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Abstract—Probabilistic models are widely used to analyze
embedded, networked, and more recently biological systems.
Existing numerical analysis techniques are limited to finite-
state models and suffer from the state explosion problem. As a
consequence, the user often has to manually abstract the intended
model to get a tractable one. To this end, we propose the predicate
abstraction model checker PASS which automates this process.
We leverage recent advances in automatic theorem proving to
compute tractable finite-state models. Experiments show the
feasibility of our approach. To the best of our knowledge, this is
the first time that properties of probabilistic infinite-state models
have been verified at this level of automation.

I. INTRODUCTION

Probabilistic models are widely used to analyze and verify

systems that exhibit “quantified uncertainty”, such as embed-

ded, networked, randomized, and biological systems. The se-

mantic model for these systems are Markov chains or Markov

decision processes, depending on whether the systems are

sequential or parallel. We here consider homogeneous discrete-

time Markov chains (MCs) and Markov decision processes

(MDPs). Properties of these systems can be specified by

formulas in temporal logics such as PCTL [1], [2]. For instance

“the probability to reach a set of bad states is at most 3%”

can be expressed in PCTL. Model checking algorithms for

these logics have been devised mainly for finite-state MCs [1]

and MDPs [2], [3]. Often, modelers need to manually extract

a manageable model from a system description because the

original model cannot be handled due to state explosion or

because it is infinite-state, e.g. due to unbounded arithmetic

variables or queues.

Today, predicate abstraction [4] is one of the most widely

applied methods for the systematic abstraction of non-

probabilistic systems. The idea of predicate abstraction is to

map concrete states to abstract states according to their valu-

ation under a finite set of predicates (“Boolean expressions”).

The predicates induce an ’abstract’ model that is submitted to

a model checker.

We propose predicate abstraction for the analysis of proba-

bilistic models with an infinite or very large finite state space.

To this end, we have developed a theoretical framework for

predicate abstraction of probabilistic models and we have

implemented the predicate abstraction model checker PASS.

PASS supports probabilistic programs in a guarded command

language with unbounded integers and unbounded reals. The
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language is similar to the input language of the finite-state

probabilistic model checker PRISM [5]. However, PRISM only

supports integer variables from a finite interval. Given a

program and a set of predicates, PASS computes a finite-state

program that approximates the input program. The abstraction

preserves the logic safe PCTL, a fragment of PCTL [6]. A

typical query in safe PCTL is to ask if the probability to reach

bad states is below a certain threshold (just like the example

formula stated above). One can thus guarantee an upper bound

on the probability that something harmful will happen.

When applying predicate abstraction to infinite-state prob-

abilistic models several challenges arise:

• As opposed to abstraction techniques for finite-state prob-

abilistic models [7], [8], [9], [10], computing abstractions

of infinite-state models typically requires reasoning at

the language level, i.e. solving satisfiability problems in

logics in which the program variables live. Richer logics

than propositional logic are needed because models may

contain integer or real variables. Therefore, predicate

abstraction tools employ automatic theorem provers. So

far there has been little work on the use of automatic

theorem proving for probabilistic models.

• Compared to predicate abstraction for non-probabilistic

models [4], probabilistic models have a transition struc-

ture that makes the abstraction process computationally

more complex. In order to reduce the cost of theorem

prover calls while computing abstractions, predicate ab-

straction model checkers employ heuristics [11]. How-

ever, probabilistic models require dedicated heuristics.

We show how predicate abstraction for infinite-state proba-

bilistic models can be implemented by employing an automatic

theorem prover. Further, we give heuristics that make the

abstraction process cheaper. As an automatic theorem prover,

we use the SMT solver Yices [12] based on the DPLL(T)

paradigm [13].

SMT and DPLL(T). SMT (Satisfiability Modulo Theories) can

be seen as an extension of propositional satisfiability with

richer background theories such as linear integer arithmetic

(LIA). The Davis-Putnam-Logemann-Loveland (DPLL) algo-

rithm is a complete, backtracking-based algorithm for deciding

the satisfiability of propositional logic formulas in conjunctive

normal form, i.e. for solving the CNF-SAT problem. DPLL(T)

[13] is a paradigm for completely automatic SMT solvers

based on an interplay between a conflict-driven DPLL SAT

solver [14] and dedicated solvers for special theories T.

Let us sketch how a DPLL(LIA) solver checks satisfiability



of a formula like x < y − 10 ∧ y > 100 ⇒ x < 110. First
it builds a propositional formula that replaces the theory con-

straints x < y − 10, y > 100, x < 110 with Boolean variables
b1,b2,b3. This resulting Boolean formula b1∧b2 ⇒ b3 is the

propositional backbone of the original formula. The backbone

is submitted to the integrated DPLL SAT solver. This yields a

propositional assignment which is checked against the theory

of integers. If the propositional assignment is incompatible,

a lemma is added that excludes it. This process is continued

until a compatible assignment has been found or all possible

propositional assignments have been explored.

In PASS, we have integrated the DPLL(T) SMT solver Yices

[12] which won all categories of the SMT competition in 2006.

Yices, like other SMT solvers, combines different theories

by means of a Nelson-Oppen approach [15], such as linear

integer arithmetic (LIA), linear real arithmetic (LRA), bit-

vectors (BV), and arrays (AR). We anticipate that this admits

to extend PASS to a very rich modeling language supporting

data structures such as arrays, queues and lists.

A. Contributions.

In brief, our contributions are the following

• the first practical application of predicate abstraction to

(infinite-state) probabilistic models

• an optimized encoding of the abstract model construction

in terms of SMT and an implementation demonstrating

its efficiency and precision on practical examples

• the analysis of non-deterministic probabilistic infinite-

state models with unbounded parameters

We present a predicate abstraction framework for probabilis-

tic programs. A probabilistic program extends discrete-time

PRISM models with unbounded integer and real variables. The

semantics of a program is an infinite-state probabilistic au-

tomaton. Its abstraction, a finite-state probabilistic automaton,

preserves the safe fragment of PCTL. We have implemented

the predicate abstraction tool PASS and used it to verify a

parametrized version of the Bounded Retransmission Protocol

(BRP) where the file size and maximal number of retransmis-

sions are integer parameters. The implementation leverages

recent advances in automatic theorem proving and features

optimizations that speed up the abstraction process by a smart

encoding of queries to the SMT solver. Although our method

only guarantees upper bounds on probabilities in general,

probabilities obtained for BRP are tight upper bounds for all

properties considered in previous case studies.

B. Outline.

Section II illustrates the general idea with a motivating

example. In Section III, we introduce background on proba-

bilistic programs, probabilistic automata, and the logic PCTL.

We focus on predicate abstraction of probabilistic programs

in Section IV. Our implementation is described in Section V.

Section VI reports about experiments with PASS, in particular,

how we verified the Bounded Retransmission Protocol. We

discuss related work in Section VII. Section VIII concludes

the paper.

module loop

N : int;

invar N>2;

bad:bool;

i:int;

[a] !bad & i<N -> 0.9:(i’=i+1)

+ 0.1:(bad’=(i=N-1))

endmodule

init !bad & i=0 endinit

s♯
0 :

i<N-1

¬bad
b

0.1

b

1
s♯
1 :

i=N-1

¬bad0.9

s♯
3 :

i=N-1

bad
s♯
2 :

i≥N

¬bad

b

0.90.1

Fig. 1. Motivating Example: Loop program and its abstraction with respect
to predicates i < N− 1, i = N− 1, bad.

II. MOTIVATING EXAMPLE

To provide some intuition of what we are aiming at, we

first consider the example program loop shown in the upper

part of Figure 1. We want to obtain an upper bound on the

probability to reach a bad state, i.e. a state in which Boolean

variable bad is true. The lower part of Figure 1 shows a finite-

state probabilistic automaton, actually an abstraction of the

behavior of loop. Here, an abstract state is a truth assignment

to Boolean variables b0,b1,b2 which stand for predicates

i<N-1, i=N-1, and bad, respectively. To obtain an upper

bound of reaching a bad state in the original program, we

compute the probability to reach an abstract state in which b2

(b2 corresponds to bad) is true. This probability bound is 0.1,
and this turns out to be tight: the probability in the concrete

program is also 0.1.
Writing abstract states as bit-vectors - the i-th component

stands for bi, the reachable abstract states are: s
♯
0 = (1, 0, 0),

s♯
1 = (0, 1, 0), s♯

2 = (0, 0, 0) and s♯
3 = (0, 0, 1). The initial

state is s♯
0 as it represents a concrete initial state.

Probabilistic transitions consist of a state and a probability

distribution over successor states. Abstract transitions are

’may’-transitions, i.e. there is a transition between abstract

states whenever there exists a corresponding concrete tran-

sition. Figure 2 illustrates how transitions of the concrete exe-

cution of program loop give rise to abstract may-transitions

using an execution path of concrete states s0, s1, s2. The

two dashed boxes represent the abstract states s♯
0 and s♯

1,

respectively, as shown in Figure 1. One abstract transition is

a self-loop: corresponding transitions remain within s♯
0, e.g.

τ1 is such a transition. Since all states in the distribution lead

to abstract state s♯
0, we sum up 0.9 and 0.1 to 1. The other

abstract transition goes to s♯
0 with probability 0.1 and to s♯

1

with 0.9. A corresponding concrete transition is τ2.
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s♯
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i=2
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0.1
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Fig. 2. Example of how abstraction transitions are determined. For the
three depicted concrete states s0, s1, s2, we have N = 3. The dashed boxes
represent abstract states.

III. PRELIMINARIES

A. Probabilistic Programs

As indicated in the motivating example, we model systems

by probabilistic programs in a guarded command language.

For conciseness, the language used in our exposition lacks

modules, although PASS supports modules in the style of

PRISM. Apart from being less convenient, the simpler language

is equally expressive1, retaining all essential aspects such as

variables over infinite domains.

We fix a finite set of program variables X and a finite set

of actions Act. Variables are typed in a definition such as
i : int. In addition to types, one can also specify invariants

that constrain variable domains, and thus the state space.

Arbitrary Boolean expression over the program variables are

supported as invariants. We denote the set of expressions over

the set of variables V by ExprV and we denote the set of

Boolean expression over V by BExprV . In the motivating

example, the variable N is used as a parameter that determines
the length of the loop. Variable N is only read but not written
and it is constrained by the invariant invar N>2. Using

parameters, one can thus verify (infinite) families of programs

in one verification run.

An assignment is a total function E : X → ExprX that maps
variables x ∈ X to expressions E(x). Given an expression
e ∈ ExprX and an assignment E, we denote by e[X/E(X)]
the expression obtained from e by substituting each occurrence

of a variable x with E(x).
A guarded command c consists of an action name ac, a

guard g ∈ BExprX and assignments E1, ..., Ek weighted

with probabilities p1, ..., pk where
∑k

i=1 pi = 1. We use
the notation X′ = E for the simultaneous assignment E to
variables X. Assignments are syntactically separated by a “+”:

[ac] g → p1 : X′=E1 + . . . + pk : X′=Ek

Probability pi is the probability that assignment Ei will be

executed. A program P = (X,I,C) consists of a Boolean
expression I ∈ BExprX that defines the set of initial states
and a set of guarded commands C.

B. Probabilistic Automata

The semantics of a program is a probabilistic automa-

ton [17]. A state over variables X is a type-consistent mapping

1Composition of modules can be reduced to the core language by flattening
the module structure [16].

of variables in X to their semantic domains. We denote the

set of states by Σ(X) or Σ for short and a single state by
s. For an expression e ∈ ExprX, we denote by JeKs its

valuation in state s. The valuation of a Boolean expression
e is a value JeKs ∈ {0, 1} (0 for “false”, 1 for “true”). For
a Boolean expression e and a state s, we shall write s � e

iff JeKs = 1. Semantic brackets around a Boolean expression
e without a subscript denote the set of states fulfilling e, i.e.

JeK = {s ∈ Σ | s � e}.

A distribution µ ∈ DistrΣ is a total function µ : Σ →
[0, 1] such that µ(Σ) =

∑
s∈Σ µ(s) = 1. The set of states

Supp(µ) = {s ∈ Σ | µ(s) > 0} is called the support of µ.

Definition 1 (Probabilistic Automaton): A probabilistic au-

tomatonM is a tuple (Σ, I, Act,R) where Σ is a set of states,
I ⊆ Σ denotes the set of initial states, Act is the set of actions,
and R ⊆ Σ × Act × DistrΣ is the probabilistic transition

relation. A probabilistic automaton is called finite if Σ is finite.

A path σ is an infinite sequence (s0, a0, µ0), (s1, a1, µ1), . . .
starting with an initial state s0 ∈ I , (si, ai, µi) ∈ R, and
si+1 ∈ Supp(µi) for all i = 0, 1, . . . . Let Path∞ denote the

set of all paths2.

Labeled transition systems (LTSs), discrete-time Markov

chains (MCs) and discrete-time Markov decision processes

(MDPs) [18] are special cases of probabilistic automata. An

LTS is a probabilistic automaton in which all distributions

in the transition relation are trivial, i.e. their support size is

one. An MC is a deterministic probabilistic automaton, i.e.

for every state s there is at most one transition (s, a, µ) ∈ R.
An MDP is a probabilistic automaton where for each state

each action label has at most one outgoing transition, i.e. for

every pair s ∈ Σ and a ∈ Act, there exists at most one µ with
(s, a, µ) ∈ R.

Program Semantics. First, we give the semantics of guarded

commands. For a guarded command c, fully written out as

[ac] g → p1 : X′=E1+ . . .+pk : X′=Ek,

its semantics is exactly the set of transitions JcK such that
(s, ac, µ) ∈ JcK if s � g and µ satisfies the following
dependency, where {| . . . |} delimits a multiset:

µ(s′) =
∑

{| pi | ∀x ∈ X : s′(x) = JEi(x)Ks |} .

The sum can be explained as follows: For a given state and

command, different assignments in the command may lead to

the same successor state s′, possibly with the same probability.
The probabilities are collected in a multiset, and accumulated

in the distribution µ.

The semantics of a program P = (X,I,C) is the automaton
M = (Σ, I, Act,R) with set of states Σ = Σ(X), set of initial
states I = JIK, set of actions Act = {ac | c ∈ C}, and
transitions induced by the guarded commands R =

⋃
c∈CJcK.

2If an automaton has deadlock states, one typically introduces self-loops.
For the sake of simplicity, we have intentionally not drawn the self-loops in
Figure 1.



C. Properties

We give a short introduction to the safe and live frag-

ments [6] of the logic probabilistic CTL (PCTL) [1], [2].

We fix a finite subset AP of the set of Boolean expressions,
called atomic propositions. Let p ∈ [0, 1] denote a real constant
and E∈ {<,>,≤,≥} an inequality symbol. We consider the
following fragment of PCTL:

Φ := a | ¬a | Φ ∨ Φ | Φ ∧ Φ | PEp(φ)

where φ is a PCTL path formula:

φ := XΦ | Φ U Φ .

X is the next operator and U the until operator. To interpret
PCTL formulas, one needs a probability measure for path

formulas, which requires a resolution of non-determinism.

An adversary [19] is a resolution of non-determinism in an

automaton that leads to a deterministic automaton in which

path formulas have a probability measure. One argues about

extremal probability, formally minimal and maximal probabil-

ities among all adversaries.

In general, an adversary A of an automatonM is a function

from paths to distributions. An adversary A is called simple if
it only looks at the last state in a path, i.e. if it is a function

A : Σ → Act×DistrΣ. However, it suffices to consider simple

adversaries, as extremal probabilities are already assumed

among simple adversaries [2]. Given an automaton M, a
simple adversary A induces a MC MA = (Σ, I, Act,RA)
where RA = {(s, a, µ) ∈ R | A(s) = (a, µ)}. For a given
state s ∈ Σ, a unique probability measure ProbMA

s can be

constructed [3]. For a (measurable) set of paths P ⊆ Path∞,

we denote its measure by ProbMA
s (P ).

The probabilistic operator P admits to formulate bounds
on the probability measure of a path formula. To simplify the

presentation, we don’t consider nested probabilistic operators.

If we restrict the probabilistic operator to upper probability

bounds E∈ {≤, <} throughout a formula, we arrive at a safe
PCTL formula. Intuitively, we can ask if the probability to

reach a set of bad states does not exceed a certain threshold.

Taking E∈ {≥, >} instead yields the live fragment of PCTL.
Here the intuition is that the probability to reach a set of good

states is guaranteed not to fall below a threshold.

Semantics. Let M be an automaton. The semantics of the

atomic propositions, negation, conjunction and disjunction are

defined as usual. We give the semantics of the probabilistic

operator [2]. For an adversary A and a path formula φ, let

pMA
s (φ) = ProbMA

s ({σ ∈ Path∞ | σ satisfies φ}).

A state s satisfies the PCTL formula PEp(φ), denoted by
s |= PEp(φ), iff pMA

s (φ) E p for every adversary A. To check
if a state s satisfies a safe PCTL formula P≤p(φ), it suffices
to compute

ps
max

(φ) = sup{pMA
s (φ) | A is an adversary ofM}

which is the maximum probability over all adversaries for the

set of paths starting from s and satisfying the path formula φ.

Therefore, s |= P≤p(φ) iff ps
max

(φ) ≤ p (similar for <).
Let pM

max
(φ) = sup{ps

max
(φ) | s ∈ I}. We say that the

automaton M satisfies P≤p(φ) (similar for <), denoted by
M |= P≤p(φ), iff pM

max
(φ) ≤ p.

IV. PREDICATE ABSTRACTION

Predicates are Boolean expressions over the program vari-

ables. A predicate ϕ stands for the set of states satisfying it,
namely JϕK. During this section, we fix a set of predicates
P = {ϕ1, ..., ϕn}. We show how a set of predicates P
determines an abstract probabilistic automaton.

Abstract Probabilistic Automaton. The set P induces an equiv-
alence relation over states, a homomorphism and an abstract

probabilistic automaton that is the quotient of the concrete

probabilistic automaton (all of these objects can be defined

in terms of each other). More precisely, two states in Σ
are equivalent if they satisfy the same set of predicates in

P . The equivalence classes partition the states into disjoint
sets characterized by which predicates hold and which don’t.

An equivalence class can therefore be represented by a bit

vector of length n. We call such a bit-vector an abstract
state. We define a function that maps a state s to an abstract
state hP (s) = (Jϕ1Ks, ..., JϕnKs). Function hP induces a

quotient automaton MhP
. The transitions of the quotient

automaton are chosen such that hP preserves the transition

structure. Therefore, we denominate the function hP as a

homomorphism3.

The atomic propositions, i.e. the Boolean expressions ap-

pearing in the PCTL formula we want to check, are a subset

of the predicates, i.e. AP ⊆ P . As we will see later, taking
the quotient this way preserves safe PCTL. Thus one can

submit the quotient automaton to a finite-state model checker,

instead of the original, possibly infinite-state model. If the

model checker confirms that the property holds for the quotient

automaton, we can safely conclude that it holds for the original

model as well. The converse, however, is not true in general.

P
J.K

//

PASS

��

M

hP

��

P♯
J.K

// MhP

Fig. 3. Predicate Abstraction.

Technically PASS transfers the

quotient automaton to the finite-

state model checker in the form

of a Boolean program P♯ whose

semantics JP♯K is exactly the quo-
tient automatonMhP

of the orig-

inal program semantics. Formally,

this means that the diagram in

Figure 3 commutes. Note that the

general idea of relating the orig-

inal model with its quotient in terms of an adequate notion

of simulation is quite common, see e.g. [7], [20], [22], [10].

Section IV-A customizes the quotient automata construction to

our specific setting. While quotient automata are quite general,

the ensuing Section IV-B is specific to our analysis method and

explains a basic algorithm to obtain Boolean programs.

3The term “homomorphism” was used by Clarke [20] and Ball [11]. One
might call function hP an “abstraction function”. Then, however, there would
be a name clash with the terminology of abstract interpretation where the term
“abstraction function” is reserved for a different concept [21].



A. Quotient Automaton

A homomorphism is a total function that maps concrete

states Σ of the infinite-state automaton to a finite set of abstract
states Σ♯. A homomorphism induces an equivalence relation

on states in which two states are equivalent if they map to

the same abstract state. Therefore, the probabilistic automa-

ton obtained by lumping together equivalent states is called

quotient automaton. We define a quotient automaton such that

safe PCTL properties are preserved, i.e. we guarantee that the

quotient is a sound abstraction of the original automaton.

Definition 2 (Quotient Automaton): Let M be an automa-

ton. Further, let Σ♯ be a finite set of abstract states and

h ∈ Σ → Σ♯ a homomorphism. The homomorphism h induces
an automaton Mh, called the quotient ofM (under h), with
state set Σ♯, the same set of actions, initial states Ih = {h(s) |
s ∈ I}, and transitions Rh = {(h(s), a, h(µ)) | (s, a, µ) ∈ R}
where we define the quotient h(µ) ∈ DistrΣ♯ of a distribution

µ by h(µ)(s♯) =
∑

{µ(s) | s ∈ Σ : h(s) = s♯}.
Next, we show that the quotient automaton Mh simulates

the automaton M. Thereby, we use the concept of strong
simulation and property preservation results that have been

described by Segala & Lynch [19]. We need the notion of a

weight function to define strong simulation:

Weight Function. Let µ1 ∈ DistrΣ1
, µ2 ∈ DistrΣ2

distri-

butions. For a relation H ⊆ Σ1 × Σ2 we define the weight

function for (µ1, µ2) w.r.t. H as a function ∆ : Σ1 × Σ2 →
[0, 1] such that

• ∆(s, s′) > 0 implies H(s, s′),
• µ1(s) =

∑
s′∈Σ2

∆(s, s′) for s ∈ Σ1, and

• µ2(s
′) =

∑
s∈Σ1

∆(s, s′) for s′ ∈ Σ2.

We write µ1 ⊑H µ2 iff there exists a weight function for µ1

and µ2 w.r.t. H .
Strong Simulation. Given two probabilistic automata M1 =
(Σ1, I1, Act,R1) and M2 = (Σ2, I2, Act,R2), we say that
automatonM2 strongly simulates automatonM1, denoted by

M1 � M2, iff there exists a relation H ⊆ Σ1 ×Σ2 such that

(1) for s1 ∈ I1 there exists s2 ∈ I2 with (s1, s2) ∈ H . (2) for
all (s1, s2) ∈ H if there exists (s1, a, µ1) ∈ R1, there exists

a distribution µ2 ∈ Distr(Σ2) such that (s2, a, µ2) ∈ R2 and

µ1 ⊑H µ2.

Lemma 1 (Simulation): Let M be an automaton and its

quotient Mh as defined in Definition 2. Automaton Mh

strongly simulates automaton M, i.e. M � Mh. The sim-

ulation relation is given by H = {(s, s♯) | h(s) = s♯}.
It was shown in [19] that strong simulation preserves safe

PCTL. We re-state this result in our framework:

Lemma 2 (Preservation [19]): Let M,M′ be automata

such thatM′ strongly simulatesM and let Φ be a safe PCTL
formula. Then ifM′ satisfies Φ,M also satisfies Φ.
As a corollary of Lemmas 1 and 2, we finally obtain the

following soundness theorem that allows us to check a safe

PCTL property on the quotient automatonMh:

Theorem 1 (Soundness): LetM be an automaton andMh

its quotient as described in Lemma 1. If Mh satisfies a safe

PCTL formula Φ,M also satisfies Φ.

B. Boolean Programs

For a program P = (X,I,C), we compute a Boolean
program P♯ = (B,I♯,C♯). The variables B of the Boolean
program are the Boolean variables b1, . . . ,bn corresponding

to the predicates ϕ1, . . . , ϕn. The abstract initial condition I
♯

and the abstract guarded commands C♯ have to be computed.

We abstract a program by abstracting its initial condition and

each of its guarded commands.

Literals, Minterms. Let b be a Boolean variable. A literal is

either the expression b or its negation ¬b. Let ν ∈ {0, 1}.
We denote by bν the literal b if ν = 1 and its negation ¬b
if ν = 0. A cube is a conjunction of literals. The empty
cube corresponds to logical truth. A minterm (w.r.t. B) is a

complete cube
∧n

j=1 b
νj

j , i.e. each Boolean variable appears

exactly once in it, in positive or negated form.

Abstract Interpretation. Both abstract states and sets of ab-

stracts states can be viewed as Boolean expressions over B:

an abstract state s♯ is a minterm over B, a set of abstract states

is a disjunction of minterms (a sum of products). We define

a function EP (e) := e[bi/ϕi | i ∈ {1, ..., n}] that replaces
the Boolean variables in a Boolean expression e ∈ BExprB
with the corresponding predicates. It produces a symbolic

representation EP (e) ∈ BExprX (in terms of the program
variables) of the concrete states represented by e. For example,

we have EP (bi) = ϕi. The concretization function maps sets

of abstract states S♯ to corresponding sets of concrete states:

γP : 2Σ♯

→ 2Σ, S♯ 7→ JEP (S♯)K.

Conversely, a set of concrete states S is mapped to a set of
abstract states by the abstraction function:

αP : 2Σ → 2Σ♯

, S 7→ {s♯ | JEP (s♯)K ∩ S 6= ∅}.

The pair (αP , γP ) forms a Galois connection [21]. Intuitively,
this means that the abstraction function yields the most precise

over-approximation possible with predicates P .
Weakest Preconditions. The construction of abstract guarded

commands is based on weakest preconditions [23]. The weak-

est precondition WPc(Q) = Q′ of a Boolean expression

Q with respect to a command c is the weakest Boolean

expression (w.r.t. implication order) that guarantees Q to hold
after executing command c, typically this is written as a triple

{Q′}c{Q}. For an assignment X′=E, the corresponding triple
is {Q[X/E(X)]}X′=E{Q}, i.e. the weakest precondition of
expression Q is obtained by substituting within Q the left-hand
side variables with the right-hand side expressions yielding

Q[X/E(X)]. Therefore, given a set of states characterized
by a Boolean expression P , satisfiability of the conjunction
P ∧ Q[X/E(X)] guarantees the existence of a state transition
from P to Q. We extend this concept to the case of abstraction
of guarded commands with weighted alternatives by making

Q a conjunction ranging over the k weighted alternative
assignments of the command, as detailed out below. We

abbreviate the weakest precondition of an expression e with
respect to an assignment E as WPE(e) = e[X/E(X)].
Construction. The following simple construction gives a pro-

gram P♯ that corresponds to the quotient automaton, in the
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sense that its semantics produces the precisely intended quo-

tient automaton (cf. Lemma 3). The abstract commands are

determined as follows: For each guarded command [ac] g →
p1 : X′=E1+ . . .+pk : X′=Ek and for all k-tuples of abstract
states (s0

♯, s1
♯, ..., sk

♯) ∈ Σ♯k

such that the expression

g ∧ EP (s0
♯) ∧

k∧

i=1

WPEi
(EP (si

♯))

is satisfiable, introduce the following command:

[ac] s0
♯ → p1 : B′=s♯

1+ . . .+pk : B′=s♯
k .

The initial condition of P♯ is given by the abstraction of the

concrete initial states I♯ := αP (JIK). Note that we interpret
the set αP (JIK) of abstract states as a Boolean expression at
this point.

Lemma 3 (Correctness): The semantics JP♯K of the

Boolean program P♯, as given in the construction, generates

the quotient automatonMhP
.

V. IMPLEMENTATION

This section describes the architecture and implementation

of our tool PASS. we first present the overall architecture of

the tool, and then focus on important details of the model

extraction: its implementation with an SMT solver and several

optimizations. These are later evaluated by experiments (cf.

Section VI-B).

A. Tool Architecture

The architecture of PASS is depicted in Figure 4. PASS is

written in C++, and wraps several other tools. For model ex-

traction, it calls the SMT solver Yices and the CUDD package

[24] via API functions. We provide a generic SMT solver

interface, so that different SMT solvers can be integrated.

In the end, the finite-state model checker PRISM is used to

model check Boolean programs. We now describe the different

phases in which PASS proceeds in more detail: Phase A.1:

Preprocessing. Similar to PRISM, PASS supports modules and

synchronous composition of commands. Before the model

extraction phase, the module structure is flattened yielding a

single global module. Asynchronous commands are collected,

while commands from different modules that execute syn-

chronously are multiplied out, very much as described in the

PRISM manual [16]. Phase A.2: Predicate Discovery. Prior to

the extraction of the abstract model we need to discover a

set of predicates. We have not yet implemented an automatic

refinement loop. Therefore, predicates are automatically ex-

tracted from the guards of the program and from properties.

Furthermore, the user can provide predicates by hand. In order

to ensure that there is no redundancy in the predicate set,

e.g. such that one predicate is the exact negation of another,

a redundancy check is done before adding a predicate to

the predicate set. Phase A.3: Model Extraction. The model

extraction phase takes the program and the predicate set as

input and computes the quotient automaton. In subsection V-B,

we describe how the model extraction is performed by means

of an SMT solver. We also describe optimizations that exploit

locality in the structure of the program and the predicates. As

mentioned earlier, we seemingly discard structure by flattening

modules. However, abstracting modules independently of each

other is hardly feasible without loss of precision if predicates

relate variables from different modules. The predicates have

to be taken into account to perform precise ’local’ abstraction.

At the level of commands, this is done by the optimizations

described in the next subsection.

During extraction, the quotient automaton is stored in BDDs

to save memory. The BDDs are then used to synthesize a

Boolean program.

Phase A.4: Synthesis of Boolean Program. PASS synthesizes

a Boolean program, i.e. it computes an initial condition and a

set of updates. The Boolean program is submitted to a finite-

state model checker. Currently, we write the Boolean program

to a file which is then read by the PRISM model checker.

Furthermore, the property has to be translated, i.e. expressions

over program variables have to be translated into expressions

over the abstract program.

B. Model Extraction

The initial condition of the Boolean program can be gen-

erated by enumerating all abstract states (minterms) s♯ =
(b1, ...bn) such that the Boolean expression

I ∧
n∧

j=1

[bj ⇔ EP (bj)]

is satisfiable. Abstract transitions are obtained in a similar way.

As indicated in Lemma 3, the abstract transitions induced

by a guarded command are determined by exactly those

abstract states s0
♯ = (b0

1, ...b
0
n), s1

♯ = (b1
1, ...b

1
n), ..., sk

♯ =
(bk

1 , ...bk
n) such that the following Boolean expression is

satisfiable:

g ∧
n∧

j=1

[b0
j ⇔ EP (b0

j )] ∧
k∧

i=1

n∧

j=1

[bi
j ⇔ WPEi

(EP (bi
j))] .

AllSAT. We enumerate these abstract states and abstract tran-

sitions by using an SMT solver as an AllSat engine, i.e.

an engine that enumerates all Boolean solutions. The solver



runs in an incremental enumeration loop, i.e. facts learned in

one run benefit ensuing runs [25]. When the solver finds a

model, it is stored in a BDD and a blocking clause is added

preventing the solver from enumerating it again. Computing

the initial condition takes as many iterations as there are

abstract initial states, i.e. at most 2n. For a guarded command,

the number of iterations is equal to the number of induced

abstract transitions, i.e. at most 2(k+1)n. Note that these

numbers represent the worst-case, the number of enumerations

is solely determined by the number of existing solutions.

We do not per se go through all 2(k+1)n possibilities of

potential transitions. Nevertheless, it pays off to simplify the

Boolean expressions from which we obtain abstractions, in

particular, the number of Boolean variables they contain. The

initial condition is mostly not critical in practice, since it can

be abstracted precisely by adding the predicates contained

in it. Therefore, we focus on two optimizations that make

computation of abstract commands more efficient.

The optimizations are related to approximation techniques

for predicate abstraction that make computation of abstract

transitions cheaper at the cost of losing precision, e.g. for

software [11], and for hardware [26]. Tonetta & Sharygina [27]

summarized approximation techniques in a unifying frame-

work: the common idea is to ignore correlations between

predicates. Typically, not all predicates have correlations and

some correlations may be irrelevant to show a particular

property. If existing correlations are ignored, this results in

additional transitions and more nondeterminism in the abstract

model compared to the quotient automaton.

Additional nondeterminism can put significant strain on a

probabilistic finite-state model checker [28]. Therefore, and

to obtain results that are more easily verifiable, we currently

compute precise abstract transitions and defer an in-depth

discussion of approximation. Our decomposition optimization

uses a probabilistic extension of predicate partitioning [26],

i.e. it only keeps track of correlations between predicates

in the same partition. We statically precompute partitions of

predicates between which no correlations exist. Any partition

would yield a sound abstraction (in terms of simulation), but

the proposed partitioning method guarantees that full precision

is retained. A soundness proof of our method is given in the

long version of the paper.

1) Optimization: Decomposition.: Programs we considered

contain parallel assignments to many variables. Often, one

can decompose a command into independent sub-commands

assigning to different variables, abstract each sub-command

separately, and finally combine the results. The overall number

of SMT enumerations is the sum of the enumerations for the

sub-commands rather than the product.

The sub-commands are determined by the predicates. For

variables V ⊆ X, letModV be the set of predicates containing

a variable from V . We partition the set of variables modified
by the guarded command into disjoint sets V1, ..., Vl such that

they affect pairwise disjoint sets of predicates ModVi
. Each

Vi gives rise to a sub-command which is abstracted using the

optimization described below.

Example 1: Given predicates, x > 0, y > 0, the fol-
lowing command x>0->1: (x’=1)&(y’=1) can be de-

composed using the partition V1 = {x}, V2 = {y} with
ModV1

= {x>0} and ModV2
= {y>0}. This yields two sub-

commands: one x>0->1:(x’=1) pertaining to V1 and the

other x>0 -> 1:(y’=1) to V2. If we add predicate x<y,

we get ModV1
∩ ModV2

= {x<y} and cannot decompose.
2) Optimization: Relevant Predicates.: Mostly, only a frac-

tion of all predicates is relevant when abstracting a command

(or sub-command). Then it suffices to operate on a smaller

subset of predicates/Boolean variables. We identify Boolean

variables and predicates by indices from {1, . . . , n} where n
is the number of predicates. We define (possibly intersecting)

sets of indices G1 and G2 corresponding to:

G1: predicates that may help determine (in)validity of another

predicate in successor states, i.e. share variables with the

guard or right-hand side expression

G2: predicates whose valuation may be affected by a com-

mand, i.e. those containing a variable to which the

command assigns a new value

Boolean variables whose index is not in G2 retain their value.

Further, the next values of Boolean variables with indices

in G2 are only influenced by the present value of Boolean

variables with indices in G1. Therefore, we can obtain the

abstract transitions induced by a guarded command from the

simplified expression:

g ∧
∧

j∈G1

[b0
j ⇔ EP (b0

j )] ∧
k∧

i=1

∧

j∈G2

[bi
j ⇔ WPEi

(EP (bi
j))] .

Example 2: Given predicates ϕ0 = x > 0, ϕ1 = y > 0,
we will compute G1 and G2 for the command [a] 1 →
1.0: x’=y. Note that 1 ∈ G1, since validity of y > 0 at
present determines if x > 0 holds afterwards, while 0 /∈ G1.

Further, 0 ∈ G2 as the command assigns to x, whereas 1 /∈ G2

since the command has no effect on y > 0. Therefore, we have
groups G1 = {1} and G2 = {0}.

VI. EXPERIMENTS

In this section, we report our experiences with the bounded

retransmission protocol case study. Several benchmarks are

used to evaluate the effect of the optimizations described

above. The experimental results were obtained on a Linux PC

(Ubuntu 6.10) with a Pentium 4 processor at 2.6Ghz and 1Gb

of RAM, with execution time measured in seconds. For the

benchmarks, we split up execution time into different quan-

tities spent in consecutive phases of our method, abbreviated

by A, B, and C:

A abstraction: a Boolean program is extracted from

the program by abstraction and written to disk

(corresponding to phase A.1–A.4 of Subsec-

tion V-A )

B building: PRISM reads the Boolean program from

disk and builds the transition matrix MTBDD

C checking: PRISM checks the properties



I1: the sender reports an unsuccessful transmission but

the receiver got a complete file

I2: the sender reports a successful transmission but the

receiver didn’t get the complete file

1: the sender doesn’t report a successful transmission

2: the sender reports an uncertainty on the success of

the transmission

3: the sender reports an unsuccessful transmission after

transmitting more than 8 chunks

4: the receiver doesn’t receive any chunk of a file

Fig. 5. BRP Properties

Steps B and C both happen within PRISM, nevertheless we

distinguish building from checking times. In our experiments,

we employed the most recent version of PRISM (version

3.1) [16].

Concerning user interaction, most predicates are extracted

automatically from the guards, initial condition and properties.

In some cases, predicates were added manually (recall that

automatic predicate discovery is future work).

A. BRP case study

The Bounded Retransmission Protocol (BRP) is a standard

benchmark [29], [30], [7], [8], [16], in which a sender and

a receiver exchange data via two lossy channels. The file to

be transmitted is divided into N chunks, and is sent to the

receiver chunk by chunk. BRP is based on the alternating bit

protocol except that the number of retransmissions of a chunk

is bounded by a number MAX . Therefore, the successful

transmission of the whole file is not guaranteed and the

protocol may abort the transfer.

Figure 5 recalls the properties checked in previous case

studies using the tools RAPTURE [7], [8] and PRISM [16].

All properties are PCTL path formulas. Unlike PRISM and

RAPTURE, we can check models for all parameters within

very large or even infinite intervals. A comparison of our

method and PRISM on finite instances is not very meaningful.

Of course, the larger the parameter values the longer PRISM

(on the original model) would take.

We first consider properties I1 and I2 which have probabil-

ity zero for any parameter value checked in [7]. This suggests

that their probability is zero for any parameter value. To obtain

an upper bound on the probability for all parameter values,

we treat parameters N and MAX as symbolic constants;

more precisely, the parameters are integer program variables

constrained by N > 0 and MAX > 0, respectively. We
denote the resulting program by P[N > 0,MAX > 0]. When
checking them, phase A takes 0.26s, phase B takes 60s, and
phase C takes 0.033s4. The upper bound computed is zero, and
hence I1 and I2 have indeed probability zero for all possible

file sizes and for any maximal number of retransmissions.

4The bad states that are excluded by the properties are unreachable. PRISM
computes reachable states as a part of the model construction.

Now, we deal with properties that are not invariant under

all parameter values. For different properties and parameter

ranges, the two Tables I and II summarize the results obtained.

We group Properties 2 and 4 in Table I, since they exhibit the

same monotonicity behavior with respect to the parameters.

For the same reason, Properties 1 and 3 are grouped in Table

II. Both tables contain respective run times (for phases A,

B and C), number of predicates (denoted by #P ), obtained
probability values. We reuse abstract models to check multiple

properties, therefore a row contains a single A and B entry and

for each property a C entry.

TABLE I

BRP RESULTS FOR PROPERTIES 2 & 4.

P[N > 0,MAX ≥ k]
Property 2 Property 4

k #P A (s) B (s) prob C (s) prob C (s)

2 53 0.262 191 2.65E-5 1.2 8.00E-6 0.56
3 54 0.266 204 7.89E-7 1.2 1.60E-7 0.58
4 55 0.269 207 2.35E-8 1.5 3.20E-9 1.24
5 56 0.273 209 7.00E-10 1.98 6.40E-11 0.65

As apparent in Table I, the probabilities of Properties 2 and

4 are invariant under N but decrease with MAX . Using PASS,

we have computed probabilities for any instance of BRP with

an arbitrary file size and MAX ≥ k. For each k, the obtained
probability is a tight upper bound agreeing with the probability

obtained with PRISM for file sizes 16, 32, 64 and MAX = k.
For these properties, phase B turns out to be the run time

bottleneck.

TABLE II

BRP RESULTS FOR PROPERTIES 1 & 3 .

Property 1 Property 3

k #P A (s) B (s) prob C (s) prob C (s)

P[N = 16,MAX ≥ k]
2 60 0.3 68 4.23E-4 10 1.85E-4 9
3 61 0.3 76 1.26E-5 10 5.52E-6 11
4 62 0.3 77 3.76E-7 11 1.65E-7 11
5 63 0.3 84 1.12E-8 16 4.90E-9 14

P[N = 32,MAX ≥ k]
2 76 0.4 74 8.46E-4 19 6.08E-4 42
3 77 0.4 85 2.52E-5 23 1.81E-5 45
4 78 0.5 89 7.52E-7 32 5.41E-7 50
5 79 0.5 86 2.24E-8 36 1.61E-8 55

P[N = 64,MAX ≥ k]
2 108 1.0 84 1.69E-3 68 1.45E-3 197
3 109 1.0 92 5.05E-5 55 4.34E-5 119
4 110 1.0 106 1.50E-6 69 1.29E-6 149
5 111 1.1 98 4.48E-8 87 3.85E-8 172

The probabilities of Properties 1 and 3 increase with N and
decrease with MAX . If N is represented symbolically, these
two properties have probability 1 in the abstract program, i.e.,
the upper bound for unknown file sizes is 1. If instead we
fix size N to 16 (and to 32, 64), and consider the program
P[N = 16,MAX ≥ k] with k = 2, 3, . . ., we get the exact
probabilities corresponding to the result of PRISM forMAX =
k (see Table II). Note that in some cases, the bottleneck is in
phase C, not B.



Altogether, we have successfully verified all the properties

from Table 5 for all possible file sizes (Properties A, B, 2 and
4) and/or retransmission number (all of them). Further, we

obtained tight upper bounds on the probabilities in all cases.

B. Effect of Optimizations.

To study the effect of the optimizations in the model extrac-

tion phase (A.3) discussed in Section V-B, we experimented

with several different probabilistic programs. Some programs

are novel (such as the brp models just discussed) and smaller

test cases roulette, and readers writers. Some are

PRISM case studies, such as ipv4. Due to space constraints,

we only give a brief insight into the time savings due to

decomposition, while we do not report the effect of the other

more obvious optimization. The resulting models are the same

for the original and the optimized method. As shown in Table

III significant savings in running time can be noted on larger

models.

TABLE III

EFFECT OF DECOMPOSITION ON RUNNING TIME

program # preds A w/o opt (s) A opt (s)

roulette 3 0.032 0.028

readers writers 4 0.032 0.028

brp N 2 53 0.356 0.262

brp N 5 56 0.476 0.273

brp 64 2 108 2.088 1.005

brp 64 5 111 2.964 1.107

ipv4 61 45.162 1.196

VII. RELATED WORK.

Model checking of probabilistic automata or MDPs, has

been studied during the last decade [31], [1], [2], [32]. Huth

gives a comprehensive survey [33] of abstraction techniques

for both finite and infinite-state MDPs.

Several abstraction techniques addressing finite-state models

have been introduced. D’Argenio et al. [7], [8] presented

abstraction and refinement techniques for a particular class

of reachability properties. Given a partition of the state space,

they construct an abstraction based on the notion of quotient

automata. Such abstractions tend to be much smaller than the

original model. If the abstraction is too coarse, it is refined

until either the original model is found to violate the property

or the property can be established. Refinement is based on

simulation criteria. Their method produces a lower bound for

the minimum reachability probability and an upper bound for

the maximum reachability probability.

Chatterjee [9] describes a fully automatic abstraction

framework for probabilistic two-player games based on

counterexample-guided abstraction refinement [34]. MDPs can

be handled as a special case by their technique. It is demon-

strated how the abstraction and refinement process can be

implemented symbolically by means of MTBDD operations.

Recently, Kwiatkowska [10] introduced game-based ab-

straction techniques for MDPs. Their abstraction is also based

on a partition of the state space. Applying results from stochas-

tic games, they arrive at both upper and lower bound for the

maximum and minimum reachability probability. Technically,

they separate the non-determinism in the original MDP from

the non-determinism introduced through the abstraction, and

then represent each type as a player in the game. We believe

that our method can be combined with this approach in a

fruitful way.

The aforementioned abstraction techniques avoid a reacha-

bility analysis on the original model, however they still unfold

its state space to construct the abstraction. This can be very

costly for large state spaces and cannot be directly applied

to infinite state spaces. In contrast, our abstraction method

is based on reasoning at the language level. Hence, as far

as the methods are comparable, our method scales better

and admits infinite-state models. So far, however, we do not

support automatic model refinement.

Rather loosely related are the following contributions: Mon-

niaux [35] describes an extension of the framework of abstract

interpretation [21] to infinite-state MDPs. The framework

considers linear-time properties. The abstraction techniques

just mentioned and the one presented here address branching-

time properties. Remke et al. [36] presented model checking

algorithms for a special class of infinite-state continuous-time

Markov chains exploiting so-called quasi birth-death structure

in the state space. Their method admits both transient and

steady-state analysis. Abdulla et al. [37] studied eager Markov

chains, which is a special class of infinite-state discrete-

time Markov chains with reward structure. They presented

algorithms to approximate the expected reward with arbitrary

accuracy. Model checking techniques for probabilistic push-

down automata [38] and recursive Markov chains [39] are

orthogonal to our work: an interprocedural extension of our

technique could abstract programs to probabilistic push-down

automata or recursive Markov chains.

State-level aggregation techniques give complimentary

means to alleviate the state explosion problem, but generally

do not address infinite-state models. Techniques for proba-

bilistic models include bisimulation reduction [40], [41], [42],

partial order reduction [43], [44], [45], symmetry reduction

[46], and many others.

VIII. CONCLUSION AND FUTURE WORK

We have presented a novel predicate abstraction technique

that enables us to check infinite-state probabilistic models

against safe PCTL formulas. Our method is based on reasoning

at the language level and does not unfold the state space.

The BRP example has shown that the core contribution of

this paper, the generation of an abstract program is remarkably

efficient. However, the way Boolean programs are currently

submitted to PRISM is inefficient. We anticipate that a tighter

integration of phase A and B (for which currently the model

is dumped to disk) will speed up the postprocessing (B and

C) of our models significantly. We therefore strive for a

direct integration of PRISM and PASS in the near future, such

that the abstract model structure can be better exploited in

subsequent steps.



Initially, the relevant predicates are extracted from the

guards and properties to be checked. However, if the abstract

model needs to be refined, predicates are inserted manually.

The obvious next step on our research agenda is to investi-

gate automatic abstraction refinement to discover predicates

automatically by extending existing refinement techniques

such as [47], [48] to infinite-state probabilistic models. In

the non-probabilistic setting, a counterexample is usually a

path leading to a bad state. If the counterexample found in

the abstraction happens to be spurious, the models must be

refined to eliminate the counterexample. Recently, a theory of

counterexamples of Markov chains has been developed [49],

where a counterexample is a set of path whose measure refutes

the safe bound specified by the PCTL formula.

Other interesting directions for further work are extensions

of our technique to live PCTL following ideas from [10]. On

the model side, we plan to admit Markovian continuous time

(yielding continuous-time MDPs), and clocked continuous

time (yielding probabilistic timed automata [50]).

An extended version of this paper including additional

proofs and an executable of PASS are available at the URL:

http://depend.cs.uni-sb.de/pass.html
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