
Abstract Interpretation of FIFO Replacement

Daniel Grund and Jan Reineke

Saarland University, Saarbrücken, Germany

Abstract. In hard real-time systems, the execution time of programs
must be bounded by static timing analysis. For today’s embedded sys-
tems featuring caches, static analyses must predict cache hits and misses
with high precision to obtain useful bounds. For caches with least-recently-
used (LRU) replacement policy, efficient and precise cache analyses ex-
ist. However, for other widely-used policies like first-in first-out (FIFO),
current cache analyses are much less precise.
This paper discusses challenges in FIFO cache analysis and advances the
state of the art. We identify a generic framework for cache analysis that
couples may- and must-analyses by means of domain cooperation. Our
main contribution is a more precise may-analysis for FIFO. It not only
increases the number of predicted misses, but also—due to the domain
cooperation—the number of predicted hits. We instantiate the framework
with a canonical must-analysis and three different may-analyses, includ-
ing our new one, and compare the resulting three analyses to the collect-
ing semantics. Our evaluation results characterize the progress achieved
by our new may-analysis and reveal room for further improvement.

Key words: Cache Analysis, FIFO Replacement, Domain Cooperation,
May/Must Reasoning

1 Introduction

In hard real-time systems, one needs to derive off-line guarantees for the timeli-
ness of reactions. Thereby, one fundamental problem is to bound the worst-case
execution time (WCET) of programs [1]. To obtain tight and thus useful bounds
on the execution times, timing analyses must take into account the cache archi-
tecture of the employed CPUs. However, developing cache analyses—analyses
that statically determine whether a memory access associated with an instruc-
tion will always be a hit or a miss—is a challenging problem.

Precise and efficient analyses have been developed for set-associative caches
that employ the least-recently-used (LRU) replacement policy [2,3,4,5,6]. Gen-
erally, research in the field of embedded real-time systems assumes LRU re-
placement. In practice however, other policies like first-in first-out (FIFO) or
pseudo-LRU (PLRU) are also commonly used, e.g., in the Intel XScale, some
ARM9 and ARM11, and the PowerPC 75x series.

As Section 2.3 explains, two kinds of information can be naturally distin-
guished in cache analysis: must-information that allows for predicting hits, and
may-information that allows for predicting misses. Previous work showed that it

2 Daniel Grund and Jan Reineke

is inherently more difficult to obtain may-information for FIFO than for LRU;
see [7] and Section 3. A first step towards the analysis of those policies was the
general concept of relative competitiveness; see [8] and Section 5. Depending on
the particular policy, however, a cache analysis based on relative competitiveness
may be anything from very precise to ineffective.

In Section 4, we describe a generic policy-independent framework for cache
analysis. It allows for cooperation of may- and must-analyses through a minimal
interface, which improves their precision.

Then, we present our main contributions: a may- and a must-analysis for
FIFO. The must-analysis borrows basic ideas from LRU-analysis [3]. To predict
cache hits, it infers upper bounds on cache misses to prove containedness of
memory blocks. To predict cache misses, the may-analysis infers lower bounds
on cache misses to prove eviction. By taking into account the order in which hits
and misses happen, we improve the may-analysis, thereby increasing the number
of predicted cache misses. Through the cooperation of the two analyses in the
generic framework, this also improves the precision of the must-analysis.

After describing related work in Section 5, we report on our evaluation in
Section 6. Using the generic framework, we compare three may-analyses with
each other and to the collecting semantics of FIFO. We show that our analysis
yields better results than the generic approach using relative competitiveness.
Additionally, using the collecting semantics, we illustrate the limits for any static
analysis. This supplements analytical bounds derived in [7] and reveals oppor-
tunities of how to improve abstract domains for FIFO.

2 Foundations

2.1 Caches

Caches are fast but small memories that store a subset of the main memory’s
contents to bridge the latency gap between CPU and main memory. To profit
from spatial locality and to reduce management overhead, main memory is logi-
cally partitioned into a set of memory blocks B of size b bytes. Blocks are cached
as a whole in cache lines of equal size. Usually, b is a power of two. This way, the
block number is determined by the most significant bits of a memory address.

When accessing a memory block, the cache logic has to determine whether
the block is stored in the cache (“cache hit”) or not (“cache miss”). To enable
an efficient look-up, each block can only be stored in a small number of cache
lines. For this purpose, caches are partitioned into equally-sized cache sets S.
The size of a cache set is called the associativity k of the cache. A cache with
associativity k is often called k-way set-associative. It consists of k ways, each of
which consists of one cache line in each cache set. In the context of a cache set,
the term way thus refers to a single cache line. The number of such equally-sized
cache sets s is usually a power of two such that the set number, also called index,
is determined by the least significant bits of the block number. The remaining
bits of an address are known as the tag. To finally decide whether and where a
block is cached within a set, tags ti ∈ T are stored along with the data.

Abstract Interpretation of FIFO Replacement 3

Since the number of memory blocks that map to a set is usually far greater
than the associativity of the cache, a so-called replacement policy must decide
which memory block to replace upon a cache miss. Replacement policies try
to exploit temporal locality and base their decisions on the history of memory
accesses. Usually, cache sets are treated independently of each other such that
accesses to one set do not influence replacement decisions in other sets.

Well-known policies for individual cache sets are least-recently used (LRU),
a more cost-efficient variant of it (PLRU), and first-in first-out (FIFO). For
details on the implementation of caches in hardware refer to Jacob [9].

2.2 Static Analysis

The goal of static analysis is to automatically determine properties of programs
without actually executing the programs. Since the properties to determine are
commonly incomputable, abstraction has to be employed. In general, there is
a trade-off between analysis precision on the one hand and computability and
analysis complexity on the other hand.

One formal method in static analysis, which our work is based on, is ab-
stract interpretation. Instead of representing concrete semantic information in
a concrete domain D, one represents more abstract information in an abstract
domain D̂. The relation between concrete and abstract can be given by an ab-
straction function α : P(D)→ D̂ and a concretization function γ : D̂ → P(D).

To determine the properties, a data-flow analysis computes invariants for
each program point, which are represented by values of D̂. A transfer function
U : D̂ × I → D̂ models the effect of instructions I on abstract values. With the
transfer function it is possible to set up a system of data-flow equations that
correlates values before and after each instruction. If an instruction has multiple
predecessors, a join function J : D̂×D̂ → D̂ combines all incoming values into a
single one. If a data-flow framework meets certain conditions, the induced system
of equations for a given program has a least solution, which can be obtained by
a fixed-point computation. If the transfer- and the join-function satisfy certain
conditions, the analysis is sound with respect to α and γ: True properties in the
abstract map to true properties in the concrete. For an overview article with
pointers to details on abstract interpretation refer to Cousot and Cousot [10].

2.3 Static Cache Analysis

Static cache analysis by abstract interpretation computes may- and must-cache
information at program points: may- and must-cache information are used to
derive upper and lower approximations, respectively, to the contents of all con-
crete cache states that will occur whenever program execution reaches a program
point.

Must-cache information is used to derive safe information about cache hits.
The more cache hits can be predicted, the better the upper bound on the ex-
ecution times. May-cache information is used to safely predict cache misses.

4 Daniel Grund and Jan Reineke

Predicting more cache misses will result in a better lower bound on the execu-
tion times. Generally, the lower the number of unclassified accesses (neither hit
nor miss can be predicted), the lower the runtime of a WCET analysis is because
it has to consider fewer cases.

As most cache architectures manage their cache sets independently from
each other, cache analyses can analyze them independently as well. Thus, we
limit ourselves to the analysis of a single cache set. For details on (LRU-)cache
analysis refer to Ferdinand et al. [11,3].

3 The FIFO Policy

The policy. Conceptually, a FIFO cache set maintains a fixed-size queue of
tags T . A concrete k-way FIFO cache set s can therefore be modeled as a
k-tuple of cache tags, which are ordered from last-in to first-in from left to right:

s = [t0, . . . , tk−1] ∈ S := T k

A cache hit does not change the cache set. A cache miss inserts the new tag at
position 0, shifting the others to the right and evicting the one at the rightmost
position. The update function US : S × T → S models the effect on a cache set
when accessing a memory block with tag t:

US([t0, . . . , tk−1], t) :=
{

[t0, . . . , tk−1] : ∃i : t = ti “cache hit”
[t, t0, . . . , tk−2] : otherwise “cache miss”

In hardware, the FIFO-update can be implemented more efficiently than the
LRU-update and the resulting circuit has a lower latency.

Challenges for static analysis. For FIFO, it is difficult to obtain may-informa-
tion. At the same time, may-information is necessary to obtain precise must-
information. Consider a FIFO cache set with unknown contents. After observing
a cache access to a block a, one knows that a must be cached—trivial must-
information is available. If one cannot classify the access to a as a miss, another
access to a different block b may immediately evict a. This is the case if the
access to a is a hit on the first-in, i.e., right-most, position and the access to
b is a miss. Thus, without (implicitly or explicitly) classifying some accesses as
misses, it is not possible to infer that two or more blocks are cached.

Hence, may-information is important to obtain precise must-information, and
thus to be able to classify a significant amount of accesses as hits. However,
Reineke et al. [7] give the following bound for a k-way FIFO cache set. Assuming
accesses to pairwise different blocks, it is impossible to classify an individual
access as a miss before 2k − 1 accesses have been observed.

One way to attenuate the lack of FIFO may-information is to invalidate
the cache contents at the start of the program. This way, one can safely as-
sume an empty cache, i.e., at program start one gets complete may- and must-
information. However, cache information can be lost during the analysis, e.g.,
due to control-flow joins. Furthermore, an architecture might not support cache
invalidation.

Abstract Interpretation of FIFO Replacement 5

>

H M

H : cache hit
M : cache miss
> : unclassified

t H M >
H H > >
M > M >
> > > >

u H M >
H H H
M M M
> H M >

Fig. 1. Classification join semi-lattice Class and induced join (t) and meet (u).

4 The FIFO Cache Analysis

Our analysis is an instance of a generic framework for cache analysis that allows
several cache analyses to cooperate by exchanging classifications of memory
accesses. Instead of first describing the framework itself, we immediately describe
our instance for FIFO that composes two analyses. Then, we present our main
contribution: a may- and a must-analysis for FIFO used in this instance of the
framework. In our case, the framework is instantiated with one must- and one
may-analysis; its abstract domain is:

Fifo := Must ×May

Cache accesses are classified as hit (H), miss (M), or unclassified (>). See
Figure 1 for the definition of the classification semi-lattice Class := {H,M}>. To
classify an access to some block with tag t ∈ T , the classification function of the
framework combines the classifications of the may- and the must-analysis. Since
these two classifications are sound, they cannot contradict each other. Thus,
their meet (u) is always defined.

CFifo : Fifo × T → Class
CFifo((mst ,may), t) := CMust(mst , t) u CMay(may , t)

The goal of our analysis is to gain better may-information and leverage it
more than existing analyses. To enable these synergies, one has to introduce
some information flow between the may- and the must-analysis. To this end,
the update functions of may- and must-information are refined by an additional
parameter that is used to pass the classification of the current access. This clas-
sification depends on both analyses, may and must. The main update function
hence is defined as:

UFifo : Fifo × T → Fifo
UFifo((mst ,may), t) := (UMust(mst , t, cl),UMay(may , t, cl)),

where cl = CFifo((mst ,may), t), and UMust and UMay are the update functions
of the must- and the may-analysis. This is a form of domain cooperation as
described in Cousot et al. [12]. In our case, the additional information allows to
define more precise update functions for both analyses.

The main join function is simply defined component-wise:

JFifo : Fifo × Fifo → Fifo
JFifo((mst1,may1), (mst2,may2)) := (JMust(mst1,mst2),JMay(may1,may2))

The remainder of this section details the must- and the may-analysis and de-
fines their classification-, update-, and join-functions, which we have used above.

6 Daniel Grund and Jan Reineke

4.1 Must Analysis

In a concrete k-way cache set, k misses must happen to evict a newly inserted
memory block. To predict hits, our must-analysis approximates this number from
above, it counts potential misses. We define the abstract domain as follows:

Must := MustFifok
:= [T0, . . . , Tk−1] ,

where Ti ⊆ T ,∀i 6= j : Ti ∩ Tj = ∅, and ∀j ≤ k :
∑j−1

i=0 |Ti| ≤ j. The position
of a tag in the tuple is an upper bound on the number of misses that happened
since the insertion of the block with that tag. If a tag t ∈ Ti, there have been at
most i misses since the block with t was inserted into the cache set. It will not
be evicted before at least k − i further misses have happened. One must allow
for sets of tags because multiple tags may have the same upper bound. However,
at most j tags may have an upper bound ≤ j− 1. Since it is senseless to specify
multiple bounds for one tag, all k sets are defined to be disjoint. Otherwise, all
but the least bound would be redundant.

The set of concrete cache sets represented by an abstract must cache set is
given by the concretization function:

γMust : Must → P(S)
γMust([T0, . . . , Tk−1]) := {[t0, . . . , tk−1] ∈ S | ∀i ∀t ∈ Ti ∃j ≤ i : tj = t}

In other words: If a tag t is contained in some Ti in an abstract must cache set,
the block with tag t must be located at one of the first i positions in the concrete
cache set. Consider mst1 := [{f}, {}, {a, c}, {b}] and mst2 := [{}, {d}, {b, c}, {a}]
as an example. Their concretizations are γMust(mst1) = {[f, c, a, b] , [f, a, c, b]}
and γMust(mst2) = {[c, d, b, a] , [b, d, c, a] , [d, c, b, a] , [d, b, c, a]}.

The classification function is straightforward. If the accessed tag is contained
in any of the Ti-sets, the analysis can predict a hit. If k tags must be cached, no
other tag may be cached; in this case, the analysis can predict a miss.

CMust : Must × T → Class

CMust([T0, . . . , Tk−1] , t) :=

H : t ∈ ∪iTi

M : t 6∈ ∪iTi =: C, |C| = k
> : otherwise

The update function has three cases. If the analysis can predict a hit, the
must-information remains unchanged as FIFO does not change its state upon
a hit. If, with the help of may-information, the analysis can predict a miss, one
can update the must-information similarly to the concrete semantics. If neither
hit nor miss can be predicted, the analysis has to account for both possibilities:
Since the access might be a miss, all sets are shifted to the right. Since it might
be a hit on the first-in position, the tag can only be added to the rightmost

Abstract Interpretation of FIFO Replacement 7

position. This results in:

UMust : Must × T × Class → Must

UMust([T0, . . . , Tk−1] , t, cl) :=

[T0, . . . , Tk−1] : cl = H
[{t}, T0, . . . , Tk−2] : cl = M
[∅, T0, . . . , Tk−2 ∪ {t}] : otherwise

If a cache access is not a hit, either the second or the third case of the update
applies. They are identical, except for the position where t is inserted. Predicting
a miss on the block with tag t allows to predict hits for t until k further misses
might have happened. In contrast, the third case only allows to predict hits for
t until the next miss might have happened.

The join function has to be sound w.r.t. the concretization function. There-
fore, a tag may only be contained in the result if it is present in both operands.
The position of such a tag must be the maximum of the two positions in the
operands. The best possible join function for our domain is:

JMust : Must ×Must → Must
JMust([X0, . . . , Xk−1] , [Y0, . . . , Yk−1]) := [Z0, . . . , Zk−1] ,

with Zl := {t ∈ T | ∃i, j : t ∈ Xi ∩ Yj , l = max{i, j}}. As an example consider
the join of the two must cache sets from above. mst3 := JMust(mst1,mst2) =
[{}, {}, {c}, {a, b}]. The concretization of mst3 is “infinite”, i.e., |γMust(mst3)| =
18 ∗ (|T | − 3): if less than k tags are contained in

⋃
i Ti, any of the other |T | −

|
⋃

i Ti| tags may also be contained in the cache set.

4.2 May Analysis

The goal of the may-analysis is to infer information that allows for classifying
accesses as misses. Our may-analysis associates information with each cache tag.
This results in the abstract domain:

May := MayFifok
:= T → TInfok

In the following paragraphs, we will motivate and describe all parts of TInfok.
After describing TInfok, we define the classification-, update-, and join-functions.

Consider a k-way associative FIFO cache set s and a block with tag t that
has just been inserted into s. If k misses happen, the block with t is evicted
from s and the next access to that block can be predicted to be a miss. Hence,
the may-analysis approximates the number of misses from below.1 Thus, one
constituent of TInfok is the number of definite misses:

DMk := {0, . . . , k − 1}
1 This is analogous to must-information: May-information gives a lower bound on

the number of misses (definite misses) while must-information gives an upper bound
(potential misses). Must-information can also be represented as a mapping T → PM .

8 Daniel Grund and Jan Reineke

Before an analysis can predict a miss for a block, it must predict its eviction,
i.e., it must prove that k misses have happened since the insertion of that block.
Hence, there is a “bootstrapping problem” if the analysis starts with the worst
may-information (i.e., any block could be cached). Similar problems arise if may-
information is (partially) lost during the analysis, e.g., due to joins. To solve this
problem, a may-analysis must infer and maintain additional information.

The only solution to this bootstrapping problem are amortizing observations
like “k of a ≥ k accesses must have been misses”. Consider the following lemma,
which holds independently of the replacement policy.

Lemma 1. Let s be a k-way cache set. Furthermore, let (tn) be an access se-
quence (finite series of tags). If (tn) contains p ≥ k pairwise different tags, at
least p− k misses must happen if (tn) is carried out on s.

Proof. Initially, s can contain at most k pairwise different blocks. Since only
accessed blocks are inserted into the set, at most k of the p pairwise different
accesses may therefore be hits. ut

With FIFO, a block is replaced after k misses.2 Together with Lemma 1, this
means that after at most 2k−1 accesses to pairwise different blocks, blocks that
are not contained in this access sequence cannot be cached. Subsequent accesses
to them can be predicted as misses.

To prove that k misses have happened, a FIFO may-analysis must be able
to distinguish repeating accesses from pairwise different ones. For each tag t, our
analysis maintains a set of tags that may have been accessed since the insertion
of t. Hence, another constituent of TInfok is the set of possibly accessed tags:

PAT := P(T)

Note that the lower bound on the number of misses provided by Lemma 1 is
implicitly based on an upper bound on the number of hits. If one could improve
the upper bound on hits, one could predict misses earlier.

Example 1. Consider the FIFO cache set s = [x, c, b, a] and the four access
sequences 〈a, b, c, e, f, g, h〉, 〈a, e, b, f, c, g, h〉, 〈e, f, g, h〉, and 〈a, e, f, c, g, h〉. Al-
though being of different length, carrying out any of the sequences results in the
final cache set state [h, g, f, e]. In case of the first two sequences, it takes exactly
2k− 1 = 7 accesses to pairwise different blocks to evict all blocks not contained
in the sequence. This is because all of the original contents of s, except x, are
accessed before their eviction. The third sequence evicts the original contents
without accessing them. Sequence four lies in between the two extremes. Note
that after accessing a, e, f , it is not possible to access more than three pairwise
different blocks without evicting x because a hit on b is impossible.

As Example 1 shows and Figure 2(a) depicts, the order in which hits and
misses happen matters. “Early misses”, as in 〈a, e, f, c, g, h〉, preclude hits and

2 For other replacement policies, this does not necessarily hold, e.g., for PLRU.

Abstract Interpretation of FIFO Replacement 9

m

0 h1

1

2

2

3

3

insertion

eviction

M

M

M

H H

M

H

H

M

H

M

H

M

M

M

(a)

d

0 c1

1

2

2

3

3

M

M

M

H,> H,>

M

H,>

H,>

M

H,>

M

H,>

H,M,>

H,M,>

H,M,>

(b)

Fig. 2. (a) The paths illustrate all possible sequences of hits (H) and misses (M)
between the insertion and eviction of a block in a 4-way associative FIFO cache
set. Thereby, only accesses on pairwise different blocks trigger a transition. A
block “enters” the cache set at (0, 0). At (h, m), m misses and at most h hits have
happened. At (3, 3), the next accesses on a furthermore pairwise different block
must be a miss; the block is evicted. (b) Evolution of the number of definite
misses d and covered ways c depending on the classifications of accesses. >
denotes the transition upon an unclassified access.

reduce the overall number of accesses to pairwise different blocks until x’s evic-
tion. Our analysis exploits that by maintaining a lower bound on the number of
covered ways, which is the last constituent of TInfok:

CWk := {0, . . . , k − 1}

A way is covered if it is occupied by a block whose tag is also contained in the
set of potentially accessed tags A ∈ PAT . For each tag t, covered ways c ∈ CWk

is a lower bound on the number of covered ways, assuming that all unclassified
accesses were hits. Eventually, c reaches k − 1, i.e., the cache set would have to
be filled with blocks whose tags are in A. Then, there are two possibilities for
further accesses to tags not contained in A. Either such an access is a miss. Or the
access is a hit, which indicates that one of the previously unclassified accesses
must have been a miss. In either case, the lower bound d on the number of
definite misses can be incremented.

Figure 2(b) illustrates the evolution of the lower bounds d ∈ DMk and
c ∈ CWk. Accesses that are classified as hit (H) or as unclassified (>) increase c
(arrows from left to right). Although misses (M) insert a block into the cache set
(cover a way), c is usually not incremented (upwards arrows). This is because
the miss might evict a block whose tag is contained in A. Still, the number of
definite misses is a lower bound on the number of covered ways. Thus, c can be
incremented if d = c (diagonal arrows). As explained above, the analysis can
increase the number of definite misses if c = k − 1, even if the current access
cannot be classified as a miss (the upwards arrows at c = 3 = 4− 1).

In summary, the domain for the information maintained per cache tag t ∈ T
is CWk ×DMk ×PAT . Adding ⊥ to indicate that a tag is definitely not cached

10 Daniel Grund and Jan Reineke

yields TInfok := (CWk × DMk × PAT)⊥. Substituting this in the definition of
our abstract may cache sets results in:

May = T → (CWk ×DMk × PAT)⊥

t 7→ ⊥ indicates that t cannot be cached. Otherwise, t 7→ (c, d, A), where:

– A, potentially accessed tags, is an upper approximation of the set of tags
that have been accessed since the last insertion of t.

– d , definite misses, is a lower bound on the number of misses that happened
since the insertion of t into s.

– c, covered ways, is a lower bound on the number of ways that are occupied
by tags in A, assuming that all unclassified accesses were hits.

The concretization function for May is:

γMay : May → P(S)

γMay(may) :=
⋂
t∈T

γTInfok
(t,may(t))

The TInfok of each tag constrains the set of possible cache sets. γTInfok
defines

such a constraint for one tag. Hence, the concretization function of May is the
conjunction (intersection) of all these constraints (sets). Let Cn([t0, . . . , tk−1]) :=⋃

0≤i<n{ti}, i.e., the cache contents of the n leftmost positions in a cache set. If
may(t) = ⊥, tag t is evicted and cannot be contained in a cache set represented
by may . Hence,

γ⊥TInfok
(t) := {s ∈ S | t 6∈ Ck(s)}

Otherwise,

γ 6⊥TInfok
(t, (c, d, A)) :=

{
s ∈ S | o := |Ck(s) ∩A| , Cmax{d,d+c−o}(s) ⊆ A

}
Here, o is the number of ways actually covered by A in a particular concrete cache
set state s. c was defined to be the number of ways covered by A, given that all
unclassified accesses were hits. Hence, if c > o, c − o unclassified accesses must
have been misses. Together with the d definite misses, at least max{d , d +c−o}
of the tags in A must occupy the leftmost positions of s (Cmax{...}(s) ⊆ A).3 As
t 6∈ A by construction, this also constrains t’s position in s. The concretization
function for TInfok is:

γTInfok
(t,⊥) := γ⊥TInfok

(t)
γTInfok

(t, (c, d, A)) := γ⊥TInfok
(t) ∪ γ 6⊥TInfok

(t, (c, d, A))

In the latter case, γ⊥TInfok
(t) reflects that t might not be cached, and the second

part defines constraints for the case that t is cached.

3 Recall that tags are inserted in the leftmost position upon a miss.

Abstract Interpretation of FIFO Replacement 11

In the remaining part of this section, we will describe the classification-,
update-, and join-functions for May . The classification function is straightfor-
ward:

CMay : May × T → Class

CMay(may , t) :=
{

M : may(t) = ⊥
> : otherwise

The update function is defined separately for each of the three possible cases
(H, M, >) of the classification parameter.

UMay : May × T × Class → May
UMay(may , t,H) := λx.

may(x) :

x = t
x 6= t,may(x) = ⊥
x 6= t,may(x) = (c, d, A), t ∈ A

(c + 1, d , A ∪ {t}) : x 6= t,may(x) = (c, d, A), t 6∈ A, c < k − 1
(c, d + 1, A ∪ {t}) : x 6= t,may(x) = (c, d, A), t 6∈ A, c = k − 1, d < k − 1
⊥ : x 6= t,may(x) = (c, d, A), t 6∈ A, c = k − 1, d = k − 1

FIFO does not change its state upon a hit. Furthermore, the TInfok of a tag is
only updated if the accessed tag is not contained in A. This explains the first case
where nothing is changed. The remaining three cases update the TInfok of tags
different from the accessed one (x 6= t), that may be cached (may(x) = (c, d, A)),
and t has definitely not been accessed since the insertion of x (t 6∈ A). If c < k−1,
the number of covered ways is incremented. If c = k − 1 and a hit happens, the
number of definite misses is soundly incremented: Since no more than k − 1
hits on pairwise different elements can happen, a previous access, which also
incremented c, must have been a miss though the analysis could not classify it
as a miss. In the last case, the number of definite misses reaches k; the block
with tag x is definitely evicted.

UMay(may , t,M) := λx.
(0, 0, ∅) : x = t

may(x) :
{
x 6= t,may(x) = ⊥
x 6= t,may(x) = (c, d, A), t ∈ A

(max{c, d + 1}, d + 1, A ∪ {t}) : x 6= t,may(x) = (c, d, A), t 6∈ A, d < k − 1
⊥ : x 6= t,may(x) = (c, d, A), t 6∈ A, d = k − 1

The first case resets the information associated with a tag to (0, 0, ∅) if a miss
on this tag happens. The TInfok of a tag is not updated if it is already evicted
or if the accessed tag is contained in A (second case). In the third case, the
number of definite misses is incremented. Furthermore, as explained above (“the
diagonal”), c can be incremented if d = c. This can be abbreviated by the max
expression. In the last case, the analysis can prove eviction of the tag.

12 Daniel Grund and Jan Reineke

The update for an unclassified access is defined as the join of the hit- and
miss-update.

UMay(may , t,>) := JMay(UMay(may , t,H),UMay(may , t,M))

The most interesting cases when spelling this out are
(c + 1, d , A ∪ {t}) : x 6= t,may(x) = (c, d, A), t 6∈ A, c < k − 1
(c, d + 1, A ∪ {t}) : x 6= t,may(x) = (c, d, A), t 6∈ A, c = k − 1, d < k − 1
⊥ : x 6= t,may(x) = (c, d, A), t 6∈ A, c = k − 1, d = k − 1

This shows that the analysis can “bootstrap”; i.e., it can prove eviction of mem-
ory blocks without relying on explicit miss-classifications.

Finally, the join of may-information is defined as the component-wise join of
the TInfok for each tag:

JMay : May ×May → May

JMay(may1,may2) := λx.

may1(x) : may2(x) = ⊥
may2(x) : may1(x) = ⊥
(c′, d ′, A1 ∪A2) : may i(x) = (ci, di, Ai)

where d ′ := min{d1, d2} and c′ := min{c1 + d1, c2 + d2} − d ′. In the first two
cases, one of the operands maps x 7→ ⊥. Since ∀I ∈ TInfok : γTInfok

(t,⊥) ⊆
γTInfok

(t, I), the other operand must be the least upper bound of the two. In
the last case, the TInfok of x of both operands is 6= ⊥. As the set of potentially
accessed tags must be an overapproximation, the join of A1 and A2 is the set
union A1 ∪A2. The number of definite misses is an underapproximation. Hence,
the join is the minimum min{d1, d2}. For c one would also expect min{c1, c2}.
However, note that γTInfok

(t, (c, d , A)) ⊆ γTInfok
(t, (c +δ, d−δ, A)), i.e., one can

“trade misses for hits”. The join may result in a loss of precision for the definite
misses, i.e., the difference di− d ′. Due to the relation above, one can add di− d ′

to ci before taking the minimum, i.e., c′ = min{c1 + (d1 − d ′), c2 + (d2 − d ′)}.

Theorem 1 (Soundness). The abstract interpretation (Fifo,JFifo ,UFifo , γFifo)
is a sound abstraction of the concrete FIFO semantics.

Theorem 2 (Termination). The update function UFifo is monotone and the
abstract domain Fifo satisfies the ascending-chain condition.

5 Related Work

There are different types of static cache analysis. Cache analyses directed at
compiler optimizations compute bounds on the number of misses for larger pro-
gram fragments, e.g., loop nests, whereas analyses directed at WCET analyses
classify individual cache accesses as hits or misses.

Representatives of the first class are Ghosh et al. [13] and Chatterjee et al. [6].
Ghosh et al. [13] introduce Cache Miss Equations that characterize the cache
behavior of loop-nests in direct-mapped caches by Diophantine equations. In

Abstract Interpretation of FIFO Replacement 13

subsequent work [5,14], they generalize their approach to set-associative caches
with LRU replacement. Chatterjee et al. [6] propose an exact model of cache
behavior of loop nests. It can handle imperfect loop nests and modest levels of
associativity with LRU replacement.

Representatives of the second class include Mueller et al. [15], White et al. [4],
Li et al. [16], and Ferdinand et al. [11,3]. Mueller et al. [15] present a static
cache simulation for direct-mapped instruction caches. It classifies instructions
as always-miss, always-hit, first-miss, or conflict. White et al. [4] extend this
work to data caches, where the main challenges lie in the analysis of accessed
addresses. Furthermore, an instruction cache analysis for set-associative LRU
caches is sketched. Li et al. [16] present a timing analysis based on integer lin-
ear programming (ILP) formulations. It can handle set-associative caches by
encoding their concrete semantics using linear constraints. However, since this
approach integrates pipeline, cache, and path analysis into one ILP, it suffers
from complexity problems. In practice it is limited to direct-mapped caches and
simple pipelines. Ferdinand et al. [11,3] introduce the concepts of may- and must-
caches and present an LRU analysis that is based on abstract interpretation.

Almost all cache analyses assume LRU replacement. As explained in Sec-
tion 3 statically analyzing FIFO is inherently more difficult than LRU. In
contrast to FIFO, it is possible to obtain precise must-information for LRU
replacement without any may-analysis.

The concept of relative competitiveness [8] bounds the performance of one
replacement policy relative to the performance of another one. This allows to use
cache analyses for one policy as cache analyses for other policies. This implies
that all of the existing analyses for LRU can be used as either may- or must-
analyses for FIFO and PLRU. For instance, an LRU may-analysis for a 2k−1-
way associative cache can be reused as a may-analysis for a k-way FIFO. Due
to the generic nature of this approach, however, the resulting analyses may be
rather imprecise. In the case of FIFO, one would expect that a 2k−1-way LRU
performs much better than a k-way FIFO, i.e., the number of misses is much
lower. Hence, the gap between actual and predicted number of misses might be
large. The analysis presented in this work is tailored precisely to FIFO behavior
and can therefore deliver more precise results.

Finally, our work is different from the analysis of so-called FIFO chan-
nels [17,18,19]. Such channels mostly model communication and have different
characteristics than caches with FIFO replacement.

6 Evaluation

In the following, we compare three FIFO analyses with each other and to the
collecting semantics. The collecting semantics is computed using a powerset do-
main of concrete cache set states and is denoted by CollSem. The three analy-
ses are different instantiations of our framework. All analyses use the canonical
must-analysis CM presented in this paper and only differ in their may-analysis.

14 Daniel Grund and Jan Reineke

– No+CM: An analysis that uses no may-analysis at all, i.e., the classification
returned by the may-analysis is always >.

– RC+CM: An analysis that uses a may-analysis based on relative competi-
tiveness, as explained in Section 5, and the canonical must-analysis given in
Section 4.1.

– EMX+CM: “Early Miss eXploitation”; the analysis proposed in this paper.

The analyses can be partially ordered according to their precision. Let A 4 B
denote that analysis A is at least as precise as B for all programs. More precisely,
A 4 B if for each access to be classified, the classification by A is equal or better
than the respective classification of B. A ≺ B if A 4 B and B 64 A.

Theorem 3 (Relative Precision).

CollSem

EMX+CM

RC+CM

No+CM
≺
≺

≺
≺64

64

To quantify the precision of the analyses, we analyzed random access se-
quences and program fragments. In a first experiment, for each 1 ≤ n ≤ 31, we
generated 100 random access sequences that contain 500 accesses to n pairwise
different tags. The parameter n controls the locality in the sequences: the greater
the n, the lower is the locality.

Figure 3 shows the results; i.e., hit- and miss-rates guaranteed by the four
analyses. The shape of the plot marks identify the analysis, e.g., circles for
No+CM. The number of different tags (n) in the generated access sequences is
plotted against the x-axis. The percentage of classifications (H, >, M) is plotted
against the y-axis. For each analysis there are two curves, which partition the
100%. The lower curve, with filled plot marks, shows the guaranteed hit-rate.
The upper one, with empty plot marks, is plotted bottom-up (from 100% down-
wards) and shows the guaranteed miss-rate. The difference between the upper
and the lower curve gives the percentage of unclassified accesses.

For example consider the squares at n = 24. For 100 access sequences, each
500 accesses long and containing n = 24 different tags, the average guaranteed
hit-rate obtained by RC+CM was 20%. The average guaranteed miss-rate was
42%, and on average 38% could not be classified.

Discussion: No+CM cannot predict any misses, hence the upper curve is con-
stantly at 100%. As explained in Section 3, without may-information, it is im-
possible to infer that more than one memory block must be cached. Thus, with
increasing n, the lower curve decreases as it gets more unlikely to access the
same tag twice in a row.

Both, RC+CM and EMX+CM cannot predict any misses until 15 pairwise
different tags have been accessed. This is in line with the “evict” bound 2k−1 =
15 determined in [7]. Hence, the curves of RC+CM and EMX+CM coincide
with the one of No+CM up to n = 15. For larger n, both analyses predict
misses, which in turn allows to predict more hits.

Abstract Interpretation of FIFO Replacement 15

0

10

20

30

40

50

60

70

80

90

100
%

n1 5 10 15 20 25 308

No+CM
RC+CM
EMX+CM
CollSem

0%

100%

)
Hits

)
Unknown

)
Misses

Fig. 3. Average guaranteed hit- and miss-rates for an 8-way cache set.

EMX+CM predicts more misses than RC+CM. For n = 16, 17 the differ-
ence is relatively small. This is because the benefit of predicting “early misses”
is self-energizing. The more misses are predicted, the more does the “diagonal”
in Figure 2(b) help, the more misses are predicted. . . . Due to the domain coop-
eration, the must-analysis also profits from the prediction of misses, i.e., more
hits can be predicted. Put simply, RC+CM “takes the long way” and always
takes the >-transitions in Figure 2(b).

Interestingly, CollSem shows that one could statically predict misses with
accesses to less than 2k− 1 pairwise different blocks. EMX+CM and RC+CM
require at least 2k − 1 pairwise different blocks because they do not gain in-
formation from repeating accesses. For n ≤ k, CollSem shows that one could
predict a large fraction of the accesses as hits. This is due to the fact that in any
concrete cache set at most n misses might occur if n ≤ k. However, one cannot
predict all but those n misses as hits since one has to account for all initial cache
set states. Depending on the initial position of a tag within a cache set, what
is a hit in one concrete cache set is a miss in another. Hence, the lower curve
decreases super-linearly. At n = 9 = k + 1, the percentage of predictable hits
drops extremely. Since n > k, the cache cannot hold all accessed blocks. At the
same time, almost no may-information is available in the collecting semantics.
Similarly to static analyses, which cannot gain precise must-information without
may-information, there are not many guaranteed hits in the collecting semantics.
For larger n, the number of predictable (and actually occurring) misses increases,
causing initially different cache set states to converge more quickly. This allows
to predict more accesses as hits.

In a second experiment, we generated program fragments with a large number
of control-flow join points to evaluate the join functions of the analyses.

16 Daniel Grund and Jan Reineke

We generated recursively nested

0

10

20

30

40

50

60

70

80

90

100
%

n1 5 10 15 20 25 308

Fig. 4. Results of the join experiment.

if-then-else patterns, i.e., → . All
nodes of the flow-graph contain 10
random memory accesses. This way,
we tested the ability of the analyses
to recover from (partially) lost infor-
mation before the next join point was
reached. Figure 4 shows the results.
Generally, the relative evolution of the
curves are the same as in Figure 3.
The main difference is that all guar-
antees are worse since even in the collecting semantics the uncertainty is large.

7 Conclusions and Future Work

We presented the first abstract domain specifically tailored to the analysis of
caches with FIFO replacement. With information about the order in which hits
and misses have happened, our analysis can predict more misses than previous
approaches. Due to an effective cooperation between our may- and must-analysis,
this also improves the number of predicted hits.

Our evaluation clearly showed the characteristics of three different analyses,
i.e., when and why an analysis is better than another one. Additionally, the
illustration of the collecting semantics revealed characteristics of FIFO itself:
While EMX+CM and RC+CM need to observe accesses to at least 2k − 1
pairwise different blocks to obtain may-information, may-information may be
available after accessing fewer pairwise different blocks. How to exploit this in
an abstract domain? Furthermore, there is room for a better must-analysis for
n ≤ k, which, however, would have to rely on implicit miss-classifications.

Acknowledgements We want to express our gratitude to Sebastian Hack for his

helpful remarks on drafts of this paper. We also thank the anonymous reviewers for

their fair and thorough reviews. The research leading to these results has received

funding from the European Community’s Seventh Framework Programme FP7/2007-

2013 under grant agreement n◦ 216008 (Predator). This work was supported by the

DFG as part of the Transregional Collaborative Research Center SFB/TR 14 (AVACS).

References

1. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time
problem—overview of methods and survey of tools. Transactions on Embedded
Computing Systems 7(3) (2008) 1–53

2. Alt, M., Ferdinand, C., Martin, F., Wilhelm, R.: Cache behavior prediction by
abstract interpretation. In: SAS ’96: Proceedings of the Third International Sym-
posium on Static Analysis, London, UK, Springer-Verlag (1996) 52–66

Abstract Interpretation of FIFO Replacement 17

3. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for
real-time systems. Real-Time Systems 17(2-3) (1999) 131–181

4. White, R.T., Healy, C.A., Whalley, D.B., Mueller, F., Harmon, M.G.: Timing
analysis for data caches and set-associative caches. In: RTAS ’97: Proceedings of
the 3rd IEEE Real-Time Technology and Applications Symposium, Washington,
DC, USA, IEEE Computer Society (1997) 192

5. Ghosh, S., Martonosi, M., Malik, S.: Precise miss analysis for program transforma-
tions with caches of arbitrary associativity. In: ASPLOS-VIII: Proceedings of the
Eighth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, New York, NY, USA, ACM Press (1998) 228–239

6. Chatterjee, S., Parker, E., Hanlon, P.J., Lebeck, A.R.: Exact analysis of the cache
behavior of nested loops. In: PLDI ’01: Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, New York,
NY, USA, ACM Press (2001) 286–297

7. Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing predictability of cache
replacement policies. Real-Time Systems 37(2) (2007) 99–122

8. Reineke, J., Grund, D.: Relative competitive analysis of cache replacement policies.
In: LCTES ’08: Proceedings of the 2008 ACM SIGPLAN-SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, New York, NY, USA,
ACM Press (2008) 51–60

9. Jacob, B., Ng, S.W., Wang, D.T.: Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann Publishers (2008)

10. Cousot, P., Cousot, R.: Basic Concepts of Abstract Interpretation. In: Building
the Information Society. Kluwer Academic Publishers (2004) 359–366

11. Ferdinand, C.: Cache Behaviour Prediction for Real-Time Systems. PhD thesis,
Saarland University (1997)

12. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: Combination of abstractions in the Astrée static analyzer. In: ASIAN’06:
11th Annual Asian Computing Science Conference. (2006) 272–300

13. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: An analytical rep-
resentation of cache misses. In: ICS ’97: Proceedings of the 11th International
Conference on Supercomputing, New York, NY, USA, ACM Press (1997) 317–324

14. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: A compiler framework
for analyzing and tuning memory behavior. ACM Transactions on Programming
Languages and Systems 21(4) (1999) 703–746

15. Mueller, F., Whalley, D.B., Harmon, M.: Predicting instruction cache behavior.
In: LCTRTS ’94: Proceedings of the ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems. (1994)

16. Li, Y.T.S., Malik, S., Wolfe, A.: Cache modeling for real-time software: Beyond
direct mapped instruction caches. In: RTSS ’96: Proceedings of the 17th IEEE
Real-Time Systems Symposium, Washington, DC, USA, IEEE Computer Society
(1996) 254

17. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2) (1983) 323–342

18. Peng, W., Iyer, S.P.: Data flow analysis of communicating finite-state machines.
ACM Transactions on Programming Languages and Systems 13(3) (1991) 399–442

19. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel
systems with nonregular sets of configurations. Theoretical Computer Science
221(1-2) (1999) 211–250

	Abstract Interpretation of FIFO Replacement
	Daniel Grund and Jan Reineke
	1 Introduction
	2 Foundations
	2.1 Caches
	2.2 Static Analysis
	2.3 Static Cache Analysis

	3 The FIFO Policy
	4 The FIFO Cache Analysis
	4.1 Must Analysis
	4.2 May Analysis

	5 Related Work
	6 Evaluation
	7 Conclusions and Future Work

