
Precise and Efficient FIFO-Replacement Analysis
Based on Static Phase Detection

Daniel Grund1 Jan Reineke2

1Saarland University, Saarbrücken, Germany

2University of California, Berkeley, USA

Euromicro Conference on Real-Time Systems 2010

computer science

saarland
university

http://rw4.cs.uni-sb.de/people/grund.shtml
http://rw4.cs.uni-sb.de/people/reineke.shtml
http://ecrts.eit.uni-kl.de/ecrts10
http://frweb.cs.uni-sb.de/index.php?lang=en

computer science

saarland
universityOutline

1 Introduction and Problem
Timing Analysis
Cache Analysis
Challenge FIFO Replacement

2 Predicting Hits for FIFO
Idea and Theorem
Must Analysis
Efficient Implementation

3 Paper Contents

4 Evaluation
Related Work
Analysis Precision

5 Summary

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 2 / 34

computer science

saarland
universityTiming Analysis for Real-Time Systems

Fr
eq

ue
nc

y

Execution
time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Need to bound execution time of programs
Execution time influenced by architectural features

I pipelines, caches, branch prediction, . . .

Need to analyze behavior of architectural components

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 3 / 34

computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34

computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a?

“hit”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34

computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a!

“hit”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34

computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c?

“miss”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34

computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c?

“miss”
(ab)

(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34

computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c!

“miss”
(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34

computer science

saarland
universityCaches and Replacement Policies

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c!

“miss”
(ac)

Caches transparently buffer memory blocks

Replacement policy dynamically decides which element to replace

LRU least recently used
PLRU pseudo LRU
FIFO first-in first-out

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 4 / 34

computer science

saarland
universityStatic Cache Analysis

Goals & Notions

Derive approximations to cache contents at each program point

in order to classify memory accesses as cache hits or cache misses

Must-information

Underapproximation of cache contents

Used to soundly classify cache hits

May-information

Overapproximation of cache contents

Used to soundly classify cache misses

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 5 / 34

computer science

saarland
universityStatic Cache Analysis

Challenges

read
z

read
y

read
x

write
z

Initial cache contents unknown

Need to combine analysis information

Need to determine addresses of x , y , z

1 Approximate accessed addresses by value analysis (not this talk)

2 Approximate cached contents by replacement analysis

⇒ Cache analysis = value analysis⊕ replacement analysis

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 6 / 34

computer science

saarland
universityStatic Cache Analysis

Challenges

read
z

read
y

read
x

write
z

Initial cache contents unknown

Need to combine analysis information

Need to determine addresses of x , y , z

1 Approximate accessed addresses by value analysis (not this talk)

2 Approximate cached contents by replacement analysis

⇒ Cache analysis = value analysis⊕ replacement analysis

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 6 / 34

computer science

saarland
universityStatic Cache Analysis

Challenges

read
z

read
y

read
x

write
z

Initial cache contents unknown

Need to combine analysis information

Need to determine addresses of x , y , z

1 Approximate accessed addresses by value analysis (not this talk)

2 Approximate cached contents by replacement analysis

⇒ Cache analysis = value analysis⊕ replacement analysis

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 6 / 34

computer science

saarland
universityStatic Cache Analysis

Challenges

read
z

read
y

read
x

write
z

Initial cache contents unknown

Need to combine analysis information

Need to determine addresses of x , y , z

1 Approximate accessed addresses by value analysis (not this talk)

2 Approximate cached contents by replacement analysis

⇒ Cache analysis = value analysis⊕ replacement analysis

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 6 / 34

computer science

saarland
universityStatic Cache Analysis

Challenges

read
z

read
y

read
x

write
z

Initial cache contents unknown

Need to combine analysis information

Need to determine addresses of x , y , z

1 Approximate accessed addresses by value analysis (not this talk)

2 Approximate cached contents by replacement analysis

⇒ Cache analysis = value analysis⊕ replacement analysis

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 6 / 34

computer science

saarland
universityFIFO Replacement

FIFO cache of size k :

[b1, . . . , bk] ∈ Qk := Bk
⊥

first-inlast-in

Example updates:
[d , c, b, a]

c−−→hit [d , c, b, a]

[d , c, b, a]
e−−→miss [e, d , c, b]

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 7 / 34

computer science

saarland
universityFIFO Replacement Analysis

Why Predicting Hits is Difficult

Take a set of blocks B that does fit into a cache q

For example, B = {a, b, e} and k = 4. |B| ≤ k .

Access all blocks in B:

q
〈a,b,e〉−−−−→ q′

Must all accessed blocks be cached? ∀q : B ⊆ q′?

[d , c, b, a]
a−−→hit [d , c, b, a]

b−−→hit [d , c, b, a]
e−−→miss [e, d , c, b] 63 a

Observation

After accessing a set of “fitting” blocks,
not all of them must be cached.

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 8 / 34

computer science

saarland
universityFIFO Replacement Analysis

Why Predicting Hits is Difficult

Take a set of blocks B that does fit into a cache q

For example, B = {a, b, e} and k = 4. |B| ≤ k .

Access all blocks in B:

q
〈a,b,e〉−−−−→ q′

Must all accessed blocks be cached? ∀q : B ⊆ q′? No.

[d , c, b, a]
a−−→hit [d , c, b, a]

b−−→hit [d , c, b, a]
e−−→miss [e, d , c, b] 63 a

Observation

After accessing a set of “fitting” blocks,
not all of them must be cached.

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 8 / 34

computer science

saarland
universityFIFO Replacement Analysis

Why Predicting Misses is Difficult

Take a set of blocks B that does not fit into a cache q

For example, B = {a, b, c, d , e, f} and k = 4. |B| ≥ k .

Access all blocks in B:

q
〈a,b,c,d,e,f 〉−−−−−−−→ q′

Must all non-accessed blocks be evicted? ∀q : q′ ⊆ B?

[x , c, b, a]
〈a,b,c〉−−−−→hits [x , c, b, a]

〈d,e,f 〉−−−−→misses [f , e, d , x] 3 x

Observation

After accessing a set of “non-fitting” blocks,
other blocks may still be cached.

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 9 / 34

computer science

saarland
universityFIFO Replacement Analysis

Why Predicting Misses is Difficult

Take a set of blocks B that does not fit into a cache q

For example, B = {a, b, c, d , e, f} and k = 4. |B| ≥ k .

Access all blocks in B:

q
〈a,b,c,d,e,f 〉−−−−−−−→ q′

Must all non-accessed blocks be evicted? ∀q : q′ ⊆ B? No.

[x , c, b, a]
〈a,b,c〉−−−−→hits [x , c, b, a]

〈d,e,f 〉−−−−→misses [f , e, d , x] 3 x

Observation

After accessing a set of “non-fitting” blocks,
other blocks may still be cached.

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 9 / 34

computer science

saarland
universityOutline

1 Introduction and Problem
Timing Analysis
Cache Analysis
Challenge FIFO Replacement

2 Predicting Hits for FIFO
Idea and Theorem
Must Analysis
Efficient Implementation

3 Paper Contents

4 Evaluation
Related Work
Analysis Precision

5 Summary

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 10 / 34

computer science

saarland
universityTo the point: Anticipation & Idea

Considering repeated accesses to “fitting” blocks B helps:
B = {a, b, c}
s = 〈a, b, b, c, b, b, a, c, c, a, b, . . .〉
Eventually, all blocks in B must be cached.

Need to detect repetitions

Partition access sequence s into phases

Definition (Phase)

A B-phase is an access sequence s such that
the set of accessed blocks A(s) = B.

〈 a , b , b , c︸ ︷︷ ︸
{a,b,c}-phase

, b , b , a , c︸ ︷︷ ︸
{a,b,c}-phase

, . . .〉

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 11 / 34

computer science

saarland
universityPredicting Hits by Detecting Phases

Lemma (Single Phase)

Let s be a B-phase and |B| ≤ k .

∀q ∈ Qk , q
s−→ q′ :

B ⊆ q′

∨

C1(q
′) ⊆ B

1 Either all blocks already cached:
I B ⊆ q ⇒ only hits in s ⇒ B ⊆ q′

2 Or not:
I B 6⊆ q ⇒ at least one miss s ⇒ C1(q′) ⊆ B

I [d , c, b, a]
〈a,b,e〉−−−−→ [e︸︷︷︸

C1(q′)={e}⊆B

, d , c, b]

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 12 / 34

computer science

saarland
universityPredicting Hits by Detecting Phases

Lemma (Single Phase)

Let s be a B-phase and |B| ≤ k .

∀q ∈ Qk , q
s−→ q′ : B ⊆ q′ ∨

C1(q
′) ⊆ B

1 Either all blocks already cached:
I B ⊆ q ⇒ only hits in s ⇒ B ⊆ q′

2 Or not:
I B 6⊆ q ⇒ at least one miss s ⇒ C1(q′) ⊆ B

I [d , c, b, a]
〈a,b,e〉−−−−→ [e︸︷︷︸

C1(q′)={e}⊆B

, d , c, b]

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 12 / 34

computer science

saarland
universityPredicting Hits by Detecting Phases

Lemma (Single Phase)

Let s be a B-phase and |B| ≤ k .

∀q ∈ Qk , q
s−→ q′ : B ⊆ q′ ∨ C1(q

′) ⊆ B

1 Either all blocks already cached:
I B ⊆ q ⇒ only hits in s ⇒ B ⊆ q′

2 Or not:
I B 6⊆ q ⇒ at least one miss s ⇒ C1(q′) ⊆ B

I [d , c, b, a]
〈a,b,e〉−−−−→ [e︸︷︷︸

C1(q′)={e}⊆B

, d , c, b]

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 12 / 34

computer science

saarland
universityPredicting Hits by Detecting Phases

Theorem (Multiple Phases)

Let si be B-phases and |B| ≤ k and s = s1 ◦ . . . ◦ sj

∀q ∈ Qk , q
s−→ q′ : B ⊆ q′ ∨ Cj(q

′) ⊆ B

1 For each individual phase the lemma applies

2 Misses, if any, accumulate in last-in positions Cj(q′)

[d , c, b, a]
〈a,b,e〉−−−−→ [e︸︷︷︸

C1⊆B

, d , c, b]
〈b,a,e〉−−−−→ [a, e︸︷︷︸

C2⊆B

, d , c]
〈a,b,e〉−−−−→ [b, a, e︸ ︷︷ ︸

C3⊆B

, d]

Corollary: After |B| B-phases, all blocks in B must be cached

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 13 / 34

computer science

saarland
universityPredicting Hits by Detecting Phases

Theorem (Multiple Phases)

Let si be B-phases and |B| ≤ k and s = s1 ◦ . . . ◦ sj

∀q ∈ Qk , q
s−→ q′ : B ⊆ q′ ∨ Cj(q

′) ⊆ B

1 For each individual phase the lemma applies

2 Misses, if any, accumulate in last-in positions Cj(q′)

[d , c, b, a]
〈a,b,e〉−−−−→ [e︸︷︷︸

C1⊆B

, d , c, b]
〈b,a,e〉−−−−→ [a, e︸︷︷︸

C2⊆B

, d , c]
〈a,b,e〉−−−−→ [b, a, e︸ ︷︷ ︸

C3⊆B

, d]

Corollary: After |B| B-phases, all blocks in B must be cached

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 13 / 34

computer science

saarland
universityThe Must Analysis

How to Count Phases

For phase blocks B, the analysis maintains:
P phase progress, blocks already accessed in current phase

pc phase counter, number of detected B-phases

Predicts hits for blocks in B if pc = |B|

Example for B = {a, b}
s a b b b a b
P ∅ {a} {a, b} ∅ {b} {b} {a, b} ∅ {b}
pc 0 0 0 1 1 1 1 2 2
Hit Hit

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 14 / 34

computer science

saarland
universityThe Must Analysis

Dependency on Future Accesses

Need |B| B-phases to predict hits for blocks in B

How to choose B?

After observing 〈a, b, c〉 it makes sense trying to detect
I 2 further {a, b, c}-phases
I 1 further {b, c}-phase
I 0 further {c}-phases

Optimal B depends on future accesses
I 〈a, b, c, a, b, c, a, b, c, a, b, c〉
I 〈a, b, c, b, c, b, c, b, c, b, c〉

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 15 / 34

computer science

saarland
universityThe Must Analysis

Resolving the Dependency

Perform multiple analyses for different B sets

For which?

|B| already determines sensible contents of B
For |B| = 2, after 〈a, b, c〉

I already detected 1 {b, c}-phase
I no advantage in trying to detect 2 {x , y}-phases

⇒ Perform k analyses for different B sets
I for each phase size n = 1 . . . k
I Bn consists of the n most-recently-used blocks

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 16 / 34

computer science

saarland
universityThe Must Analysis

Subanalyses for n = 1 . . . 3

a b c c b c a a c a b a

n = 1 :

n = 2 :

n = 3 :

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 17 / 34

computer science

saarland
universityThe Must Analysis

Subanalyses for n = 1 . . . 3

a b c c b c a a c a b a

n = 1 :

n = 2 :

n = 3 :

{c}

H

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 17 / 34

computer science

saarland
universityThe Must Analysis

Subanalyses for n = 1 . . . 3

a b c c b c a a c a b a

n = 1 :

n = 2 :

n = 3 :

{c}

H

{b, c} {b, c}

H

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 17 / 34

computer science

saarland
universityThe Must Analysis

Subanalyses for n = 1 . . . 3

a b c c b c a a c a b a

n = 1 :

n = 2 :

n = 3 :

{c}

H

{b, c} {b, c}

H
{a}

H

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 17 / 34

computer science

saarland
universityThe Must Analysis

Subanalyses for n = 1 . . . 3

a b c c b c a a c a b a

n = 1 :

n = 2 :

n = 3 :

{c}

H

{b, c} {b, c}

H
{a}

H

{a, c} {a, c}

H

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 17 / 34

computer science

saarland
universityThe Must Analysis

Subanalyses for n = 1 . . . 3

a b c c b c a a c a b a

n = 1 :

n = 2 :

n = 3 :

{c}

H

{b, c} {b, c}

H
{a}

H

{a, c} {a, c}

H

{a, b, c} {a, b, c} {a, b, c}

H

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 17 / 34

computer science

saarland
universityEfficient Implementation

Observation

For n = 1 . . . k , analysis needs to maintain:
I phase blocks Bn ∈ 2B

I phase progress Pn ∈ 2B

I phase counter pcn ∈ N

Phase blocks Bn are the n most-recently-used blocks

⇒ For i < j : Bi ⊆ Bj

⇒ Encode all Bn in a single LRU-stack

For all i : Pi ⊆ Bi

⇒ Encode all Pn as “pointers” into the stack

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 18 / 34

computer science

saarland
universityEfficient Implementation

Encoding

For phase blocks Bn:
I pcn complete Bn-phases were detected
I current phase progress is Bppn

B1 pc1, pp1

B2 \ B1 pc2, pp2

B3 \ B2 pc3, pp3

B4 \ B3 pc4, pp4

B1 {b}
P1 ∅
pc1 1
B2 {b, c}
P2 {b}
pc2 2
B3 {a, b, c}
P3 {b, c}
pc3 1

=
{b} 1, 0

{c} 2, 1

{a} 1, 2

∅ 0, 3

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 19 / 34

computer science

saarland
universityOutline

1 Introduction and Problem
Timing Analysis
Cache Analysis
Challenge FIFO Replacement

2 Predicting Hits for FIFO
Idea and Theorem
Must Analysis
Efficient Implementation

3 Paper Contents

4 Evaluation
Related Work
Analysis Precision

5 Summary

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 20 / 34

computer science

saarland
universityContents of the Paper

So far, we have seen parts of the must-analysis
The paper contains, for must- and may-analysis,

I basic theorem
I generalization to arbitrary control-flow
I formalization as abstract interpretation

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 21 / 34

computer science

saarland
universityOutline

1 Introduction and Problem
Timing Analysis
Cache Analysis
Challenge FIFO Replacement

2 Predicting Hits for FIFO
Idea and Theorem
Must Analysis
Efficient Implementation

3 Paper Contents

4 Evaluation
Related Work
Analysis Precision

5 Summary

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 22 / 34

computer science

saarland
universityBrief History of Replacement Analysis

Before ’97 LRU analyses

LCTRTS’97 Precise and efficient must- and may-analysis for LRU [1]

LCTES’08 Generic analyses for FIFO and PLRU [2]

SAS’09 Cache analysis framework and FIFO analysis [3]

WCET’10 Toward precise analysis for PLRU [4]

ECRTS’10 Precise and efficient must- and may-analysis for FIFO

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 23 / 34

computer science

saarland
universityEvaluation Setup

Analyses:
HAM Must-analysis of SAS’09

RC Generic analyses of LCTES’08
PD Phase detecting analyses

Collecting semantics:
CS Limit for any static analysis

Spectrum of synthetic benchmarks:
I Random access sequences and program fragments
I With varying locality

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 24 / 34

computer science

saarland
universityEvaluation Results

k=8, random sequences

5 10 15 20 25 30
0

20

40

60

80

100

8 n

%
CS

hits

n.c.

misses

5 10 15 20 25 30
0

20

40

60

80

100

8 n

%

n is number of distinct elements that get accessed

Average guaranteed hit- and miss-rates

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 25 / 34

computer science

saarland
universityEvaluation Results

k=8, random sequences

5 10 15 20 25 30
0

20

40

60

80

100

8 n

%
CS
RC

n is number of distinct elements that get accessed

Average guaranteed hit- and miss-rates

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 25 / 34

computer science

saarland
universityEvaluation Results

k=8, random sequences

5 10 15 20 25 30
0

20

40

60

80

100

8 n

%
CS

RC+HAM

n is number of distinct elements that get accessed

Average guaranteed hit- and miss-rates

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 25 / 34

computer science

saarland
universityEvaluation Results

k=8, random sequences

5 10 15 20 25 30
0

20

40

60

80

100

8 n

%
CS

RC+HAM
PD+HAM

n is number of distinct elements that get accessed

Average guaranteed hit- and miss-rates

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 25 / 34

computer science

saarland
universityOutline

1 Introduction and Problem
Timing Analysis
Cache Analysis
Challenge FIFO Replacement

2 Predicting Hits for FIFO
Idea and Theorem
Must Analysis
Efficient Implementation

3 Paper Contents

4 Evaluation
Related Work
Analysis Precision

5 Summary

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 26 / 34

computer science

saarland
universitySummary

5 10 15 20 25 30
0

20

40

60

80

100

8 n

% B1 {b}
P1 ∅
pc1 1
B2 {b, c}
P2 {b}
pc2 2
B3 {a, b, c}
P3 {b, c}
pc3 1

=
{b} 1, 0

{c} 2, 1

{a} 1, 2

∅ 0, 3

Precise and Efficient
FIFO-Replacement Analysis based on Static Phase Detection

〈

{a,b,c}-phase︷ ︸︸ ︷
a , b , c︸ ︷︷ ︸

{b,c}-phase

,

{a,b,c}-phase︷ ︸︸ ︷
c , b︸ ︷︷ ︸

{b,c}-phase

, b , a , . . .〉

Two theorems on FIFO-contents
I bound on number of phases
I must be cached / evicted

Must- and may-analysis
I static phase detection
I multiple sub-analyses

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 27 / 34

computer science

saarland
universitySummary

5 10 15 20 25 30
0

20

40

60

80

100

8 n

% B1 {b}
P1 ∅
pc1 1
B2 {b, c}
P2 {b}
pc2 2
B3 {a, b, c}
P3 {b, c}
pc3 1

=
{b} 1, 0

{c} 2, 1

{a} 1, 2

∅ 0, 3

Precise and Efficient
FIFO-Replacement Analysis based on Static Phase Detection

〈

{a,b,c}-phase︷ ︸︸ ︷
a , b , c︸ ︷︷ ︸

{b,c}-phase

,

{a,b,c}-phase︷ ︸︸ ︷
c , b︸ ︷︷ ︸

{b,c}-phase

, b , a , . . .〉

Two theorems on FIFO-contents
I bound on number of phases
I must be cached / evicted

Must- and may-analysis
I static phase detection
I multiple sub-analyses

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 27 / 34

computer science

saarland
universityFurther Reading

C. Ferdinand
Cache Behaviour Prediction for Real-Time Systems
PhD Thesis, Saarland University, 1997

J. Reineke and D. Grund
Relative competitive analysis of cache replacement policies
LCTES 2008

D. Grund and J. Reineke
Abstract Interpretation of FIFO Replacement
SAS 2009

D. Grund and J. Reineke
Toward Precise PLRU Cache Analysis
WCET 2010

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 28 / 34

computer science

saarland
universityRelated Work: LRU Analyses

Analyses directed at worst-case execution-time analysis

Mueller By “static cache simulation”
Li By integer linear programming

Ferdinand By abstract interpretation

Other than that

Ghosh Cache Miss Equations, loop nests
Chatterjee Exact model of cache behavior for loop nests

All for LRU caches only

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 29 / 34

computer science

saarland
universityStatic Timing-Analysis Framework

Binary
Executable

CFG Re-
construction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural

Analysis

Global Bound
Analysis

Legend:

Data

Action

Micro-architectural analysis

models pipeline, caches, buses, etc.

derives bounds on BB exec. times

is an abstract interpretation
with a huge domain

is the computationally most expensive
module

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 30 / 34

computer science

saarland
universityApplicability

Any buffer with transparent FIFO replacement:
I Individual cache sets of instruction of data caches (I$, D$)
I Branch target buffers (BTB, BTIC)
I Translation lookaside buffers (TLB)

Instances:

I$ D$ ARM 1136, 1156, 1176, 920T, 922T, 926EJ-S (k ∈ {2, 4, 64})
I$ D$ Marvell (Intel) XScale(s) (k = 32)

BTB Freescale (Motorola) MPC 56x, 7450-Family (k ∈ {4, 8})
. . .

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 31 / 34

computer science

saarland
universityMust Analysis

Full Example for k = 3

For 1 ≤ n ≤ k maintain Bn,Pn, pcn

Example
s a b c c b c a
B1 ∅ {a} {b} {c} {c} {b} {c} {a}
P1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
pc1 0 1 1 1 1 1 1 1
B2 ∅ {a} {a, b} {b, c} {b, c} {b, c} {b, c} {a, c}
P2 ∅ {a} ∅ ∅ {c} ∅ {c} ∅
pc2 0 0 1 1 1 2 2 1
B3 ∅ {a} {a, b} {a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
P3 ∅ {a} {a, b} ∅ {c} {b, c} {b, c} ∅
pc3 0 0 0 1 1 1 1 2
Hit Hit Hit

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 32 / 34

computer science

saarland
universityMust Analysis

Abstraction and Join

Analysis domain is Lru≤k × PCk × PPk ⊂ (2B)k × Nk × Nk

Lru≤k LRU must-analysis, under-approximates accessed blocks

PCk lower bounds on number of phases

PPk lower bounds on phase progress

Reuse abstract transformer and join of Lru≤k
Define appropriately for PCk and PPk

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 33 / 34

computer science

saarland
universityMay-Analysis

Similar to must-analysis

Difference: Phases may be of different lengths and contents

Theorem (Multiple Phases)

s = s1 ◦ . . . ◦ sj , ∀i : |A(si)| = ni ≥ k :

∀q ∈ Qk , q
s−→ q′ : C∑j

i=1(ni−k+1)(q
′) ⊆ A(s) =

⋃
i

A(si)

More simultaneous sub-analyses

Similar implementation employing LRU may-analysis

Daniel Grund and Jan Reineke FIFO-Replacement Analysis ECRTS 2010 34 / 34

	Introduction and Problem
	Timing Analysis
	Cache Analysis
	Challenge FIFO Replacement

	Predicting Hits for FIFO
	Idea and Theorem
	Must Analysis
	Efficient Implementation

	Paper Contents
	Evaluation
	Related Work
	Analysis Precision

	Summary
	Bibliography
	Questions

