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Analysis-guaranteed timing bounds

Possible execution times Overest.

Need to bound execution time of programs
Execution time influenced by architectural features

I pipelines, caches, branch prediction, . . .

Need to analyze behavior of architectural components
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CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34



computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a?

“hit”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34



computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a!

“hit”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34



computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c?

“miss”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34



computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c?

“miss”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34



computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c!

“miss”
(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34



computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c!

“miss”
(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34



computer science

saarland
universityStatic Cache Analysis

Goals & Notions

Derive approximations to cache contents at each program point

in order to classify memory accesses as cache hits or cache misses

Must-information

Underapproximation of cache contents

Used to soundly classify cache hits

May-information

Overapproximation of cache contents

Used to soundly classify cache misses
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Challenges

read
z

read
y

read
x

write
z

Initial cache contents unknown

Need to combine analysis information

Need to determine addresses of x , y , z

1 Approximate accessed addresses by value analysis (not this talk)

2 Approximate cached contents by replacement analysis

⇒ Cache analysis = value analysis⊕ replacement analysis
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FIFO cache of size k :

[b1, . . . , bk ] ∈ Qk := Bk
⊥

first-inlast-in

Example updates:
[d , c, b, a]

c−−→hit [d , c, b, a]

[d , c, b, a]
e−−→miss [e, d , c, b]
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Why Predicting Hits is Difficult

Take a set of blocks B that does fit into a cache q

For example, B = {a, b, e} and k = 4. |B| ≤ k .

Access all blocks in B:

q
〈a,b,e〉−−−−→ q′

Must all accessed blocks be cached? ∀q : B ⊆ q′?

[d , c, b, a]
a−−→hit [d , c, b, a]

b−−→hit [d , c, b, a]
e−−→miss [e, d , c, b] 63 a

Observation

After accessing a set of “fitting” blocks,
not all of them must be cached.
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Why Predicting Misses is Difficult

Take a set of blocks B that does not fit into a cache q

For example, B = {a, b, c, d , e, f} and k = 4. |B| ≥ k .

Access all blocks in B:

q
〈a,b,c,d,e,f 〉−−−−−−−→ q′

Must all non-accessed blocks be evicted? ∀q : q′ ⊆ B?

[x , c, b, a]
〈a,b,c〉−−−−→hits [x , c, b, a]

〈d,e,f 〉−−−−→misses [f , e, d , x] 3 x

Observation

After accessing a set of “non-fitting” blocks,
other blocks may still be cached.
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Considering repeated accesses to “fitting” blocks B helps:
B = {a, b, c}
s = 〈a, b, b, c, b, b, a, c, c, a, b, . . .〉
Eventually, all blocks in B must be cached.

Need to detect repetitions

Partition access sequence s into phases

Definition (Phase)

A B-phase is an access sequence s such that
the set of accessed blocks A(s) = B.

〈 a , b , b , c︸ ︷︷ ︸
{a,b,c}-phase

, b , b , a , c︸ ︷︷ ︸
{a,b,c}-phase

, . . .〉
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Lemma (Single Phase)

Let s be a B-phase and |B| ≤ k .

∀q ∈ Qk , q
s−→ q′ :

B ⊆ q′

∨

C1(q
′) ⊆ B

1 Either all blocks already cached:
I B ⊆ q ⇒ only hits in s ⇒ B ⊆ q′

2 Or not:
I B 6⊆ q ⇒ at least one miss s ⇒ C1(q′) ⊆ B

I [d , c, b, a]
〈a,b,e〉−−−−→ [ e︸︷︷︸

C1(q′)={e}⊆B

, d , c, b]
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Theorem (Multiple Phases)

Let si be B-phases and |B| ≤ k and s = s1 ◦ . . . ◦ sj

∀q ∈ Qk , q
s−→ q′ : B ⊆ q′ ∨ Cj(q

′) ⊆ B

1 For each individual phase the lemma applies

2 Misses, if any, accumulate in last-in positions Cj(q′)

[d , c, b, a]
〈a,b,e〉−−−−→ [ e︸︷︷︸

C1⊆B

, d , c, b]
〈b,a,e〉−−−−→ [ a, e︸︷︷︸

C2⊆B

, d , c]
〈a,b,e〉−−−−→ [b, a, e︸ ︷︷ ︸

C3⊆B

, d ]

Corollary: After |B| B-phases, all blocks in B must be cached
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How to Count Phases

For phase blocks B, the analysis maintains:
P phase progress, blocks already accessed in current phase

pc phase counter, number of detected B-phases

Predicts hits for blocks in B if pc = |B|

Example for B = {a, b}
s a b b b a b
P ∅ {a} {a, b} ∅ {b} {b} {a, b} ∅ {b}
pc 0 0 0 1 1 1 1 2 2
Hit Hit
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Dependency on Future Accesses

Need |B| B-phases to predict hits for blocks in B

How to choose B?

After observing 〈a, b, c〉 it makes sense trying to detect
I 2 further {a, b, c}-phases
I 1 further {b, c}-phase
I 0 further {c}-phases

Optimal B depends on future accesses
I 〈a, b, c, a, b, c, a, b, c, a, b, c〉
I 〈a, b, c, b, c, b, c, b, c, b, c〉
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Resolving the Dependency

Perform multiple analyses for different B sets

For which?

|B| already determines sensible contents of B
For |B| = 2, after 〈a, b, c〉

I already detected 1 {b, c}-phase
I no advantage in trying to detect 2 {x , y}-phases

⇒ Perform k analyses for different B sets
I for each phase size n = 1 . . . k
I Bn consists of the n most-recently-used blocks
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Subanalyses for n = 1 . . . 3

a b c c b c a a c a b a

n = 1 :

n = 2 :

n = 3 :
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Observation

For n = 1 . . . k , analysis needs to maintain:
I phase blocks Bn ∈ 2B

I phase progress Pn ∈ 2B

I phase counter pcn ∈ N

Phase blocks Bn are the n most-recently-used blocks

⇒ For i < j : Bi ⊆ Bj

⇒ Encode all Bn in a single LRU-stack

For all i : Pi ⊆ Bi

⇒ Encode all Pn as “pointers” into the stack
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Encoding

For phase blocks Bn:
I pcn complete Bn-phases were detected
I current phase progress is Bppn

B1 pc1, pp1

B2 \ B1 pc2, pp2

B3 \ B2 pc3, pp3

B4 \ B3 pc4, pp4

B1 {b}
P1 ∅
pc1 1
B2 {b, c}
P2 {b}
pc2 2
B3 {a, b, c}
P3 {b, c}
pc3 1

=
{b} 1, 0

{c} 2, 1

{a} 1, 2

∅ 0, 3
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So far, we have seen parts of the must-analysis
The paper contains, for must- and may-analysis,

I basic theorem
I generalization to arbitrary control-flow
I formalization as abstract interpretation
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Before ’97 LRU analyses

LCTRTS’97 Precise and efficient must- and may-analysis for LRU [1]

LCTES’08 Generic analyses for FIFO and PLRU [2]

SAS’09 Cache analysis framework and FIFO analysis [3]

WCET’10 Toward precise analysis for PLRU [4]

ECRTS’10 Precise and efficient must- and may-analysis for FIFO

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 23 / 34



computer science

saarland
universityEvaluation Setup

Analyses:
HAM Must-analysis of SAS’09

RC Generic analyses of LCTES’08
PD Phase detecting analyses

Collecting semantics:
CS Limit for any static analysis

Spectrum of synthetic benchmarks:
I Random access sequences and program fragments
I With varying locality
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k=8, random sequences
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Precise and Efficient
FIFO-Replacement Analysis based on Static Phase Detection

〈

{a,b,c}-phase︷ ︸︸ ︷
a , b , c︸ ︷︷ ︸

{b,c}-phase

,

{a,b,c}-phase︷ ︸︸ ︷
c , b︸ ︷︷ ︸

{b,c}-phase

, b , a , . . .〉

Two theorems on FIFO-contents
I bound on number of phases
I must be cached / evicted

Must- and may-analysis
I static phase detection
I multiple sub-analyses
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I multiple sub-analyses
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J. Reineke and D. Grund
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D. Grund and J. Reineke
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SAS 2009

D. Grund and J. Reineke
Toward Precise PLRU Cache Analysis
WCET 2010
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Analyses directed at worst-case execution-time analysis

Mueller By “static cache simulation”
Li By integer linear programming

Ferdinand By abstract interpretation

Other than that

Ghosh Cache Miss Equations, loop nests
Chatterjee Exact model of cache behavior for loop nests

All for LRU caches only
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Binary
Executable

CFG Re-
construction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural

Analysis

Global Bound
Analysis

Legend:

Data

Action

Micro-architectural analysis

models pipeline, caches, buses, etc.

derives bounds on BB exec. times

is an abstract interpretation
with a huge domain

is the computationally most expensive
module

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 30 / 34



computer science

saarland
universityApplicability

Any buffer with transparent FIFO replacement:
I Individual cache sets of instruction of data caches (I$, D$)
I Branch target buffers (BTB, BTIC)
I Translation lookaside buffers (TLB)

Instances:

I$ D$ ARM 1136, 1156, 1176, 920T, 922T, 926EJ-S (k ∈ {2, 4, 64})
I$ D$ Marvell (Intel) XScale(s) (k = 32)

BTB Freescale (Motorola) MPC 56x, 7450-Family (k ∈ {4, 8})
. . .
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Full Example for k = 3

For 1 ≤ n ≤ k maintain Bn,Pn, pcn

Example
s a b c c b c a
B1 ∅ {a} {b} {c} {c} {b} {c} {a}
P1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
pc1 0 1 1 1 1 1 1 1
B2 ∅ {a} {a, b} {b, c} {b, c} {b, c} {b, c} {a, c}
P2 ∅ {a} ∅ ∅ {c} ∅ {c} ∅
pc2 0 0 1 1 1 2 2 1
B3 ∅ {a} {a, b} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
P3 ∅ {a} {a, b} ∅ {c} {b, c} {b, c} ∅
pc3 0 0 0 1 1 1 1 2
Hit Hit Hit
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Abstraction and Join

Analysis domain is Lru≤k × PCk × PPk ⊂ (2B)k × Nk × Nk

Lru≤k LRU must-analysis, under-approximates accessed blocks

PCk lower bounds on number of phases

PPk lower bounds on phase progress

Reuse abstract transformer and join of Lru≤k
Define appropriately for PCk and PPk
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Similar to must-analysis

Difference: Phases may be of different lengths and contents

Theorem (Multiple Phases)

s = s1 ◦ . . . ◦ sj , ∀i : |A(si)| = ni ≥ k :

∀q ∈ Qk , q
s−→ q′ : C∑j

i=1(ni−k+1)(q
′) ⊆ A(s) =

⋃
i

A(si)

More simultaneous sub-analyses

Similar implementation employing LRU may-analysis
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