):

∀p ∈ Pk : ιs̃(p)(ũ1, ..., ũk) =
⊔

ui∈Us, κA,s(ui)=ũi

ιs(p)(u1, ..., uk) s. Def. 5.1.7

=
⊔

ui∈Us, κA,s(ui)=ũi

ιs(p)(f(u1), ..., f(uk)) (I)

=
⊔

ui∈Us, κA,s′ (f(ui))=ũi

ιs(p)(f(u1), ..., f(uk)) (II)

=
⊔

u′i∈Us′ , κA,s′ (u
′
i)=ũi

ιs(p)(u′1, ..., u
′
k) f surjective

= ιs̃
′
(p)(ũ1, ..., ũk) . s. Def. 5.1.7

The equality for the summary predicate sm can be shown analogously :

ιs
′
(sm)(ũ) = (|{u | κA,s(u) = ũ}| > 1) t

⊔
u∈U, κA,s(u)=u

ιs(sm)(u)

(I),(II)
= (|{u | κA,s′(f(u)) = ũ}| > 1) t

⊔
u∈U, κA,s′ (f(u))=ũ

ιs(sm)(f(u))

f surj.
= (|{u′ | κA,s′(u

′) = ũ}| > 1) t
⊔

u′∈Us′ , κA,s′ (u
′)=ũ

ιs(sm)(u′)

= ιs̃
′
(sm)(ũ)

This concludes the proof of Claim (b).
Claim (c):

f is bijective, hence the joins
⊔

collapse and we can use (I).

97

Claim (d):
Let us assume that s ∈ Struct[P] is a 2-valued structure.

[s]∼ ⊆ Struct[P] holds because of the definition of symmetry, elements of s’s symmetry
class cannot be 3-valued.

Let t ∈ [s]∼. We have the tight embeddings t v s, because of (a) and (c). So there is
a chain of embeddings t v s v αP,A

can (s) and hence t ∈ γ3(α
P,A
can (s)) by definition of γ3.

98

Appendix C

Sources

This chapter contains some selected source files from the TVLA and the SMV case studies.

C.1 Case Study with TVLA

The file which contains the ”transition relation”.

/* typing predicate */
%p number (integer) abs

/* successor relation */
%p succ(integer,integer) function acyclic

/* the value zero is needed because it is used for initialization */
%p zero(integer) abs

/* constraints on successor relation */
/* 1. (unique successors)

"function" means there is at most one successor */

/* 2. (existence of successors)
each number has a successor (and the successor is not zero) */

%r !(A(i) number(i) -> E (j) number(j) & !zero(j) & succ(i,j)) ==> 0

/* global counter variables */
%p s(integer) abs unique
%p t(integer) abs unique

/* transitive closure of succ */
%i t[succ](n1,n2)=number(n1)&number(n2)&succ*(n1,n2)
/* reflexive*/
%r number(n1)&number(n2)&n1==n2 ==> t[succ](n1,n2)
/* transitive */
%r number(n1)&number(n2)&number(n3)&t[succ](n1,n2)&t[succ](n2,n3)

==> t[succ](n1,n3)

99

/* s \leq n2 */
%i r[s,succ](n2)=E(n1) s(n1) & t[succ](n1,n2)
/* t \leq n2 */
%i r[t,succ](n2)=E(n1) t(n1) & t[succ](n1,n2)

%p process(p) abs

/* local counter variables */
%p a(process,integer) function

/* these are variables not pointers, so there is always
something s,t,a point to */

/* %r process(p)& !E(i) a(p,i) ==> 0 */

/* %r !(E(i) s(i)) ==> 0
%r !(E(i) t(i)) ==> 0 */

%p p_1 (process) unique abs
%p p_2 (process) unique abs
%p initialized ()

/* instrument the things connected to p_1 and p_2 */
/*
%i a_p_1(integer)=E(p) p_1(p) & a(p,integer) abs
%i a_p_2(integer)=E(p) p_2(p) & a(p,integer) abs
*/

/* Skolemization constraints */

%r ((A (p) process(p)-> !p_1(p)) |
(A (p) process(p)-> !p_2(p)) |
(A (p) process(p)-> !sm(p))) ==> 0

%r (p_1(p) & p_2(q)) ==> !p==q

/* We may assume our result from the lemma
(s. ticket_lemma)

No two processes have the same ticket !
*/

%r (E(p1,p2,i) p1!=p2 & !at[think](p1) & !at[think](p2)
& a(p1,i) & a(p2,i)) ==> 0

%%

%action init () {
%f { p_1(p), p_2(p)}

100

%p !initialized()
{
initialized() = 1
}

}

%action draw_ticket() {
%t "a:=t; t:=t+1"
%f {runnable(tr)&a(tr,u), E(n1, n2) t(n1) & succ(n1, n2)

& t[succ](n2, n)}
%p initialized()
{
/* core predicates */
a(process,integer) = (process==tr ? t(integer): a(process,integer))

/*
a_p_1(i) = (p_1(tr) ? t(i) : a_p_1(i))
a_p_2(i) = (p_2(tr) ? t(i) : a_p_2(i))

*/
t(i2) = E (i1) succ(i1,i2) & t(i1)

/* instrumentation predicates */
r[t,succ](n)= !t(n) & r[t,succ](n)

}
}

%action myturn() {
%t "when a=s do"
%f {runnable(tr)&a(tr,u), s(x)}
%p initialized() & E(i) a(tr,i) & s(i)
{
}

}

%action increase() {
%t "s:=s+1"
%f { runnable(tr), E(n1, n2) s(n1) & succ(n1, n2) & t[succ](n2, n)}
%p initialized()
{
s(i2) = E (i1) succ(i1,i2) & s(i1)

/* instrumentation predicates */
r[s,succ](n)= !s(n) & r[s,succ](n)

}
}

%action verifyProperty() {
%message (E (u,v) !u==v & p_1(u) & p_2(v) & at[crit](u) & at[crit](v))
-> "violation!!!!"

101

}

%%

%thread bigbrother {
notyet init() now

}

%thread pr {
think draw_ticket() wait
wait myturn() crit
crit increase() think

}

%%

verifyProperty()

The file which describes the initial states.

%t = { p(pr), b(bigbrother) }
%n = { intz, intgz }
%p = {

ready= {b,p}
at[think] = {p}
sm = {p:1/2,intgz:1/2}
number = {intz, intgz}
process = {p}
zero = {intz}
s = {intz}
t = {intz}
succ = {(intz,intgz): 1/2, (intgz,intgz) : 1/2}
t[succ] = {intz->intz,intz->intgz,intgz->intgz:1/2}
r[s,succ] = {intz,intgz}
r[t,succ] = {intz,intgz}
a = {(p,intz)}

p_1 = { p:1/2}
p_2 = { p:1/2}

/* a_p_1 = {intz}
a_p_2 = {intz} */

initialized = 0
}

C.2 Case Study with SMV

The following file is the SMV code of the Ticket Protocol.

102

scalarset PROC undefined;

ordset TICKET 0..;

typedef LOC {think,wait,crit};

module main() {

s : TICKET;

t : TICKET;

a : array PROC of TICKET;

at: array PROC of LOC;

act:PROC;

init(s):=0;

init(t):=0;

forall (p in PROC){

init(at[p]):=think;

init(a[p]):=0;

}

/* the code of a process */

switch(at[act]){

think: { next(a[act]):=t;

next(t):=t+1;

next(at[act]):=wait;

}

wait: { if(a[act]=s) {

next(at[act]):=crit;

}

}

crit: { next(s):=s+1;

next(at[act]):=think;

}

}

/* MUTEX */

forall(q in PROC)

forall(i in TICKET)

forall (p in PROC)

{

uneq [p][q][i]: assert

G(!(p=q)& !at[p]=think & !at[q]=think -> !(a[p]=i & a[q]=i));

}

forall (p in PROC) forall(i in TICKET){

remain[p][i]: assert G((at[p]=crit&a[p]=i) -> (s=i)U(at[p]=think));

103

using

TICKET -> {i-1..i,i+1},

uneq,

remain[p][i-1]

prove

remain[p][i];

}

forall (p in PROC) forall(q in PROC)

forall (i in TICKET) forall(j in TICKET)

{

mutex[p][q][i][j]:

assert G(a[p]=i & a[q]=j ->((at[p]=crit & at[q]=crit)->p=q));

using

TICKET -> {i,j},

uneq,

remain

prove

mutex[p][q][i][j];

assume remain;

}

}

104

	Introduction
	Verification Problem
	Existing Techniques
	Three-valued Logical Analysis
	Finite instantiation and data type reduction
	Predicate Abstraction

	Summary of the thesis
	Results
	Overview of the thesis

	Models
	First-Order Logic
	Syntax
	Semantics

	Syntax and Semantics of Models
	Predicate Logic
	Example
	Discussion

	Properties
	Syntax
	Semantics
	Discussion

	Quantifier Elimination
	Skolemization
	Predicate Logic Skolemization
	Discussion

	Analysis
	Three-Valued Analysis
	Implementation
	Case Study
	Related 3-valued analyses
	Discussion

	Symmetry
	Intuition.
	Canonical Abstraction and Symmetry

	Finite Instantiation and Data Type Reduction
	Case Study: SMV

	Conclusion
	Future Work

	Extended Embedding Order
	Proofs
	Galois connection induced by representation function
	Skolemization for predicate logic
	Preservation by Simulation
	Extended Embedding
	Symmetry Lemma

	Sources
	Case Study with TVLA
	Case Study with SMV

