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Abstract

We generalize various notions of generalized metrics even further to one general
concept comprising them all. For convenience, we turn around the ordering in the
target domain of the generalized metrics so that we speak of similarity instead of
distance. Starting from an extremely general situation without axioms, we exam-
ine which axioms or additional properties are needed to obtain useful results. For
instance, we shall see that commutativity and associativity of the generalized ver-
sion of addition occurring in the triangle inequality is not really needed, nor do we
require a generalized version of subtraction.

Each similarity space comes with its own domain of possible similarity values.
Therefore, we consider non-expanding functions modulo some rescaling between
different domains of similarity values. We show that non-expanding functions with
locally varying rescaling functions correspond to topologically continuous functions,
while non-expanding functions with a globally fixed rescaling generalize uniformly
continuous functions.
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1 Introduction

Metric spaces have been generalized in many different ways: symmetry has
been dropped, self-distances need not be 0, and the target domain of the
distance function has been generalized from R+ to more general domains (a
survey of some classes of generalized metrics can be found in Section 2). We
generalize these generalizations even further to a state without axioms and
with arbitrary topological T0 spaces S as possible target domains. For conve-
nience, we order these target domains by their specialization relation, which
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corresponds to the opposite of the usual ordering in case of R+ (see Sec-
tion 2.5). Therefore, we speak of similarity instead of distance (if a point
x moves toward a point y, the distance between x and y shrinks, but their
similarity increases). We then pursue the two following main goals:

• We study the properties of a single similarity space to find out which hy-
potheses are needed to prove results known from more familiar classes of
generalized metrics. For instance, to show that the so-called open balls are
really open, a weak form of triangle inequality is sufficient in which the
binary operation that takes over the role of addition is not required to be
commutative or associative and may even vary dependent on the “middle
point” of the triangle (see Section 6). Moreover, we never need an ana-
logue of subtraction in this paper (an inverse, partial inverse, or adjoint of
addition).
• We study categories of similarity spaces in which each space can have its

own target domain of possible similarity values. The morphisms are some
analogues of non-expanding functions, but modulo some rescaling that is
needed to compare the similarity values of different spaces (see Section 5).
We call such morphisms globally continuous if a globally fixed rescaling is
used, and locally continuous if there may be different rescalings at different
points of the space. In Section 10 and Section 11 we show how to character-
ize these functions differently without using rescalings: locally continuous
functions correspond to topologically continuous functions, while globally
continuous functions generalize uniformly continuous functions.

Section 2 presents some known classes of generalized metrics and the mo-
tivation for switching from distance to similarity. Section 3 contains some
background material: a brief introduction to topological spaces and the more
general and less familiar neighborhood spaces. Section 4 introduces general-
ized similarity systems and their possible properties such as being symmetric
or self-uniform (having a uniform value for self-similarities). We also define
left and right pre-open balls and the neighborhood structures derived from
them. Preopen balls generalize the usual open balls, but are not necessarily
open without further axioms.

Globally and locally continuous functions are defined in Section 5 as gener-
alizations of non-expanding functions modulo some global or local rescaling
of the similarity values. Section 6 then studies generalizations of the triangle
inequality that are motivated by the wish to stay as general as possible, but
to be able to conclude that pre-open balls are open, and hence their induced
neighborhood structures are topologies. This leads to the notions of locally
and globally transitive similarity systems; a globally transitive system has a
single operation playing the role of addition in the triangle inequality, while
a locally transitive system has a possibly different operation for each “middle
point” of the triangle. Section 7 shows how the familiar notions of generalized
metrics induce similarity systems, and how rescalings act in these familiar
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cases.

In the later sections, the possible domains of similarity values are restricted to
be continuous lattices, and various powerful theorems are proved with domain-
theoretic methods in this special case. Section 8 is another background section,
presenting material on algebraic and continuous lattices, including a gener-
alization of the well-known injectivity property of continuous lattices. This
property is used several times in the remainder of the paper to obtain suit-
able rescalings for various purposes. First, similarity spaces are introduced as
equivalence classes of similarity systems in Section 9.

The categories of locally and globally transitive similarity spaces with locally
continuous functions are related to bitopological spaces and pairwise continu-
ous functions in Section 10. Every locally transitive similarity space induces a
bitopological space such that local continuity is equivalent to pairwise continu-
ity. Conversely, every bitopological space is induced by some globally transitive
similarity space. In case of symmetry, the two induced topologies are identical,
and the prefix “bi” can be dropped in these statements.

Finally the category of globally transitive similarity spaces with globally con-
tinuous functions is related to generalizations of uniform spaces and uniformly
continuous functions in Section 11. In particular, self-uniform globally tran-
sitive similarity spaces correspond to quasi-uniform spaces, and symmetric
self-uniform globally transitive similarity spaces to uniform spaces. In these
cases, global continuity of functions w.r.t. similarity spaces is equivalent to
uniform continuity w.r.t. the corresponding (quasi-)uniform spaces. Section 12
contains a conclusion and ideas for future work.

Notational conventions. The composition of f : X → Y and g : Y → Z
is g ◦ f = (x 7→ g(fx)) : X → Z. For a given function f : X → Y , we denote
the image of a set A ⊆ X by f+A = {fx | x ∈ A}, and the inverse image of a
set B ⊆ Y by f−B = {x ∈ X | fx ∈ B}.

2 Generalized Metrics and Similarities

We first recall some notions of generalized metrics known from the literature.
For the beginning, let X be a set (the set of points) and δ : X ×X → R+ =
{r ∈ R | r ≥ 0} (a distance function).

2.1 Metric and Pseudo-Metric

The distance function δ is a pseudo-metric if it satisfies the following axioms:

(S0) δ(x, x) = 0 (self-distances are 0);
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(Sym) δ(x, y) = δ(y, x) (symmetry);

(Tr+) δ(x, z) ≤ δ(x, y) + δ(y, z) (triangle inequality).

A metric additionally satisfies the following separation property:

(SepM) δ(x, y) = 0 ⇒ x = y.

For a (pseudo-)ultrametric, (Tr+) is strengthened to

(Tr∨) δ(x, z) ≤ δ(x, y) ∨ δ(y, z)

where ‘∨’ denotes maximum in R+.

For every x in X and r > 0, the open ball B(x, r) about x with radius r is
defined as B(x, r) = {y ∈ X | δ(x, y) < r}. The induced topology is defined
by saying that a set U ⊆ X is open if for all x ∈ U there is r > 0 such that
x ∈ B(x, r) ⊆ U . The open balls form a base for the induced topology.

2.2 Quasi-Metric and Pseudo-Quasi-Metric

A pseudo-quasi-metric is a distance function that satisfies all properties of a
pseudo-metric except for symmetry. Thus the axioms of a pseudo-quasi-metric
are (S0) and (Tr+). Open balls and the induced topology are defined exactly in
the same way as for pseudo-metrics. A difference is that the induced topology
may have a non-symmetric specialization preorder, namely

x ≤ y ⇔ δ(x, y) = 0.

Originally, the separation property (SepM) of metrics was used literally for
quasi-metrics. Later, it was often weakened to

(SepQ) δ(x, y) = δ(y, x) = 0 ⇒ x = y.

The stronger property (SepM) is equivalent to the T1 property of the induced
topology, while (SepQ) is equivalent to T0.

2.3 Pseudo-Partial Metric and Partial Metric

Here, symmetry is retained, but self-distances may be non-zero, and a corre-
sponding correction term is introduced in the triangle inequality. Usually, it is
still required that self-distances be not larger than distances to other points.
The resulting axioms for pseudo-partial metrics are the following:

(SSD) δ(x, x) ≤ δ(x, y) (small self-distances);

(Sym) δ(x, y) = δ(y, x) (symmetry);

(TrP) δ(x, z) ≤ δ(x, y) + δ(y, z)− δ(y, y) (modified triangle inequality).
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A generalization without (SSD) was considered in [5]. The additional term
− δ(y, y) in (TrP) is usually not further motivated (see also Section 7.3).

The induced topology is based on open balls as usual. Its specialization pre-
order is

x ≤ y ⇔ δ(x, x) = δ(x, y).

Hence, the induced topology is T0 iff

(SepP) δ(x, x) = δ(x, y) = δ(y, y) ⇒ x = y.

This property is taken as the separation property for partial metrics.

2.4 Generalized Value Domains

All the approaches presented above use R+ as the target domain of the dis-
tance function. A modest generalization is to use [0,∞] instead, as for instance
proposed in [1] for pseudo-quasi-metrics (under the name “generalized metric
spaces”). O’Neill [10,11] proposes to extend the value domain for partial met-
rics to R, thus allowing negative distances. More substantial generalizations
are [0,∞)I , [0,∞]I , or [0, 1]I for some index set I.

Value lattices and value quantales are even more general. These two related
concepts are defined in [8] as special complete lattices V with a commutative
monoid structure (V,+, 0) whose neutral element 0 is the least element of V .
Addition + has to preserve arbitrary infima to get an adjoint that takes over
the role of subtraction. For a value lattice, V is merely required to be the
opposite of a continuous lattice. For a value quantale, V has to be completely
distributive in such a way that the set of elements well-above 0 is filtered.
This condition is very restrictive; it rules out powers [0,∞]I of [0,∞] with
more than one component (such powers are value lattices, however). Value
quantales are also studied in [3] and [13]. The so-called value quantales in [2]
are however value lattices in the terminology of [8].

2.5 Distance vs. Similarity

The induced topology of a metric, pseudo-metric, pseudo-quasi-metric, or
pseudo-partial metric is defined via open balls of the form B(x, r) = {y ∈ X |
δ(x, y) < r}. An open ball B(x, r) can also be written as {y ∈ X | δ(x, y) ∈ U}
where U = [0, r) = {r′ | r′ < r} is a “co-Scott-open” set of R+, i.e. a Scott-
open set in the opposite ordering of R+. This points to a notational difficulty:
while the triangle inequality and the (SSD) axiom of pseudo-partial metrics are
naturally employing the usual ordering of R+, a topological and/or domain-
theoretical approach would more naturally employ the opposite ordering of
R+. This point becomes more prominent when generalized value domains are
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considered; recall that value lattices are opposites of continuous lattices (with
additional properties).

Therefore, we turn around the orderings of the value domains in this paper.
Then we should not speak of distance δ, but of similarity σ: If a point x moves
towards a point y, then the distance δ(x, y) between x and y gets smaller, but
the similarity of x and y gets larger.

Of course, distances and similarities are two views of the same thing. In this
paper, I prefer to use the similarity view since I will use domain-theoretic
methods and hence prefer to work with Scott-open sets and continuous lattices
instead of co-Scott-open sets and the opposites of continuous lattices. I also
believe that the similarity view is more natural in the generalized setting that
I consider in this paper. A slight drawback is that the familiar look of the
triangle inequality is lost when ‘≤’ is replaced by ‘≥’.

3 Topological Spaces and Neighborhood Spaces

Our similarity systems will be so general that their induced “topology” actu-
ally will merely be a neighborhood structure. Since neighborhood spaces are
less widely known than topological spaces, we include here a brief introduction
of both concepts, concentrating on their mutual relationship.

A topology τ on a set X is a set of subsets of X closed under arbitrary union
and finite intersection. The sets in τ are called open sets. A topological space
(X, τ) is a set X with a topology τ on X. A base of (X, τ) is a subset B of τ
such that for all O in τ and x in O, there is some B in B with x ∈ B ⊆ O. A
topological space is countably based if it has a countable base.

Given two topological spaces (X, τX) and (Y, τY ), a function f : X → Y is
continuous if the inverse image of every open set of Y is open in X (V ∈ τY ⇒
f−V ∈ τX). This defines the category Top of topological spaces.

A neighborhood space (X,N ) is a set X with an assignment of a neighborhood
filter N (x) ⊆ PX to every x of X; the elements of N (x) are called neighbor-
hoods of X. The axioms of a neighborhood filter N (x) are the following:

• N (x) is upward closed: A ∈ N (x), A ⊆ A′ ⇒ A′ ∈ N (x);
• N (x) is closed under finite intersection;
• all neighborhoods of x contain x: A ∈ N (x) ⇒ x ∈ A.

Given two neighborhood spaces (X,NX) and (Y,NY ), a function f : X → Y
is continuous if B ∈ NY (fx) implies f−B ∈ NX(x), or equivalently, if for
every B in NY (fx) there is A ∈ NX(x) such that f+A ⊆ B. This defines the
category Nbh of neighborhood spaces.

Neighborhood spaces are a generalization of topological spaces in the following
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sense: every topological space (X, τ) defines a neighborhood space (X,Nτ ) by
saying that A is inNτ (x) iff there is an O in τ such that x ∈ O ⊆ A. A function
f : (X, τX)→ (Y, τY ) is Top-continuous if and only if f : (X,NτX )→ (Y,NτY )
is Nbh-continuous. Thus, the above construction provides a full embedding of
Top into Nbh.

For the opposite direction, define a subset O of a neighborhood space to be
open if it is a neighborhood of all its elements (x ∈ O impliesO ∈ N (x)). These
open sets do form a topology τN , and this topology is the original topology
if N was induced by a topology (τNτ = τ always holds). On the other hand,
this topology does not always give back the original neighborhood structure
(in general, NτN is different from N ).

An open base of a neighborhood space (X,N ) is a subset B of PX such that

(1) All B in B are open: ∀B ∈ B ∀x ∈ B : B ∈ N (x);
(2) For A ∈ N (x), there is B in B such that x ∈ B ⊆ A.

Not every neighborhood space has an open base. In fact, the following are
equivalent for (X,N ):

(1) (X,N ) has an open base;
(2) (X,N ) is topological, i.e. there is a topology τ on X such that N = Nτ ;
(3) N = NτN .

In this case, B is a base of τN in the topological sense.

A useful relation to consider in a general topological space (X, τ) is the spe-
cialization preorder defined by x ≤τ x′ if for all O ∈ τ , x ∈ O implies x′ ∈ O.
Clearly, this is a preorder (a reflexive and transitive relation), and continuous
functions preserve that preorder.

The corresponding relation for a neighborhood space (X,N ) is the specializa-
tion relation defined by x �N x′ if A ∈ N (x) implies x′ ∈ A. This relation
is still reflexive, but transitivity is lost in general. Nevertheless, it is still pre-
served by continuous functions (x �NX x′ ⇒ fx �NY fx′), and it agrees with
the specialization preorder on topological spaces, i.e. x �Nτ x′ ⇔ x ≤τ x′.

4 Generalized Similarity Systems and Their Neighborhood Struc-
tures

4.1 Definition of Generalized Similarity Systems

As shown in Section 2, the classical notion of metric space has been generalized
in many directions: axioms such as symmetry and δ(x, x) = 0 have been
dropped, and the domain of distance values has been generalized from R+ to
more general structures. For our similarities, we follow this line to the end by
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dropping all axioms (at least initially) and admitting arbitrary T0 spaces as
domains of similarity values.

Definition 1 A generalized similarity system or shortly gss is a tuple X =
(X,S, σ) where X = |X | is a set (the set of points), S = SX is a T0 topological
space (the value domain), and σ = σX : X × X → S is a function (the
similarity function).

The term “generalized” refers to the fact that S is an arbitrary T0 space; later,
we shall restrict S to be a continuous lattice. We could have done this from the
beginning, coming closer to the value lattices mentioned in Section 2.4, but
many results hold in the more general setting of arbitrary T0 topological spaces.
The usage of “system” instead of “space” will become clear in Section 9.2.

Definition 2 The opposite (X,S, σ)op of (X,S, σ) is (X,S, σop) with
σop(x, x′) = σ(x′, x).

When we want to compare values in S, we use the specialization preorder
induced by the topology of S, i.e. s ≤ s′ iff s ∈ u ⇒ s′ ∈ u for all open
sets u of S. Metrics, pseudo-metrics, quasi-metrics, and partial metrics induce
generalized similarity systems with S = R+, topologized with the co-Scott
topology, i.e. open sets of the form [0, r). The specialization preorder induced
by this topology is the opposite of the natural order on R+. This is the reason
why we are drawn to the similarity view.

The various kinds of metrics have special properties: metrics and partial met-
rics are symmetric in the sense δ(x, x′) = δ(x′, x); metrics and quasi-metrics
satisfy δ(x, x) = 0, i.e. there is a uniform value 0 for self-distances, and partial
metrics have “small self-distances” δ(x, x) ≤ δ(x, x′). With the necessary order
reversal in the last case, these properties motivate the following definition:

Definition 3 A generalized similarity system (X,S, σ) is symmetric if
σ(x, x′) = σ(x′, x) holds for all x, x′ ∈ X. It is self-uniform if there is a uni-
form value for self-similarities, i.e. if σ(x, x) = σ(x′, x′) holds for all x, x′ ∈ X.
It is selfish if each point is more similar to itself than to other points, i.e.
σ(x, x′) ≤ σ(x, x) and σ(x, x′) ≤ σ(x′, x′) hold for all x, x′ ∈ X.

Clearly, if a gss X is symmetric / self-uniform / selfish, then its opposite X op

has the same property, and X is symmetric iff X op = X .

4.2 The Induced Neighborhoods

We first define the “pre-open” balls of a gss in analogy to the open balls of
a (generalized) metric space. We call them pre-open balls since they are not
necessarily open without further axioms. As hinted at in Section 2.5, we use
open sets of S as the “radii” of the pre-open balls. Since similarities are not
symmetric in general, there are actually two kinds of pre-open balls.
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Definition 4 Let (X,S, σ) be a generalized similarity system, and let x be a
point of X and u an open set of S. The right pre-open ball BR(x, u) about
x with radius u is defined as BR(x, u) = {x′ ∈ X | σ(x, x′) ∈ u}. The corre-
sponding left pre-open ball is BL(x, u) = {x′ ∈ X | σ(x′, x) ∈ u}.

Note that, unlike in the (quasi-)metric case, the condition x ∈ BR(x, u), i.e.
σ(x, x) ∈ u, is not automatically satisfied. At least, in selfish gss non-empty
pre-open balls contain their center (if σ(x, x′) ∈ u, then σ(x, x) ∈ u).

We could now proceed as in the metric case by defining that a set U ⊆ X is
right open if for all x in U there is an open set u of S such that x ∈ BR(x, u) ⊆
U . These open sets would form a topology, but the pre-open balls would not
be open in general, and not much could be said about this topology. Thus, we
prefer to define neighborhoods instead.

Definition 5 A set A ⊆ X is a right neighborhood of a point x if there is an
open set u of S such that x ∈ BR(x, u) ⊆ A. The resulting neighborhood filter
is called NR(x), and the neighborhood space (X,NR) is called NR(X,S, σ).
Left neighborhoods, N L(x), and NL(X,S, σ) are defined analogously.

The right topology mentioned before Def. 5 is a posteriori obtained as the
topology induced by NR as described in Section 3. If the right pre-open balls
are right open, they form an open basis in the sense of Section 3, and the right
neighborhood space is actually a topological space. In Section 6, we present
some axioms that include the familiar generalized metric cases and ensure
that the pre-open balls are open. Section 6.4 contains an example in which
the pre-open balls are not open, and the induced neighborhood spaces are not
topological.

With the help of the two unary functions σR
x = (x′ 7→ σ(x, x′)) : X → S and

σL
x = (x′ 7→ σ(x′, x)) : X → S, the pre-open balls can be written as inverse

images: BR(x, u) = σR
x
−
u and BL(x, u) = σL

x
−
u. In the symmetric case, σR

x =
σL
x holds for all x in X, whence BR(x, u) = BL(x, u), and therefore the right

and left neighborhood structures coincide. In this case, the qualifiers R and L
can be omitted. In the general case, switching to the opposite gss interchanges
the two neighborhood structures: NR(X op) = NLX and NL(X op) = NRX .

4.3 Examples

Let X = {0, 1} be a two-point set, and S Sierpinski space, i.e. the two-point
set {0, 1} with {1} as the only non-trivial open set. Consider the following two
similarity functions σs, σu : X ×X → S:
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σs 0 1

0 0 0

1 0 1

σu 0 1

0 1 1

1 0 1

As indicated by the superscripts, Ss = (X, S, σs) is symmetric (but not self-
uniform), and Su = (X, S, σu) is self-uniform (but not symmetric). Both sys-
tems are selfish since the specialization preorder of S is 0 < 1.

In Ss, we have B(1, {1}) = {1}, whence {1} is a (left and right) neighborhood
of 1. On the other hand, B(0, {1}) = ∅ and B(0, {0, 1}) = {0, 1}, whence the
smallest neighborhood of 0 is {0, 1}. These neighborhoods are open so that
the resulting neighborhood space is topological; it actually is Sierpinski space:
NR Ss = NL Ss = S.

In Su, we have BR(1, {1}) = {1} and BR(0, {1}) = {0, 1}, whence NR Su = S,
too. Yet BL(1, {1}) = {0, 1} and BL(0, {1}) = {0}, whence {0} is left open,
but {1} is not, i.e. NL Su = Sop, the opposite Sierpinski space (S with 0 and 1
interchanged).

Both Ss and Su are instances of larger families of examples (see Section 10.4
for Ss and 6.4 for Su). Other examples relating to various kinds of generalized
metrics are presented in Section 7.

5 Uniformly/Globally/Locally Continuous Functions

Guidelines for defining morphisms between generalized similarity systems are
given by the definitions of uniformly continuous functions and non-expanding
functions between metric spaces.

5.1 Uniformly Continuous Functions

A function f : (X, δX)→ (Y, δY ) between metric spaces is uniformly continu-
ous if for all s > 0 there is r > 0 such that δX(x1, x2) < r ⇒ δY (fx1, fx2) < s.
When this is translated to our gss setting, the condition a < r is written as
a ∈ [0, r) where [0, r) is a non-empty Scott-open set of R+op

. Such open sets
contain all self-distances δX(x, x) = 0. When generalizing this to arbitrary gss,
and one has to take into account that the self-similarities are not necessarily
contained in all non-empty open sets. This leads to the following definition:

Definition 6 Let X = (X,SX , σX ) and Y = (Y, SY , σY) be two generalized
similarity systems. By a function f : X → Y, we mean a function f : X → Y .
Such a function is uniformly continuous (UC) w.r.t. X and Y if for every
x in X and open v of SY containing σY(fx, fx), there is an open u of SX
containing σX (x, x) with the property σX (x1, x2) ∈ u ⇒ σY(fx1, fx2) ∈ v.
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Proposition 7 Every uniformly continuous function is continuous w.r.t. both
neighborhood structures.

PROOF. For continuity w.r.t. the right neighborhood structures, assume
fx ∈ BR(fx, v) for some open v of SY . This means σY(fx, fx) ∈ v, and thus
uniform continuity of f yields an open u of SX such that σX (x, x) ∈ u, and
σX (x1, x2) ∈ u ⇒ σY(fx1, fx2) ∈ v. The first of these two properties means
x ∈ BR(x, u), and when specialized to x1 = x, the second property implies
BR(x, u) ⊆ f−(BR(fx, v)).

Continuity w.r.t. the left neighborhood structures then also holds because the
definition of uniform continuity is symmetric. 2

5.2 Non-Expanding Functions Modulo Rescaling

We also want to define analogues of non-expanding functions. For each T0

topological space S, one could set up a category of S-systems (X,S, σ), i.e.
systems using this S as the space of similarity values. This is done for instance
in [2,3] for value lattices or value quantales V , with non-expanding functions
as the morphisms (δY (fx, fx′) ≤ δX(x, x′)). In the similarity view, we would
take functions that increase similarity, i.e. a morphism f : X → Y would be a
function f : |X | → |Y| satisfying σY(fx, fx′) ≥ σX (x, x′).

Yet, as suggested by the notation (X,S, σ), we want to supply each system
with its own space S of similarity values. To characterize morphisms f : X →
Y , we need a kind of rescaling ϕ : SX → SY to compare the similarity values
of X with those of Y . To take the structures of SX and SY as topological
spaces into account, it is reasonable to require that ϕ be continuous. Thus
our first proposal is to define that f : X → Y is a morphism if there is a
continuous “rescaling” ϕ : SX → SY such that σY(fx, fx′) ≥ ϕ(σX (x, x′)).
Yet this definition is too weak; if SY has a least element ⊥, then ϕ = (a 7→ ⊥)
would prove that all functions f : |X | → |Y| are morphisms.

A natural requirement is that morphisms be continuous w.r.t. the left and
right neighborhood structures. We thus look for conditions on f : |X | → |Y|
and ϕ : SX → SY ensuring that f−V ∈ NR

X (x) for every V ∈ NR
Y (fx). Given

V ∈ NR
Y (fx), we must find an open u of SX such that x ∈ BR(x, u) ⊆ f−V .

Yet V ∈ NR
Y (fx) means there is an open v of SY such that fx ∈ BR(fx, v) ⊆

V . Using continuity of ϕ, a natural candidate for u is ϕ−v. Thus we need
conditions ensuring that x ∈ BR(x, ϕ−v) ⊆ f−V under the hypothesis fx ∈
BR(fx, v) ⊆ V , which certainly holds if

BR(x, ϕ−v) ⊆ f−(BR(fx, v)) (1)

and

fx ∈ BR(fx, v) ⇒ x ∈ BR(x, ϕ−v) . (2)
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Condition (1) is equivalent to ϕ(σX (x, x′)) ∈ v ⇒ σY(fx, fx′) ∈ v. This
condition for all opens v of SY is equivalent to

ϕ(σX (x, x′)) ≤ σY(fx, fx′) (3)

in the specialization preorder of SY , which is the same condition as we proposed
above.

Condition (2) is equivalent to

σY(fx, fx) ∈ v ⇒ ϕ(σX (x, x)) ∈ v.

This condition for all opens v of SY is equivalent to

σY(fx, fx) ≤ ϕ(σX (x, x)) (4)

in the specialization preorder of SY . Together with ≥ coming from (3), we get
equality in (4) since SY is a T0-space.

5.3 Definition of GC and LC Functions

The two conditions (3) and (4) that imply continuity w.r.t. the right neigh-
borhoods are symmetric and thus also guarantee continuity w.r.t. the left
neighborhoods. Yet one may wonder why there should be a single rescaling ϕ;
there could be different rescalings for different parts of the space, indeed for
different points. These considerations lead to the following definitions:

Definition 8 Let X = (X,SX , σX ) and Y = (Y, SY , σY) be two generalized
similarity systems. A function f : X → Y is globally continuous (GC) w.r.t.
X and Y if there is a continuous ϕ : SX → SY such that
(GC1) ϕ(σX (x, x′)) ≤ σY(fx, fx′) ∀x, x′ ∈ X, and
(GC2) ϕ(σX (x, x )) = σY(fx, fx ) ∀x ∈ X.

It is right-locally continuous (RLC) if there is a family (ϕR
x )x∈X of continuous

functions ϕR
x : SX → SY such that

(RLC1) ϕR
x (σX (x, x′)) ≤ σY(fx, fx′) ∀x, x′ ∈ X, and

(RLC2) ϕR
x (σX (x, x )) = σY(fx, fx ) ∀x ∈ X.

It is left-locally continuous (LLC) if there is a family (ϕL
x)x∈X of continuous

functions ϕL
x : SX → SY such that

(LLC1) ϕL
x(σX (x′, x)) ≤ σY(fx′, fx) ∀x, x′ ∈ X, and

(LLC2) ϕL
x(σX (x , x)) = σY(fx , fx) ∀x ∈ X.

It is locally continuous (LC) if it is both RLC and LLC.

There is no requirement that the families (ϕR
x )x∈X and (ϕL

x)x∈X be continuous
in x in any way.
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5.4 Properties of UC, GC, and LC functions

Proposition 9 Every RLC function is continuous w.r.t. the right neighbor-
hood structure, and every LLC function is continuous w.r.t. the left neighbor-
hood structure. Every GC function is UC and LC, and all UC functions and
all LC functions are continuous w.r.t. both neighborhood structures.

PROOF. Part of this is obvious. To show that GC functions are UC, as-
sume f is GC witnessed by ϕ, and σY(fx, fx) ∈ v for some open v of SY .
Let u = ϕ−v, which is open in SX . Since ϕ(σX (x, x)) = σY(fx, fx) ∈ v by
(GC2), we have σX (x, x) ∈ u. If σX (x1, x2) ∈ u, then ϕ(σX (x1, x2)) ∈ v. Since
ϕ(σX (x1, x2)) ≤ σY(fx1, fx2) by (GC1), σY(fx1, fx2) ∈ v follows as required.

The proof that RLC functions are continuous w.r.t. the right neighborhood
structure follows the arguments presented in the motivating section 5.2, only
with ϕ replaced by ϕR

x throughout. The corresponding property for UC func-
tions was Prop. 7. 2

The next proposition is obvious from the definitions.

Proposition 10 A function f : X → Y is RLC iff f : X op → Yop is LLC,
and vice versa. A function f : X → Y is LC iff f : X op → Yop is LC, and
same for GC and UC.

All our continuity notions can be used to set up categories.

Proposition 11 The identity id : X → X is GC, hence UC, LC, RLC,
and LLC. The properties GC, UC, LC, RLC, and LLC are preserved under
composition. Every constant function is GC, hence UC, LC, RLC, and LLC.

PROOF. Global continuity of the identity on X is witnessed by the identity
on SX , and global continuity of the constant function (x 7→ y) : X → Y is
witnessed by the constant function (a 7→ σY(y, y)) : SX → SY . If f : X → Y
is RLC witnessed by (ϕR

x )x∈|X | and g : Y → Z is RLC witnessed by (ψR
y )y∈|Y|,

then g ◦ f is RLC witnessed by (ψR
fx ◦ ϕR

x )x∈|X |. 2

6 Transitive Systems and their Variants

6.1 Motivation of the Definitions

We now look for conditions that ensure that pre-open balls are open in (X,S, σ).
In the cases of (quasi-)metrics and partial metrics, this follows from the trian-
gle inequality. Thus we look for a generalization of the triangle inequality to
gss. With the necessary order reversal, a first candidate is σ(x, y) ∗ σ(y, z) ≤
σ(x, z) for some continuous binary operation ∗ : S × S → S. To be able to
cover partial metrics with their correction term − σ(y, y) that depends on y
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(see Section 7.3), we generalize to a family of ∗-operations (∗y)y∈X such that

σ(x, y) ∗y σ(y, z) ≤ σ(x, z) . (5)

Yet like in the case of morphisms, a second condition is needed since (5) is
always satisfied if ∗y is chosen such that a ∗y b = ⊥ for all a, b ∈ S. To find
that condition, let us try to prove that BR(x, u) is open in NR(X,S, σ) under
the assumption that (5) holds.

We have to show that BR(x, u) is a right neighborhood of all its elements.
For y ∈ BR(x, u), i.e. σ(x, y) ∈ u, we have to find an open v of S such that
y ∈ BR(y, v) ⊆ BR(x, u). This means σ(y, y) ∈ v and

σ(y, z) ∈ v ⇒ σ(x, z) ∈ u . (6)

Here, (6) can be ensured with the help of (5) if

σ(y, z) ∈ v ⇒ σ(x, y) ∗y σ(y, z) ∈ u . (7)

This implication in turn can be ensured by choosing v to be the inverse image
of u under the continuous function (b 7→ σ(x, y) ∗y b) : S → S. (For this, it is
not even needed that ∗y is continuous in both arguments; it suffices that it is
continuous in its second argument.)

To obtain σ(y, y) ∈ v, we have then to ensure σ(x, y) ∗y σ(y, y) ∈ u, which
follows from σ(x, y) ∈ u if

σ(x, y) ≤ σ(x, y) ∗y σ(y, y) . (8)

Together with (5), we obtain equality in (8).

To show also that left pre-open balls are open in the left neighborhood struc-
ture, one needs that the functions ∗y are continuous in their left argument,
and the dual of property (8), i.e. σ(y, x) = σ(y, y) ∗y σ(y, x).

6.2 Transitive and Locally Transitive Systems

The above considerations motivate the following definition, which also includes
weaker and stronger variants.

Definition 12 A generalized similarity system (X,S, σ) is locally transitive
if there is a family (∗y)y∈X of functions ∗y : S × S → S continuous in each
argument separately such that

(LTr1) σ(x, y) ∗y σ(y, z) ≤ σ(x, z)
(LTr2R) σ(x, y) ∗y σ(y, y) = σ(x, y)
(LTr2L) σ(y, y) ∗y σ(y, z) = σ(y, z) .

It is weakly locally transitive if (LTr1) holds, and (LTr2R) and (LTr2L) are
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replaced by the weaker equation

(LTr2W) σ(y, y) ∗y σ(y, y) = σ(y, y) .

It is (weakly) globally transitive if it is (weakly) locally transitive in a way
that all the operations ∗y for y ∈ X are identical (then the index y can be
dropped). We write (Tr1), (Tr2R), (Tr2L), and (Tr2W) in this case.

It is (weakly) boolean transitive if it is (weakly) globally transitive with binary
meet ∧S as the composition operation ∗.

The defining (in)equations for (weakly) boolean transitive systems can be
simplified.

Proposition 13 A gss (X,S, σ) is weakly boolean transitive if each pair a, b ∈
S has an infimum, a∧ b, the function ∧ : S×S → S is separately continuous,
and

(BTr1) σ(x, y) ∧ σ(y, z) ≤ σ(x, z) .

It is boolean transitive iff it is weakly boolean transitive and selfish.

PROOF. Condition (Tr2W) is redundant since binary meet is idempotent,
and (Tr2R) σ(x, y) ∧ σ(y, y) = σ(x, y) is equivalent to σ(x, y) ≤ σ(y, y). 2

The motivating considerations in Section 6.1 immediately lead to the following
proposition:

Proposition 14 In a locally transitive system, the right pre-open balls are
open in the right neighborhood structure, in fact form an open base of that
neighborhood structure, and likewise for left pre-open balls and left neighbor-
hood structure.

Corollary 15 The neighborhood spaces NRX and NLX of a locally transitive
system X are topological. We replace the names NRX by TRX and NLX by
TLX in this case, and introduce the symbols τR

X and τL
X for their respective

topologies.

An interesting point is that the proposition and its corollary do not require
that the operations ∗y are jointly continuous (continuous as functions S×S →
S), nor any algebraic properties such as commutativity or associativity. (Yet
note that the distinction between separate continuity and joint continuity
disappears when we restrict S to the class of continuous lattices starting from
Section 8).

Proposition 16 If X is (weakly) locally / globally / boolean transitive, then
so is X op.

PROOF. This is fairly obvious, but one has to replace ∗y by ∗op
y with a∗op

y b =
b ∗y a. 2
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6.3 The Specialization Relation of the Induced Neighborhood Spaces

The specialization relation of the induced neighborhood spaces can be char-
acterized in general. For locally transitive systems, this characterization can
be strengthened.

Proposition 17 Let X = (X,S, σ) be a gss. The specialization relation of
NRX is given by y �R z ⇔ σ(y, y) ≤ σ(y, z) where ≤ is the specialization
preorder of S. If X is locally transitive, this is equivalent to ∀x ∈ X : σ(x, y) ≤
σ(x, z). Analogously, y �L z iff σ(y, y) ≤ σ(z, y) (iff ∀x ∈ X : σ(y, x) ≤
σ(z, x) in case of locally transitive gss).

PROOF. The relation y �R z means that z is contained in every right neigh-
borhood of y (cf. Section 3). Thus it is equivalent to y ∈ BR(y, u) ⇒ z ∈
BR(y, u) for all opens u of S, or σ(y, y) ∈ u ⇒ σ(y, z) ∈ u for all u, or
σ(y, y) ≤ σ(y, z) in the specialization preorder of S. If X is locally transitive,
σ(y, y) ≤ σ(y, z) implies σ(x, y) = σ(x, y) ∗y σ(y, y) ≤ σ(x, y) ∗y σ(y, z) ≤
σ(x, z). The opposite direction is obtained by setting x = y. 2

Proposition 18 For any gss, the relations �R and �L are reflexive. They are
transitive for locally transitive gss. Relation �R is preserved by RLC functions
and �L by LLC functions.

PROOF. This is partly obvious and partly follows from the general proper-
ties of specialization relations (see Section 3). 2

Proposition 19 Relation �R of X op is �L of X and vice versa. In a sym-
metric gss, �R and �L are identical. In a self-uniform gss, �R is the opposite
of �L.

PROOF. Only the last statement deserves a proof. Let X be self-uniform.
Relation y �R z means σ(y, y) ≤ σ(y, z). By self-uniformity, σ(y, y) equals
σ(z, z). Hence, y �R z is equivalent to σ(z, z) ≤ σ(y, z), i.e. z �L y. 2

6.4 Similarities from Reflexive Relations

Let � be a reflexive relation on a set X. Then we define a gss X� = (X, S, σ)
where S = {0, 1} is Sierpinski space and σ(x, y) = 1 if x � y, and = 0
otherwise. By reflexivity of �, X� is self-uniform and selfish; it is symmetric
iff � is symmetric. The gss Su of Section 4.3 is the gss induced by the reflexive
relation � on {0, 1} with 0 � 0, 0 � 1, 1 � 1, but not 1 � 0.

Proposition 20 The derived relation �R of X� is the original relation �,
and �L is its opposite.

PROOF. x �R y holds iff σ(x, x) ≤ σ(x, y), iff 1 ≤ σ(x, y), iff x � y. Since
X� is self-uniform, �L is the opposite of �R by Prop. 19. 2
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Proposition 21 For a reflexive relation �, the following are equivalent:

(1) Relation � is transitive.
(2) σ(x, y) ∧ σ(y, z) ≤ σ(x, z) where ∧ is the meet operation of S (or con-

junction in logical view).
(3) X� is boolean transitive.
(4) X� is globally transitive.
(5) X� is locally transitive.
(6) The right pre-open balls BR(x, u) are right open.
(7) The right neighborhood space NRX� is topological.
(8) (Same with left.)

PROOF. (1)⇒ (2) : If one of σ(x, y) and σ(y, z) is 0, the left hand side is 0.
Otherwise, both are 1, i.e. x � y and y � z hold, hence x � z by transitivity,
hence σ(x, z) = 1, too.
(2) ⇒ (3) : Recall that X� is selfish. Hence (2) means that X� is boolean
transitive by Prop. 13.
(3)⇒ (4)⇒ (5) are obvious generalizations.
(5)⇒ (6) is Prop. 14.
(6)⇒ (7) : By (6), the right pre-open balls form an open base of NRX�, which
is therefore topological (see Section 3).
(7) ⇒ (1) : By Prop. 20, relation � is the specialization relation of NRX�.
The specialization relation of a topological space is transitive.
Equivalence with the corresponding “left” statements follows from replacing
� by its opposite and the fact that a relation is transitive iff its opposite is
transitive. 2

Since there are non-transitive reflexive relations in every set with at least three
elements, the above proposition provides examples for gss in which pre-open
balls are not open, for gss whose induced neighborhood structures are not
topological, and for gss that are not locally transitive.

6.5 Continuity of the Similarity Function

In a locally transitive gss X , the local composition functions ∗y : SX×SX → SX
are continuous in each argument separately (separately continuous for short).
This is sufficient to show the same property for σX : |X | × |X | → SX if an
appropriate topology is chosen for |X | × |X |.

Proposition 22 If X is locally transitive (with separately continuous compo-
sition functions), then σX : TLX × TRX → SX is separately continuous.

PROOF. Here, TLX and TRX are the names for the induced neighborhood
spaces, which are actually topological in this case (see Cor. 15). For fixed x
in |X | and each open u of SX , the inverse image of u under y 7→ σ(x, y) is
BR(x, u), which is open in TRX by Prop. 14, and the inverse image of u under
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y 7→ σ(y, x) is BL(x, u), which is open in TLX . 2

If the local composition functions ∗y : SX × SX → SX are even continuous in
the product topology (jointly continuous), then so is σX .

Proposition 23 If X is locally transitive with jointly continuous composition
functions, then σX : TLX × TRX → SX is jointly continuous.

PROOF. Let w be an open set of SX , and σ(x, y) ∈ w. From (LTr2L) and
(LTr2R), we get the fact

(σ(x, x) ∗x σ(x, y)) ∗y σ(y, y) = σ(x, y) .

Let γ : S × S → S be defined by γ(a, b) = (a ∗x σ(x, y)) ∗y b. Then γ is
continuous, and γ(σ(x, x), σ(y, y)) = σ(x, y) ∈ w. By continuity of γ, there are
open sets u and v of S such that σ(x, x) ∈ u, σ(y, y) ∈ v, and γ+(u× v) ⊆ w.
Hence x ∈ BL(x, u) =: U and y ∈ BR(y, v) =: V , and thus (x, y) ∈ U × V ,
which is an open set of TLX × TRX .

Let (x′, y′) be in U × V . Then σ(x′, x) ∈ u and σ(y, y′) ∈ v, hence w 3
γ(σ(x′, x), σ(y, y′)) = (σ(x′, x) ∗x σ(x, y)) ∗y σ(y, y′) ≤ σ(x′, y′) using the local
triangle inequality (LTr1) for similarities. Thus, σ(x′, y′) ∈ w for all (x′, y′) ∈
U × V , and so U × V ⊆ σ−w. 2

7 Similarities and (Generalized) Metrics

In this section, we compare various kinds of gss X with fixed similarity domain
SX with generalized metrics as defined in Section 2.

7.1 Non-Negative Reals with Addition

Let (X,S, σ) be a weakly globally transitive gss with S = R+op
, i.e. the non-

negative reals with the Scott topology of the opposite ordering, and addition
‘+’ as the global composition operation. The defining properties of a weakly
globally transitive system are in this case

(Tr1) σ(x, y) + σ(y, z) ≤S σ(x, z)
(Tr2W) σ(x, x) + σ(x, x) = σ(x, x)

where ‘≤S’ is the specialization preorder of S, i.e. the opposite of the order of
R+. From (Tr2W), σ(x, x) = 0 follows, and so the properties are equivalent to

σ(x, x) = 0
σ(x, z) ≤R σ(x, y) + σ(y, z),

which are exactly the defining properties of a pseudo-quasi-metric (see Sec-
tion 2.2). Note that such a gss is automatically self-uniform, selfish, and glob-
ally transitive.
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7.2 Non-Negative Reals with Maximum

We now consider the case where addition is replaced by the maximum opera-
tion ∨R+ of R+, which is binary meet ∧S in the specialization preorder of S.
The defining properties of a weakly globally transitive system are then

(1) σ(x, z) ≤R σ(x, y) ∨R+ σ(y, z)
(2) σ(x, x) ∨R+ σ(x, x) = σ(x, x).

Here, (2) is redundant, and (1) is the triangle inequality for ultrametrics. Such
a system is not automatically globally transitive. The missing properties are

σ(x, x) ∨R+ σ(x, y) = σ(x, y) and σ(x, y) ∨R+ σ(y, y) = σ(x, y).

which are equivalent to σ(x, x) ≤R σ(x, y) and σ(y, y) ≤R σ(x, y). There is no
reason why σ(x, x) should be 0 in this case. Apart from the lack of symmetry,
such systems could be called pseudo-partial ultrametric, but there seems to
be no official definition of that notion.

7.3 Pseudo-Partial Metrics

Here we show that pseudo-partial metrics can be considered as selfish sym-
metric locally transitive gss. Recall the definition of pseudo-partial metrics
from Section 2.3:

(SSD) δ(x, x) ≤R δ(x, y) (small self-distances);

(Sym) δ(x, y) = δ(y, x) (symmetry);

(TrP) δ(x, z) ≤R δ(x, y) + δ(y, z)− δ(y, y) (modified triangle inequality).

Using the specialization preorder of S = R+op
, (SSD) and (Sym) just mean

that the resulting gss is selfish and symmetric. The triangle inequality can
be written as δ(x, y) ∗y δ(y, z) ≤S δ(x, z) where a ∗y b = (a + b) −̇ δ(y, y) =
max(0, a + b − δ(y, y)) defines a continuous local composition operator. The
remaining two axioms for such an operator are satisfied:

δ(x, y) ∗y δ(y, y) = (δ(x, y) + δ(y, y)) −̇ δ(y, y) = δ(x, y)

δ(y, y) ∗y δ(y, z) = (δ(y, y) + δ(y, z)) −̇ δ(y, y) = δ(y, z)

In my opinion, this is the real reason for the correction term − δ(y, y): it
ensures that the resulting gss is locally transitive, and so pre-open balls are
open.

7.4 The System of Finite and Infinite Sequences

Papers on partial metrics, e.g., [10], often contain the following example: X is
the set of finite and countably infinite sequences over some alphabet Σ, with
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partial metric p(x, y) = 2−l(x∧y) where x∧ y is the longest common prefix of x
and y and l(x ∧ y) its length. Of course, this example can be considered as a
locally transitive gss as presented in Section 7.3, but there is actually a more
elegant and natural method: Let S = N∞0 , the chain of natural numbers with
a top element ∞, endowed with the Scott topology, and σ(x, y) = l(x ∧ y),
the length of the longest common prefix of x and y. In contrast to the gss
of Section 7.3, this gss is even globally transitive with binary minimum as
composition operation, i.e. boolean transitive. For the triangle inequality

min (l(x ∧ y), l(y ∧ z)) ≤ l(x ∧ z)

let a = x ∧ y and b = y ∧ z, and assume w.l.o.g. that l(a) ≤ l(b) so that the
left-hand side is l(a). Since both a and b are prefixes of y and l(a) ≤ l(b), a
must be a prefix of b and thus also of z. Hence a is a common prefix of x and
z, and so l(a) ≤ l(x ∧ z), the right-hand side. The two other axioms

min (l(x ∧ x), l(x ∧ y)) = l(x ∧ y) and min (l(x ∧ y), l(y ∧ y)) = l(x ∧ y)

hold since l(x ∧ y) ≤ l(x) and ≤ l(y). The induced topology of this system is
clearly the same as the partial metric topology, namely the Scott topology of
the domain of finite and infinite sequences with prefix ordering.

7.5 Morphisms between (Pseudo-Quasi-)Metric Spaces

Let us return to the case of pseudo-quasi-metric spaces considered in Sec-
tion 7.1, in particular R with its standard metric. Although the gss coming
from these spaces all have the same value domain S = R+op

, our GC and LC
functions still use a rescaling. In this case, f : X → Y is GC if there is a
continuous function ϕ : S → S, i.e. an upper semi-continuous function ϕ :
R+ → R+ such that ϕ(δ(x, x′)) ≤S δ(fx, fx′), i.e. δ(fx, fx′) ≤R ϕ(δ(x, x′)),
and ϕ(δ(x, x)) = δ(fx, fx), i.e. ϕ(0) = 0.

• Non-expanding functions f are characterized by δ(fx, fx′) ≤R δ(x, x
′). Such

functions are GC with ϕ = id.
• More generally, Lipschitz functions f are characterized by the existence of

some c ∈ R+ such that δ(fx, fx′) ≤R c · δ(x, x′). Such functions are GC
with ϕ = (a 7→ c · a).
• The square-root function

√
· : R+ → R+ is not a Lipschitz function because

of its infinite slope at 0. Nevertheless, it is a GC function. This is witnessed
by the rescaling ϕ = (r 7→

√
r), which is continuous and satisfies ϕ(0) = 0.

To prove δ(
√
x,
√
x′) ≤R ϕ(δ(x, x′)), assume w.l.o.g. x′ ≥ x and let r =

x′ − x. Then we have to show
√
x+ r −

√
x ≤
√
r, or

√
x+ r ≤

√
x +
√
r,

which is true for x, r ≥ 0.
• One might now believe that with a suitable rescaling, all continuous func-

tions are GC. This is however wrong: The square function (x 7→ x2) : R+ →
R+ is only LC, not GC. Assume there is an upper semi-continuous function
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ϕ such that ϕ(0) = 0 and δ(x2, x′2) ≤R ϕ(δ(x, x′)). Again assume w.l.o.g.
x′ ≥ x and let r = x′−x. Then the inequality becomes (x+r)2−x2 ≤ ϕ(r),
or 2rx + r2 ≤ ϕ(r). For r > 0, the left-hand side is unbounded as x in-
creases. So the only way to satisfy the inequality is to include ∞ in the
value domain and to assume ϕ(r) =∞ for r > 0, but this contradicts upper
semi-continuity and ϕ(0) = 0.
To show that the square function is LC, let x′ = x+ r with r ∈ R (may be
< 0). Then δ(x2, x′2) ≤R ϕx(δ(x, x

′)) becomes |(x+ r)2−x2| ≤ ϕx(|r|). The
left-hand side is |2rx+r2| = |2x+r|·|r| ≤ (2x+|r|)·|r|, so ϕx(d) = (2x+d)·d
does the job.

8 Algebraic and Continuous Lattices

In the remainder of this paper, the spaces of similarity values will be restricted
to continuous lattices. This enables us to obtain characterizations of LC func-
tions (Section 10) and GC functions (Section 11) that do not involve rescaling.

Most of the material in this section is well-known. The generalization of the
injectivity property of continuous lattices presented in Section 8.5 forms an
exception.

8.1 Characterization of Algebraic and Continuous Lattices

We do not present here the “official” definitions of algebraic and continuous
lattices (see [4]), but an equivalent topological characterization.

A continuous lattice D with basis B is a complete lattice such that for every
Scott-open set u ⊆ D and every point a ∈ u, there are a point b ∈ B and a
Scott-open set v ⊆ D such that a ∈ v ⊆ ↑b ⊆ u. The continuous lattice is
ω-continuous if it has a countable basis.

An algebraic lattice D with basis B is a complete lattice whose Scott topology
has a base of open sets ↑b, b ∈ B, i.e. for every point a in a Scott-open set
u, there is b ∈ B such that ↑b is Scott open and a ∈ ↑b ⊆ u. An ω-algebraic
lattice has a countable basis. Every (ω-)algebraic lattice is (ω-)continuous.

8.2 Binary Operations in Continuous Lattices

A useful property of continuous lattices D is that every binary operation
∗ : D×D → D that is continuous in each argument separately is automatically
jointly continuous. Hence, σX : TLX × TRX → SX is (jointly) continuous for
all locally transitive systems with a continuous lattice SX (Prop. 23). Specific
continuous binary operations in all continuous lattices D are binary meet
∧ : D ×D → D and binary join ∨ : D ×D → D.
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8.3 Construction of Algebraic Lattices

Algebraic lattices can be obtained by ideal completion. We sketch here the
dual filter construction that matches our needs more closely.

Let M be a meet-semilattice, by which we mean a poset (M,≤) with binary
greatest lower bounds (meets) a∧ b and a greatest element 1. A filter in M is
a subset A of M that is upward closed (a ∈ A, a ≤ a′ ⇒ a′ ∈ A), contains 1,
and is closed under binary meet (a1, a2 ∈ A⇒ a1 ∧ a2 ∈ A).

Proposition 24 When ordered by subset inclusion ⊆, the filters on M form
an algebraic lattice D. For every a ∈M , ↑a = {b ∈M | a ≤ b} is a filter, and
{↑a | a ∈ M} is a basis of D. For every a ∈ M , 〈a〉 = {A ∈ D | a ∈ A} is a
Scott-open set of D, and {〈a〉 | a ∈M} is a base for the Scott topology of D.

PROOF. Arbitrary intersections and directed unions of filters are filters.
Thus D is a complete lattice, and 〈a〉 is Scott open since directed join is
set union. The sets ↑a are obviously filters. We have 〈a〉 = ↑{↑a} because
a ∈ B ⇔ ↑a ⊆ B for every filter B.

Every filter A is the directed join (union) of {↑a | a ∈ A}. Hence, if A is in a
Scott-open set U , then ↑a ∈ U for some a ∈ A, and so A ∈ 〈a〉 = ↑{↑a} ⊆ U ,
which shows that D is algebraic with the claimed bases for D and for its Scott
topology. 2

8.4 Pre-Embedding Topological Spaces into Algebraic Lattices

A pre-embedding e : X → Y of topological spaces X and Y is a continuous
function such that every open set of X is the inverse image of an open set
of Y . An embedding is an injective pre-embedding. If X is T0, then every
pre-embedding e : X → Y actually is an embedding.

Proposition 25 Every (countably based) topological space can be pre-embedded
into an (ω-)algebraic lattice.

PROOF. Let B be a (countable) base of the topological space X. Close
B under finite intersections; this includes the empty intersection X. (This
operation preserves countability.) The resulting (countable) meet-semilattice
B∩ induces an (ω-)algebraic lattice D by Prop. 24. Let e : X → D be defined
by e x = {B ∈ B∩ | x ∈ B}. Consider the basic Scott-open sets 〈B〉 of D, for
B in B∩. From e x ∈ 〈B〉 ⇔ B ∈ e x ⇔ x ∈ B, it follows at once that e is
continuous and that e is a pre-embedding since B∩ is a base for the topology
of X. 2
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8.5 Functions to Continuous Lattices

It is well-known that continuous lattices are injective w.r.t. topological pre-
embeddings: if e : X → Y is a pre-embedding of topological spaces and
f : X → D a continuous function from X to a continuous lattice D, then
there is a continuous “extension” F : Y → D satisfying F ◦ e = f . Here,
we prove a generalization of this injectivity property that will be used in the
characterization of LC and GC functions in Sections 10 and 11.

Below, let X be a set (no topology required), (Y, τ) a topological space, L
a complete lattice endowed with the Scott topology, and g : X → Y and
f : X → L two functions.

Proposition 26 The extension Egf of f along g defined as

Eg f y =
∨
{∧ f+(g−U) | U ∈ τ, U 3 y}

is a continuous function Egf : Y → L satisfying Egf ◦ g ≤ f .

PROOF. Egf is well-defined since L is a complete lattice, and the join
∨

in
its definition is directed. Hence, for every Scott-open set V of L, Egfy ∈ V
implies z =

∧
f+(g−U) ∈ V for some open set U containing y. If y′ ∈ U , then

Egfy
′ ≥ z ∈ V . Hence, y ∈ U ⊆ (Egf)−V , which proves continuity of Egf . To

show Egf(gx) ≤ fx for all x in X, let Egf(gx) be in some Scott-open set V of
L. As above, there is an open set U containing gx such that

∧
f+(g−U) ∈ V .

Then fx is in f+(g−U), whence fx ≥ ∧
f+(g−U) ∈ V . 2

The proposition above is not very impressive on its own; the choice Egf =
(y 7→ ⊥L) would have provided the same result more easily. The real power
comes from the following addendum:

Proposition 27 We now require that the complete lattice L is continuous. If
x is a point of X such that for every Scott-open set V of L containing fx there
is an open set U of Y containing gx satisfying g−U ⊆ f−V , then Egf ◦ g and
f coincide at x, i.e. Egf(gx) = fx holds for this point x.

PROOF. Since Egf ◦ g ≤ f is already known from Prop. 26, we only need
to show fx ≤ Egf(gx). Let fx ∈ W for some Scott-open set W of L. Since
L is continuous, there are b in L and a Scott-open set V of L such that
fx ∈ V ⊆ ↑b ⊆ W . By hypothesis, there is an open set U of Y such that
gx ∈ U and g−U ⊆ f−V , or f+(g−U) ⊆ V , hence

∧
f+(g−U) ∈ ↑b. Since

gx ∈ U , we have Egf(gx) ≥ ∧
f+(g−U) ∈ ↑b ⊆ W . 2

The above proposition is stronger than injectivity of continuous lattices.

Corollary 28 If X and Y are topological spaces, e : X → Y a pre-embedding,
L a continuous lattice, and f : X → L a continuous function, then Egf ◦g = f
holds.
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PROOF. To show the hypothesis of Prop. 27, assume fx ∈ V open. Then
x ∈ f−V open since f is continuous, and f−V = g−U for some open U of Y
since g is a pre-embedding. 2

It is also possible to show a generalized converse of Prop. 27.

Proposition 29 Let X be a set, Y and Z topological spaces, g : X → Y
and f : X → Z functions, and ϕ : Y → Z a continuous function such that
ϕ ◦ g ≤ f holds, and in addition (ϕ ◦ g)(x) = fx for a specific point x. Then
for every open set V of Z containing fx there is an open set U of Y containing
gx such that g−U ⊆ f−V .

PROOF. Let U = ϕ−V , which is open since ϕ is continuous. Since ϕ(gx) =
fx ∈ V , gx ∈ U follows. Whenever gx′ ∈ U , then ϕ(gx′) ∈ V , hence fx′ ∈ V
since ϕ(gx′) ≤ fx′. This shows g−U ⊆ f−V . 2

9 Similarity Systems and Similarity Spaces

9.1 Similarity Systems

By a similarity system, we mean a generalized similarity system (gss) X whose
space SX of similarity values is a continuous lattice, called the value lattice.
(These value lattices are more general than those of [8] since no “addition”
is required.) A similarity system is countably based if its value lattice is ω-
continuous. The gss Ss and Su of Section 4.3, the gss from reflexive relations
(Section 6.4), and the gss of finite and infinite sequences (Section 7.4) actu-
ally are countably based similarity systems. The various kinds of generalized
metrics induce countably based similarity systems with SX = [0,∞]op.

9.2 Similarity Spaces

The following definitions could be applied to gss as well. Given two similarity
systems X and X ′ with the same point set X = |X | = |X ′|, we say X is
finer than X ′, written as X → X ′, if the identity function idX is GC as a
function from X to X ′. Unfolding Definition 8, this means that there is a
Scott-continuous function ϕ : SX → SX ′ such that ϕ(σX (x1, x2)) ≤ σX ′(x1, x2)
and ϕ(σX (x, x)) = σX ′(x, x). We say X and X ′ are equivalent, written as
X ↔ X ′, if X → X ′ and X ′ → X .

The value lattices of equivalent systems may look quite different. For instance,
all systems whose point set is a fixed singleton set are equivalent no matter
how large or small their value lattice is. The reason is that constant functions
are GC (Prop. 11).

As the name suggests, equivalence is an equivalence relation on the class of
similarity systems with fixed point set X. The equivalence classes of this equiv-
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alence relation are called similarity spaces, and the systems belonging to such
a class are called representations of that space.

The relationship between similarity spaces and their representing systems is
similar to the relationship between topological spaces or domains and their
bases. We shall later construct a similarity system from the base of a topo-
logical space. Each base gives a different system, but these systems will all be
equivalent and thus represent a single space so that a well-defined map from
topological spaces to similarity systems will result.

The common point set of all representations of a space can be taken as the
point set of the space, but a space does not have a fixed value lattice since
each of its representations may have a different one. The same is true for the
similarity function. On the other hand, GC functions are continuous w.r.t. the
induced neighborhood structures (Prop. 9). Hence, if X is finer than X ′, its
neighborhood structures are finer than those of X ′, and equivalent similarity
systems share the same neighborhood structures, which can thus be attributed
to the similarity space they represent.

For two similarity spaces X and Y, a function f : X → Y is a function
between the respective point sets (f : |X| → |Y|). For such a function, the
following are equivalent:

(1) There are representations X of X and Y of Y such that f : X → Y is
GC (UC, LC, RLC, LLC).

(2) For all representations X of X and Y of Y, the function f : X → Y is
GC (UC, LC, RLC, LLC).

In this case, we say f : X→ Y is GC (UC, LC, RLC, LLC).

9.3 Properties of Similarity Spaces

We say that a similarity space has a property such as self-uniform, symmet-
ric, locally transitive, or countably based if at least one of its representing
systems has this property (there might be other representing systems without
this property). A disadvantage of this definition is that if a space X has two
properties P1 and P2, this merely means that it has representing systems X1

and X2 such that X1 satisfies P1 and X2 satisfies P2. Therefore, we say that X
jointly has properties P1 and P2 if it has a representing system X that satisfies
both P1 and P2.

9.4 Self-Uniform Spaces

More can be said in case of the property of self-uniformity.

Proposition 30 For two similarity systems X and X ′, if X → X ′ and X is
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self-uniform, then so is X ′.

PROOF. Let ϕ be a witness for X → X ′. Then σX ′(x, x) = ϕ(σX (x, x)).
Hence, if all σX (x, x) are equal, then so are all σX ′(x, x). 2

Corollary 31 If X and X ′ are equivalent, then X is self-uniform if and only
if X ′ is self-uniform. Hence, all representations of a self-uniform space are
self-uniform.

10 Characterization of Locally Continuous Functions

The goal of this section is to characterize LC functions without an existential
statement over witnesses. Section 11 does the same for GC functions.

10.1 Right Locally Continuous Functions

We start with RLC functions.

Theorem 32 Let X and Y be two similarity systems. A function f : X → Y
is right locally continuous if and only if f : NRX → NRY is continuous in the
sense of neighborhood spaces.

PROOF. A RLC function is continuous by Prop. 9. For the opposite di-
rection, we employ Prop. 26 and 27 using the fact that SY is a continuous
lattice. Fix x ∈ |X |. Consider σx = (x′ 7→ σX (x, x′)) : |X | → SX and
σfx ◦ f = (x′ 7→ σY(fx, fx′)) : |X | → SY . By Prop. 26, there is a contin-
uous function ϕx = Eσx(σfx ◦ f) : SX → SY satisfying ϕx ◦ σx ≤ σfx ◦ f , i.e.
ϕx(σX (x, x′)) ≤ σY(fx, fx′), which is property (RLC1).

To show (RLC2) ϕx(σX (x, x)) = σY(fx, fx), we apply Prop. 27 to the point
x. Let v be a Scott-open set of SY containing (σfx ◦ f)(x) = σY(fx, fx). Then
V = BR(fx, v) is a neighborhood of fx in NRY . Since f : NRX → NRY is
continuous, f−V is a neighborhood of x in NRX . Hence, there is an open set u
of SX such that x ∈ BR(x, u) ⊆ f−V . We need to show σ−x (u) ⊆ (σfx ◦f)−(v).
We have σ−x (u) = BR(x, u) ⊆ f−V = f−(BR(fx, v)) = f−(σ−fxv) = (σfx ◦
f)−(v). 2

Corollary 33 The functor NR embeds the category SimRLC of similarity spaces
with right locally continuous functions as a full subcategory into the category
Nbh of neighborhood spaces.

10.2 Locally Continuous Functions

A bineighborhood space is a set with two unrelated neighborhood structures.
Similarly, a bitopological space is a set with two unrelated topologies. A func-
tion between such spaces is pairwise continuous if it is continuous w.r.t. both
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neighborhood structures / topologies. This gives the categories BiNbh and
BiTop. We say that a bitopological space is countably based if both topologies
have a countable base.

For a similarity system X , we can combine the neighborhood spaces NRX =
(|X |,NRX ) and NLX = (|X |,N LX ) into the bineighborhood space NBX =
(|X |,N LX ,NRX ). From Theorem 32 and its dual for left locally continuous
functions, we obtain:

Theorem 34 Let X and Y be two similarity systems. A function f : X → Y
is locally continuous if and only if f : NBX → NBY is pairwise continuous.

Corollary 35 The functor NB embeds the category SimLC of similarity spaces
with locally continuous functions as a full subcategory into the category BiNbh
of bineighborhood spaces.

The induced neighborhood structures of a locally transitive similarity system
X are topological by Cor. 15. Hence, the bineighborhood space NBX actually
is a bitopological space. In this case, we write TBX instead of NBX .

Corollary 36 The functor TB embeds the category SimLT
LC of locally transitive

similarity spaces with locally continuous functions as a full subcategory into
the category BiTop of bitopological spaces.

10.3 Similarity Spaces from Bitopological Spaces

We do not consider the general case NB : SimLC ↪→ BiNbh any further, but
concentrate on TB : SimLT

LC ↪→ BiTop and show that this embedding actually is
an equivalence of categories by constructing a functor in the opposite direction.
We start with the following lemma:

Lemma 37 Let (X, τL, τR) be a bitopological space with bases BL and BR for
its topologies. Then there is a globally transitive similarity system S(X,BL,BR)
depending on the bases such that TBS(X,BL,BR) = (X, τL, τR). If the bases
are countable, S(X,BL,BR) is countably based.

PROOF. We apply the construction of Prop. 25 to the topological spaces
XL = (X, τL) with base BL and XR = (X, τR) with base BR. This leads
to algebraic lattices DL and DR with pre-embeddings eL : XL → DL and
eR : XR → DR. (The lattices are ω-algebraic if the bases are countable.) We
now form DB = DL ×DR, which is again an algebraic lattice (ω-algebraic if
the bases are countable), and define σB(x, y) = (eLx, eRy) ∈ DB.

As global composition, we use ∗ : DB × DB → DB defined by (aL, aR) ∗
(bL, bR) = (aL, bR), which is continuous because it is built from projections.
The equality σB(x, y) ∗ σB(y, z) = σB(x, z) holds for all x, y, z ∈ X, which
shows at once the triangle inequality (Tr1) and the two equations (Tr2L) and
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(Tr2R).

Finally, we have to show that TL(X,DB, σB) = (X, τL) and TR(X,DB, σB) =
(X, τR). We concentrate on the latter. Let τ ′ be the topology of TR(X,DB, σB).

For τ ′ ⊆ τR, we show that every right open ball of (X,DB, σB) is in τR. Let
x ∈ X, w be an open set of DB, and y ∈ BR(x,w). Then σB(x, y) ∈ w, whence
there are open sets u ofDL and v ofDR with σB(x, y) = (eLx, eRy) ∈ u×v ⊆ w.
Hence eRy ∈ v, or y ∈ eR−v. If y′ ∈ eR−v, then σB(x, y′) = (eLx, eRy′) ∈
u× v ⊆ w, and so y′ ∈ BR(x,w). This shows y ∈ eR−v ⊆ BR(x,w).

For τR ⊆ τ ′, let V be in τR. Since eR : XR → DR is a pre-embedding, there is
an open set v of DR such that V = eR−v. Let w = DL×v, which is an open set
of DB = DL×DR. Then for x, y ∈ X, y ∈ BR(x,w)⇔ (eLx, eRy) ∈ DL× v ⇔
eRy ∈ v ⇔ y ∈ V . Hence for every x ∈ V , we have x ∈ BR(x,w) = V , which
shows V ∈ τ ′. 2

The next lemma shows how this construction interacts with functions. For
sets X and functions f , we abbreviate X ×X by X2 and f × f by f 2. Hence,
f : X → Y induces f 2 : X2 → Y 2 defined by f 2(x1, x2) = (fx1, fx2). From
f 2, we get image f 2+ : PX2 → PY 2 and inverse image f 2− : PY 2 → PX2 as
usual.

Lemma 38 Let Ξ = (X, τL, τR) be a bitopological space with bases BL and
BR, X = (X,DB, σB) = S(X,BL,BR) the similarity system constructed in
Lemma 37, and Y = (Y, S, σ) a weakly locally transitive similarity system.
Then f : X → Y is GC if and only if it is LC if and only if f : Ξ → NBY is
pairwise continuous.

PROOF. Every GC function is LC by Prop. 9. If f : X → Y is LC, then f :
NBX → NBY is pairwise continuous by Prop. 9 again, and NBX = TBX = Ξ
by Lemma 37. Thus, we only have to show that f : X → Y is GC if f : Ξ→
NBY is pairwise continuous. We apply Prop. 26 and 27 using the fact that S is
a continuous lattice. Consider σB : X2 → DB and σ ◦ f 2 : X2 → Y 2 → S. By
Prop. 26, there is a continuous function ϕ = EσB(σ ◦ f 2) : DB → S satisfying
ϕ ◦ σB ≤ σ ◦ f 2, i.e. ϕ(σB(x, x′)) ≤ σ(fx, fx′), which is property (GC1).

To show (GC2) ϕ(σB(x, x)) = σ(fx, fx), we apply Prop. 27 to (x, x). Let w be
a Scott-open set of S containing (σ ◦ f 2)(x, x) = σ(fx, fx). Since Y is weakly
locally transitive, there is a continuous function ∗fx : S × S → S such that
among other things σ(fx, fx) = σ(fx, fx) ∗fx σ(fx, fx) ∈ w holds. Hence
there is an open set v of S such that σ(fx, fx) ∈ v and v ∗fx v ⊆ w.

From σ(fx, fx) ∈ v, we obtain fx ∈ BR(fx, v) =: V R, which is a right
neighborhood of fx in NRY . Since f is pairwise continuous, f−V R is a right
neighborhood of x in NRX = TRX . Hence, there is an open set UR ∈ τR such
that x ∈ UR ⊆ f−V R. Since eR : XR → DR is a pre-embedding, there is an
open set uR of DR such that UR = eR−uR. Similarly, V L = BL(fx, v) is a
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left neighborhood of fx, which gives UL ∈ τL and an open set uL of DL with
analogous properties. Then u = uL×uR is an open set of DB = DL×DR, and
we claim σB−(u) ⊆ (σ ◦ f 2)−(w). First note that

σB−(u) = (eL × eR)−(uL × uR) = eL−uL × eR−uR

= UL × UR ⊆ f−V L × f−V R = f 2−(V L × V R)

and (σ ◦f 2)−(w) = f 2−(σ−w), so we are done once V L×V R ⊆ σ−w is proved.
Let (yL, yR) ∈ V L × V R. Then σ(yL, fx) ∈ v and σ(fx, yR) ∈ v, whence
σ(yL, yR) ≥ σ(yL, fx) ∗fx σ(fx, yR) ∈ v ∗fx v ⊆ w. 2

Lemma 38 has several interesting consequences.

Theorem 39 The construction S of Lemma 37 defines a functor S that em-
beds BiTop as a coreflective full subcategory into the categories SimGT

GC of glob-
ally transitive similarity spaces and SimLT

GC of locally transitive similarity spaces
with globally continuous functions. Countably based bitopological spaces are
mapped to countably based similarity spaces. The coreflector is TB : SimLT

GC →
BiTop.

PROOF. Let Ξ = (X, τL, τR) be a bitopological space. Depending on the
chosen bases BL and BR, the similarity systems S(X,BL,BR) may vary, but all
these similarity systems are equivalent by Lemma 38 and thus representations
of the same similarity space S Ξ. Lemma 37 yields TB S Ξ = Ξ.

Given two bitopological spaces Ξ and Υ, we can apply Lemma 38 to Ξ and a
representation Y of S Υ to see that f : Ξ→ Υ = TB S Υ is pairwise continuous
iff f : S Ξ → S Υ is GC. This shows that S : BiTop → SimGT

GC is a full
embedding functor with left inverse TB. Lemma 38 also shows that for Ξ ∈
BiTop and Y ∈ SimLT, f : S Ξ → Y is GC iff f : Ξ → TBY is pairwise
continuous. Hence TB is a coreflector. We can use either SimLT

GC or SimGT
GC

since S Ξ is globally transitive, but local transitivity is sufficient to get a
bitopological space from NB by Cor. 15. 2

Theorem 40 The categories SimGT
LC of globally transitive similarity spaces and

SimLT
LC of locally transitive similarity spaces with locally continuous functions

are equivalent to BiTop.

PROOF. The equivalence is given by the functors TB : SimLT
LC → BiTop

(Cor. 15 and Prop. 9), S : BiTop → SimGT
LC (Lemma 38), and the embedding

of SimGT
LC into SimLT

LC. For Ξ ∈ BiTop, TB S Ξ = Ξ holds by Lemma 37. On the
other hand, we have TB S TB X = TB X for X ∈ SimLT

LC by Lemma 37 again,
whence S TB X ∼=LC X by Theorem 34. 2

10.4 The Symmetric Case

The two neighborhood structures induced by a symmetric similarity space are
identical. Clearly, the full subcategory of BiNbh consisting of spaces (X,N ,N )
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with two identical neighborhood structures is equivalent to the category Nbh
of spaces (X,N ) with a single neighborhood structure. Thus Cor. 35 reduces
to the following:

Theorem 41 The category SimSym
LC of symmetric similarity spaces with locally

continuous functions embeds as a full subcategory into the category Nbh of
neighborhood spaces.

For locally transitive symmetric similarity spaces, the same argument allows
us to reduce BiTop to Top. Yet there is still an obstacle: the similarity system
S(X,BL,BR) of Lemma 37 is never symmetric, not even in the case BL = BR.
However, the similarity space represented by such a system is symmetric, i.e.
S(X,B,B) is equivalent to a symmetric system S(X,B).

Lemma 42 Let (X, τ) be a topological space with base B. Then the similarity
system S(X,B,B) of Lemma 37 is equivalent to a symmetric selfish boolean
transitive system S(X,B).

PROOF. Let Ξ = (X, τ) and let e : Ξ → D be the pre-embedding con-
structed from B as in Prop. 25. Then Lemma 37 yields the system (X,DB, σB)
with DB = D×D and σB(x, y) = (ex, ey). Here, we construct (X,D, σ∧) with
σ∧(x, y) = ex∧ ey. This system is clearly symmetric and selfish. It is boolean
transitive by Prop. 13 since σ∧(x, y) ∧ σ∧(y, z) = (ex ∧ ey) ∧ (ey ∧ ez) ≤
ex ∧ ez = σ∧(x, z).

To show (X,DB, σB)→ (X,D, σ∧), use ϕ = ((a, b) 7→ a∧ b), i.e. ∧ : D×D →
D, which is continuous in an algebraic lattice. Then ϕ(σB(x, y)) = ϕ(ex, ey) =
ex ∧ ey = σ∧(x, y) holds.

For (X,D, σ∧) → (X,DB, σB), use ϕ = (a 7→ (a, a)) : D → D × D. Then
ϕ(σ∧(x, y)) = ϕ(ex ∧ ey) = (ex ∧ ey, ex ∧ ey) ≤ (ex, ey) = σB(x, y) and
ϕ(σ∧(x, x)) = (ex ∧ ex, ex ∧ ex) = (ex, ex) = σB(x, x) hold as required. 2

Corollary 43 The construction of Lemma 42 embeds Top as a coreflective
full subcategory into the categories SimP

GC of P -similarity spaces with GC func-
tions, where P is any property between “jointly symmetric, selfish, and boolean
transitive” and “symmetric and locally transitive”.

Corollary 44 The categories SimP
LC of P -similarity spaces with LC functions

(P as in Cor. 43) are equivalent to Top.

When applied to Sierpinski space S, the construction of Lemma 42 yields
the similarity space Ss from Section 4.3. In case of R, one has to distinguish
between the similarity space Rt constructed from the standard topology of R
and the similarity space Rd given by the Euclidean metric. These two spaces
are different since Rd is self-uniform, but Rt is not (cf. Cor. 31), and (x 7→
x2) : Rt → Rt is GC by Lemma 38 / Cor. 43, but (x 7→ x2) : Rd → Rd is not
GC as shown in Section 7.5.
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In [7], Kopperman has shown that every topological space (X, τ) can be ob-
tained from a generalized metric, which in our language corresponds to a
self-uniform similarity system X that is not symmetric in general and sat-
isfies TRX = (X, τ) while TLX is different. In contrast, our construction
yields a symmetric system X that is not self-uniform in general and satisfies
TRX = TLX = (X, τ). In Section 10.3, we have shown how to obtain any two
topologies from a system that is non-symmetric in general.

11 The Characterization of Globally Continuous Functions

We first characterize GC functions without referring to the existence of some
witness, and then give an equivalent description of the category SimGC of
similarity spaces with GC functions without using value lattices.

11.1 Globally Continuous and Uniformly Continuous Functions

In the general case of gss, each GC function is UC by Prop. 9. The opposite
implication holds for similarity systems.

Theorem 45 A function between two similarity systems is globally continu-
ous (GC) if and only if it is uniformly continuous (UC). Thus SimGC = SimUC.

PROOF. Let f : X → Y be uniformly continuous. We employ Prop. 26
and 27 to obtain a witness ϕ for global continuity of f . Consider σX : X2 → SX
and σY ◦ f 2 : X2 → Y 2 → SY . By Prop. 26, there is a continuous function
ϕ = EσX (σY ◦ f 2) : SX → SY satisfying ϕ ◦ σX ≤ σY ◦ f 2, i.e. ϕ(σX (x, x′)) ≤
σY(fx, fx′), which is property (GC1). To show (GC2) ϕ(σX (x, x)) = σY(fx, fx),
we apply Prop. 27 to (x, x). Let v be a Scott-open set of SY containing
(σY ◦ f 2)(x, x) = σY(fx, fx). Since f is uniformly continuous, there is a
Scott-open set u of SX containing σX (x, x) such that σX (x1, x2) ∈ u implies
σY(fx1, fx2) ∈ v. The implication is equivalent to σ−X u ⊆ (σY ◦ f 2)− v. This
is what is required by the hypothesis of Prop. 27. 2

11.2 Square-Neighborhood Spaces and Square-Topological Spaces

Next, we want to characterize GC/UC functions further without using the
value lattices at all. In the general case, this requires new kinds of structures,
the square-neighborhood spaces and square-topological spaces. The following
should be compared with the description of neighborhood spaces and topolog-
ical spaces in Section 3.

A square-neighborhood space (X,N 2) is a set X with a map N 2 from points
x of X to neighborhood filters N 2(x) ⊆ PX2 of (x, x). Thus, for each x of X,
N 2(x) is a filter consisting of subsets of X2 that all contain the pair (x, x).
(There are no neighborhood filters for pairs (x1, x2) with x1 6= x2.)

31



A square-neighborhood space (X,N 2) is symmetric if for all x in X, R ∈
N 2(x) implies Rop ∈ N 2(x), where Rop = {(y, x) | (x, y) ∈ R } is the opposite
relation of R.

A function f : (X,N 2
X) → (Y,N 2

Y ) is uniformly continuous (UC) if for all x
in X, B ∈ N 2

Y (fx) implies f 2−B ∈ N 2
X(x). This defines the category SqNbh

of square-neighborhood spaces. We shall later see that square-neighborhood
spaces generalize quasi-uniform spaces, which is the reason for the name “uni-
formly continuous”. We shall also see that the UC functions between square-
neighborhood spaces are closely related to the UC functions between similarity
spaces so that having the same name for both is justified.

Let (X,N 2) be a square-neighborhood space. A subset O of X2 is open if it
is a neighborhood of all the diagonal elements in it, i.e. if (x, x) ∈ O implies
O ∈ N 2(x). An open base of (X,N 2) is a subset B of PX2 such that

(1) All B in B are open;
(2) For A ∈ N 2(x), there is B in B such that x ∈ B ⊆ A.

Not every square-neighborhood space has an open base. We say that (X,N 2) is
topological if it has an open base. In this case, we speak of a square-topological
space, but we refrain from describing it by something like a topology on X2.
Such a topology would not be uniquely determined since uniform continuity
only refers to the points of the diagonal.

The category of square-topological spaces and uniformly continuous functions
is called SqTop. A square-topological space is countably based if it has a count-
able open base.

11.3 Square-Topological Spaces from Similarity Spaces

From a similarity system X = (X,S, σ), we construct a square-neighborhood
space N2X = (X,N 2

X ) by defining that A is in N 2
X (x) if there is an open set

u of S such that (x, x) ∈ σ−u ⊆ A. This space is topological with open base
{σ−u | u ∈ τS}. More generally, {σ−u | u ∈ B} is an open base of N2X for
every base B of the topology of S. Hence, N2X is countably based if S is
ω-continuous.

If X is symmetric, then so is N2X . For, σ(x, y) = σ(y, x) implies (σ−u)op =
σ−u, and so (x, x) ∈ σ−u ⊆ A implies (x, x) ∈ σ−u = (σ−u)op ⊆ Aop.

Theorem 46 Let X and Y be two similarity systems. A function f : X → Y
is uniformly continuous if and only if f : N2X → N2Y is uniformly continuous.

PROOF. First, let f : X → Y be UC (see Def. 6). For A ∈ N 2
Y(fx), there is

an open set v of SY such that (fx, fx) ∈ σ−Y v ⊆ A. Then σY(fx, fx) ∈ v. By
uniform continuity in the sense of similarity systems, there is an open set u
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of SX containing σX (x, x) and satisfying σX (x1, x2) ∈ u ⇒ σY(fx1, fx2) ∈ v.
Hence (x, x) ∈ σ−X u ⊆ f 2−(σ−Y v) ⊆ f 2−A, which shows f 2−A ∈ N 2

X (x).

For the opposite direction, let f : N2X → N2Y be uniformly continuous. If
σY(fx, fx) ∈ v for some open v of SY , then (fx, fx) ∈ σ−Y v, whence σ−Y v ∈
N 2
Y(fx). By uniform continuity in the sense of square-neighborhood spaces,

f 2−(σ−Y v) is in N 2
X (x). This means that there is an open set u of SX such

that (x, x) ∈ σ−X u ⊆ f 2−(σ−Y v). Thus σX (x, x) ∈ u and σX (x1, x2) ∈ u ⇒
σY(fx1, fx2) ∈ v. 2

If X and X ′ are equivalent similarity systems with point set X, Theorem 46
implies that idX : N2X → N2X ′ and idX : N2X ′ → N2X are uniformly
continuous and thus N2X and N2X ′ are identical. Hence, N2 is well-defined
for similarity spaces, and we obtain:

Corollary 47 The construction N2 as defined above yields a full and faithful
functor from SimGC = SimUC to SqTop.

11.4 Similarity Spaces from Square-Topological Spaces

Our ultimate goal is to show that N2 is an isomorphism. Therefore, we now
introduce a construction in the opposite direction.

Lemma 48 For every (symmetric) square-topological space (X,N 2) with open
base B, there is a (symmetric) similarity system X = S2(X,B) such that
N2X = (X,N 2). If B is countable, then X is countably based.

PROOF. In the symmetric case, we first replace B by B′ = {B ∩ Bop | B ∈
B}. The sets B ∩Bop are still open since (x, x) ∈ B ∩Bop implies (x, x) ∈ B,
hence B ∈ N 2(x), hence also Bop ∈ N 2(x) and B ∩ Bop ∈ N 2(x). Since
B∩Bop ⊆ B, B′ is again an open base of (X,N 2). In the non-symmetric case,
let B′ = B.

Let B∩ be the closure of B′ under finite intersections, which is again an open
base of (X,N 2). Let D be the algebraic lattice constructed from the meet-
semilattice (B∩,⊆) according to Prop. 24. For x, x′ ∈ X, let σ(x, x′) = {B ∈
B∩ | (x, x′) ∈ B}, which is a filter. In the symmetric case, B′ consists of
symmetric relations, hence so does B∩. Thus, in this case for all B ∈ B∩,
(x, x′) ∈ B iff (x′, x) ∈ B, and so σ(x′, x) = σ(x, x′).

Let X = (X,D, σ). Since {〈B〉 | B ∈ B∩} is a base for the Scott topology
of D, {σ−〈B〉 | B ∈ B∩} is an open base for N2X . Now (x, x′) ∈ σ−〈B〉 ⇔
σ(x, x′) ∈ 〈B〉 ⇔ B ∈ σ(x, x′) ⇔ (x, x′) ∈ B. Hence, σ−〈B〉 = B and
{σ−〈B〉 | B ∈ B∩} = B∩. Thus, B∩ is an open base of N2X and of the original
space (X,N 2). Therefore, N2X and (X,N 2) are identical. 2
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For each open base B of (X,N 2), there is a different similarity system XB
such that N2XB = (X,N 2). By Theorem 46, all these similarity systems
are equivalent and thus represent the same similarity space, which we call
S2(X,N 2). For every square-topological space Ξ, N2 S2 Ξ = Ξ holds. On the
other hand, for every similarity space X, we have N2 S2 N2 X = N2 X, which
implies S2 N2 X = X by Theorem 46. By the same theorem, f : S2 Ξ → S2 Υ
is GC iff f : N2 S2 Ξ → N2 S2 Υ is uniformly continuous, iff f : Ξ → Υ is
uniformly continuous.

Corollary 49 The category SimGC = SimUC of similarity spaces with glob-
ally or uniformly continuous functions is isomorphic to the category SqTop
of square-topological spaces with uniformly continuous functions. The isomor-
phism restricts to the countably based spaces and to the symmetric spaces on
both sides.

11.5 The Self-Uniform Case

The self-uniform similarity spaces correspond to square-topological spaces in
which all neighborhood filters N 2(x) are identical.

Lemma 50 If X is a self-uniform similarity system, then N2X has the prop-
erty N 2(x) = N 2(x′) for all x, x′ ∈ |X |.

PROOF. Let A ∈ N 2(x). Then there is an open u of SX such that (x, x) ∈
σ− u ⊆ A. The membership (x, x) ∈ σ− umeans σ(x, x) ∈ u. By self-uniformity,
σ(x′, x′) ∈ u follows, whence (x′, x′) ∈ σ− u ⊆ A, and so A ∈ N 2(x′). 2

Lemma 51 Let (X,N 2) be a square-neighborhood space such that all neigh-
borhood filters N 2(x) are identical. Then (X,N 2) is topological, and for every
(countable) open base B of (X,N 2), there is a (countable) open base B′ such
that (X,D, σ) = S2(X,B′) has the property σ(x, x) = >D for all x in X. Such
a system is self-uniform and selfish.

PROOF. Let N be the common value of N 2(x) if X 6= ∅, and N = {∅} if
X = ∅. Then all sets O ∈ N are open since (x, x) ∈ O implies O ∈ N = N 2(x)
(and there is nothing to show in case X = ∅). Thus, N is an open base of
(X,N 2). If B is an arbitrary (countable) open base, then B′ = B∩ ∩ N is
a (countable) open base, too, which is closed under finite intersection. The
construction of Lemma 48 applied to B′ yields σ(x, x) = {B ∈ B′ | (x, x) ∈ B}.
Since B′ ⊆ N = N 2(x), (x, x) ∈ B holds for all B ∈ B′, whence σ(x, x) =
B′, which is the top element of the algebraic lattice D obtained from B′ by
Prop. 24. 2

Lemmas 50 and 51 show that the isomorphism of Cor. 49 relates self-uniform
similarity spaces to those square-topological spaces in which all neighborhood
filters N 2(x) are identical. The description of the latter can be simplified by
noting only the common value of N 2(x) (or {∅} if X = ∅). This is a filter
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consisting of subsets of X2 that all contain all pairs (x, x), x ∈ X, i.e. contain
the entire diagonal.

Definition 52 A diagonal-neighborhood space (X,N∆) is given by a point
set X and a neighborhood filter N∆ ⊆ PX2 of the diagonal ∆X of X2. It is
symmetric if R ∈ N∆ implies Rop ∈ N∆. A base B of (X,N∆) is a subset of
N∆ such that for all U in N∆, there is B in B with B ⊆ U . A function f :
(X,N∆

X )→ (Y,N∆
Y ) is uniformly continuous if B ∈ N∆

Y implies f 2−B ∈ N∆
X .

The resulting category is called DiagNbh.

It is quite obvious that DiagNbh is isomorphic to the subcategory of square-
neighborhood spaces in which all neighborhood filters N 2(x) are identical.
Such square-neighborhood spaces are topological by Lemma 51. Combining
everything one obtains:

Corollary 53 The category SimSUn
GC of self-uniform similarity spaces with glob-

ally continuous functions is isomorphic to the category DiagNbh of diagonal-
neighborhood spaces with uniformly continuous functions. The isomorphism
restricts to the countably based spaces and to the symmetric spaces on both
sides.

We write N∆ for the functor from SimSUn
GC to DiagNbh.

When going from a self-uniform system to the induced diagonal-neighborhood
space and then back via Lemma 51, one obtains an equivalent system in which
the common value of σ(x, x) is the top element of the value lattice.

Proposition 54 Every (symmetric) self-uniform similarity system is equiv-
alent to a (symmetric) system (X,S, σ) such that σ(x, x) = >S for all x in
X. Every (symmetric) self-uniform similarity space is jointly (symmetric and)
self-uniform and selfish.

11.6 Quasi-Uniform Spaces

The diagonal-neighborhood spaces of Def. 52 are an obvious generalization of
quasi-uniform spaces.

Definition 55 A quasi-uniform space is a diagonal-neighborhood space (X,N∆)
with the additional condition that for all U in N∆, there is V in N∆ such that
V ◦ V ⊆ U . In this case, N∆ is called a quasi-uniformity. The category of
quasi-uniform spaces with uniformly continuous functions is called QUnif. A
uniform space is a symmetric quasi-uniform space. In this case, we speak of a
uniformity and the corresponding category is called Unif.

Here, ‘◦’ denotes relational composition. Composition on PX2 is associative
and monotonic w.r.t. ⊆, and ∆ = {(x, x) | x ∈ X} is its neutral element. For
all U, V ∈ N∆, U = U ◦∆ ⊆ U ◦ V and V = ∆ ◦ V ⊆ U ◦ V holds.
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Proposition 56 If X is a self-uniform weakly globally transitive similarity
system, then N∆X is a quasi-uniform space.

PROOF. Let X = (X,S, σ) and N∆X = (X,N∆). If X = ∅, then N∆ = {∅}
is a quasi-uniformity. Otherwise, let a ∈ S be the common value of σ(x, x),
x ∈ X. Since X is weakly globally transitive, there is a continuous operation
∗ : S×S → S such that (Tr1) σ(x, y) ∗σ(y, z) ≤ σ(x, z) and (Tr2W) σ(x, x) ∗
σ(x, x) = σ(x, x), i.e. a ∗ a = a.

For U ∈ N∆, there is an open u of S such that a ∈ u and σ− u ⊆ U . Since
a = a ∗ a ∈ u, there is an open v of S such that a ∈ v and v ∗ v ⊆ u. Let
V = σ− v. Then V ∈ N∆, and we show V ◦V ⊆ U . If (x, z) ∈ V ◦V , there is y
such that (x, y) ∈ V and (y, z) ∈ V , hence σ(x, y) ∈ v and σ(y, z) ∈ v, and so
σ(x, y)∗σ(y, z) ∈ v∗v ⊆ u. By (Tr1), σ(x, z) ∈ u follows, hence (x, z) ∈ U . 2

It is well-known that every pseudo-quasi-metric δ : X × X → R+ induces a
quasi-uniformity U on X by saying that U ∈ U if there is r > 0 such that
{(x, y) | δ(x, y) < r} ⊆ U . This is a special case of our general construction
N∆ since {(x, y) | δ(x, y) < r} = δ−[0, r), and the sets [0, r) form a base of the
Scott topology of [0,∞]op.

For the opposite direction, i.e. the construction of a similarity space from a
quasi-uniform space, we employ classical results on metrization of uniform
spaces.

Define a generalized pseudo-quasi-metric on X to be a function δ : X ×X →
R+I for some index set I with the properties δ(x, x) = 0 and δ(x, z) ≤ δ(x, y)+
δ(y, z) (understood coordinate-wise with the ordering of R+). A generalized
pseudo-metric is in addition symmetric. The case I = 1 (a singleton set) leads
back to ordinary pseudo-(quasi-)metrics.

We say that a generalized pseudo-quasi-metric is bounded if δ(x, y) ≤ 1
(coordinate-wise) for all x, y ∈ X. A bounded generalized pseudo-quasi-metric
space can be considered as a self-uniform globally transitive similarity system
in two equivalent ways: with S = ([0,∞]op)I and addition as global compo-
sition ∗, or with S = ([0, 1]op)I and truncated addition a ∗ b = (minR(1, ai +
bi))i∈I . In both cases, ∗ is commutative, associative, and has neutral element
0. In the non-generalized case (I = 1), these similarity systems are countably
based.

Kelley [6, Chapter 6, Lemma 12] presents the following “Metrization Lemma”:

Lemma 57 Let X be a set and (Un)n∈N a sequence of subsets of X2 such that
each Un includes the diagonal, U0 = X2, and Un+1 ◦Un+1 ◦Un+1 ⊆ Un for each
n in N. Then there is a bounded pseudo-quasi-metric δ : X2 → [0, 1] such that
Un ⊆ δ−[0, 2−n) ⊆ Un−1 for all n > 0. If each Un is symmetric, then δ can be
chosen as a bounded pseudo-metric. 2
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Theorem 58 Every (quasi-)uniformity is induced by a generalized pseudo-
(quasi-)metric. Every countably based (quasi-)uniformity is induced by an or-
dinary pseudo-(quasi-)metric.

PROOF. (In this proof, ≤ and < always refer to the standard (strict) or-
dering of R.) Let (X,U) be the given (quasi-)uniform space. Let {(U i

n)n∈N |
i ∈ I} be a set of sequences as in Lemma 57 such that all U i

n are in U and
{U i

n | n ∈ N, i ∈ I} is a base of U . Such a set exists since for every U in U ,
there is a suitable sequence (Un)n∈N with U1 = U . If U has a countable base
{B1, B2, . . .}, then a single sequence suffices (i.e. I = 1 can be chosen): take
U0 = X2 and Un+1 ∈ U such that Un+1 ◦ Un+1 ◦ Un+1 ⊆ Un and Un+1 ⊆ Bn+1.
If (X,U) is symmetric, then all U i

n can be chosen to be symmetric (replace U i
n

by U i
n ∩ (U i

n)op).

Now choose a bounded pseudo-(quasi-)metric δi : X2 → [0, 1] for every se-
quence (U i

n)n∈N as in the Metrization Lemma 57, and let δ : X2 → [0, 1]I be
given by δ(x, y) = (δi(x, y))i∈I , which defines a bounded generalized pseudo-
(quasi-)metric. Let U ′ be the (quasi-)uniformity induced by δ. We claim U ′ =
U .

For U ′ ⊆ U , it is sufficient to show δ−u ∈ U for all u taken from a subbase
of [0, 1]I . A suitable subbase is {uir | i ∈ I, r > 0} where uir = {x ∈ [0, 1]I |
xi < r}. Let n be large enough such that 2−n ≤ r. Then δ−uir = δ−i [0, r) ⊇
δ−i [0, 2−n) ⊇ U i

n ∈ U , hence δ−uir ∈ U .

For U ⊆ U ′, it is sufficient to show {U i
n | n ∈ N, i ∈ I} ⊆ U ′. Since U i

n ⊇
δ−i [0, 2−(n+1)) = δ−ui

2−(n+1) ∈ U ′, U i
n ∈ U ′ follows. 2

Prop. 56 and Theorem 58 together show how to “improve” a given self-uniform
weakly globally transitive similarity system with no particular algebraic prop-
erties for its composition operation ∗: Going to the induced quasi-uniform
space by Prop. 56 and back by Theorem 58 yields an equivalent selfish self-
uniform globally transitive similarity system with value lattice S = ([0, 1]op)I

or S = ([0,∞]op)I , and (truncated) addition as composition, which is commu-
tative, associative, and has neutral element 0 = >S, which is also the common
value of σ(x, x).

Prop. 56 and Theorem 58 also imply the following categorical isomorphisms:

Corollary 59 The category of self-uniform (weakly) globally transitive simi-
larity spaces with globally continuous functions is isomorphic to the category
QUnif of quasi-uniform spaces with uniformly continuous functions. The iso-
morphism restricts to the countably based spaces and to the symmetric spaces
on both sides. (Symmetric quasi-uniform spaces are uniform spaces.)
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12 Conclusion and Future Work

Similarity spaces in their full generality are probably too general to be use-
ful. For many applications, properties such as global or local transitivity are
certainly needed, and sometimes additional properties such as symmetry and
self-uniformity will be useful. Effective versions of the theory will require a
countable base, and maybe a generalization of the separability property known
from metric spaces.

Our locally transitive similarity spaces include quasi-uniform spaces, gener-
alized pseudo-quasi-metric spaces and partial metric spaces. All these classes
come with notions of convergence, completeness, and completion (see [2,3]
for generalized quasi-metrics and [10,11] for partial metrics). These notions
should be extended to some class of transitive similarity spaces and thereby
unified if possible. (Note however that already for ordinary quasi-metric and
quasi-uniform spaces various different notions of completeness and completion
exist [9,12].)

The category of similarity spaces with globally continuous functions and its
various subcategories given by symmetric spaces, globally transitive spaces
etc. should be examined for constructions such as products, subspaces, sums,
quotients, power spaces, and function spaces. This has been done to some ex-
tent in [2,3,13], but for categories with a fixed value lattice and non-expanding
functions [2,3], or a restricted class of non-expanding functions [13].
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