1.13 Eliminating Partial Redundancies

Example:

\[x = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]

// \(x + 1 \) is evaluated on every path
// on one path, however, even twice
Removal of a partially available assignment:

\[x = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]
Terminological Confusion

In Section 1.4 we used, in describing the analysis:

- availability along a path,
- definite availability, i.e., availability along all paths.

secretly switched to availability meaning definite availability.

The compiler literature uses the terms

- redundancy elimination for the ensuing transformation,
- partial redundancy elimination for the actual transformation, and
- partially redundant for available along some paths.
Making assignments totally available without introducing redundant computations

\[x \leftarrow e \quad x \leftarrow e \]

\[x \leftarrow e \quad x \leftarrow e \quad x \leftarrow e \quad x \leftarrow e \]

\[\cdot u \]

\[x \leftarrow e \quad x \leftarrow e \quad x \leftarrow e \]

\[x \leftarrow e \quad x \leftarrow e \]

\[x \leftarrow e \quad x \leftarrow e \quad x \leftarrow e \quad x \leftarrow e \]

\[x \leftarrow e \text{ part. red. at } u \quad \text{new red. computation} \quad x \leftarrow e \text{ very busy at } u \]
Idea:

(1) Insert assignments $T_e = e$; such that e is available at all points where the value of e is required.

(2) Thereby spare program points where e either is already available or will definitely be computed in future.

Expressions with the latter property are called very busy.

(3) Replace the original evaluations of e by accesses to the variable T_e.

\rightarrow we require a novel analysis
An expression e is called **busy** along a path π, if the expression e is evaluated before any of the variables $x \in \text{Vars}(e)$ is overwritten.

// backward analysis!

e is called **very busy** at u, if e is busy along every path $\pi : u \rightarrow ^* \text{stop}$.
An expression e is called busy along a path π, if the expression e is evaluated before any of the variables $x \in Vars(e)$ is overwritten.

// backward analysis!

e is called very busy at u, if e is busy along every path $\pi : u \rightarrow^{*} stop$.

Accordingly, we require:

$$B[u] = \bigcap \{ \llbracket \pi \rrbracket^{\#} \emptyset \mid \pi : u \rightarrow^{*} stop \}$$

where for $\pi = k_1 \ldots k_m$:

$$\llbracket \pi \rrbracket^{\#} = \llbracket k_1 \rrbracket^{\#} \circ \ldots \circ \llbracket k_m \rrbracket^{\#}$$
Our complete lattice is given by:

\[\mathbb{B} = 2^{\text{Expr}\setminus\text{Vars}} \quad \text{with} \quad \subseteq = \supseteq \]

The effect \([k]^\#\) of an edge \(k = (u, \text{lab}, v)\) only depends on \(\text{lab}\), i.e., \([k]^\# = [\text{lab}]^\#\) where:

\[
\begin{align*}
[;]^\# B &= B \\
[\text{Pos}(e)]^\# B &= [\text{Neg}(e)]^\# B = B \cup \{e\} \\
[x = e;]^\# B &= (B \setminus \text{Expr}_x) \cup \{e\} \\
[x = M[e];]^\# B &= (B \setminus \text{Expr}_x) \cup \{e\} \\
[M[e_1] = e_2;]^\# B &= B \cup \{e_1, e_2\}
\end{align*}
\]
These effects are all distributive. Thus, the least solution of the constraint system yields precisely the MOP — given that stop is reachable from every program point.

Example:

\[
x = M[a]; \\
y_1 = x + 1; \\
y_2 = x + 1; \\
M[x] = y_1 + y_2;
\]

\[
\begin{array}{c|c}
0 & \emptyset \\
1 & \emptyset \\
2 & \{x + 1\} \\
3 & \{x + 1\} \\
4 & \{x + 1\} \\
5 & \{y_1 + y_2\} \\
6 & \{x + 1\} \\
7 & \emptyset \\
\end{array}
\]
A program point u is called safe for e, if $e \in A[u] \cup B[u]$, i.e., e is either available or very busy.

Idea:

- We insert computations of e such that e becomes available at all safe program points.
- We insert $T_e = e$; after every edge (u, lab, v) with

 $$e \in B[v] \backslash [\text{lab}]_A(A[u] \cup B[u])$$
Transformation PRE-1:

\[T_e = e; \quad (e \in B[v] \setminus \llbracket lab \rrbracket_{A} (A[u] \cup B[u])) \]

\[T_e = e; \quad (e \in B[v]) \]
Transformation PRE-2:

\[u \xrightarrow{x} e; \]

// analogously for the other uses of \(e \)
// at old edges of the program.
In the Example:

\[x = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>4</td>
<td>({ x + 1 })</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>5</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>6</td>
<td>({ x + 1 })</td>
<td>({ y_1 + y_2 })</td>
</tr>
<tr>
<td>7</td>
<td>({ x + 1 })</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
In the Example:

\[x = M[a]; \]
\[y_1 = x + 1; \]
\[y_2 = x + 1; \]
\[M[x] = y_1 + y_2; \]

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>3</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>4</td>
<td>({ x + 1 })</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>5</td>
<td>(\emptyset)</td>
<td>({ x + 1 })</td>
</tr>
<tr>
<td>6</td>
<td>({ x + 1 })</td>
<td>({ y_1 + y_2 })</td>
</tr>
<tr>
<td>7</td>
<td>({ x + 1 })</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
Im Example:

1. \(x = M[a] \);
2. \(T = x + 1 \);
3. \(y_1 = T \);
4. \(y_2 = T \);
5. \(M[x] = y_1 + y_2 \);

\[
\begin{array}{|c|c|c|}
\hline
& A & B \\
\hline
0 & \emptyset & \emptyset \\
1 & \emptyset & \emptyset \\
2 & \emptyset & \{x + 1\} \\
3 & \emptyset & \{x + 1\} \\
4 & \{x + 1\} & \{x + 1\} \\
5 & \emptyset & \{x + 1\} \\
6 & \{x + 1\} & \{y_1 + y_2\} \\
7 & \{x + 1\} & \emptyset \\
\hline
\end{array}
\]
Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge $k = (u, lab, u')$ in the suffix:

$$e \in [lab]_A^\# (A[u] \cup B[u])$$
Correctness:

Let π denote a path reaching v after which a computation of an edge with e follows.

Then there is a maximal suffix of π such that for every edge $k = (u, lab, u')$ in the suffix:

$$e \in \left[\frac{\text{lab}}{\text{A}} \right]_{\text{A}} (\mathcal{A}[u] \cup \mathcal{B}[u])$$

In particular, no variable in e receives a new value.

Then $T_e = e;$ is inserted before the suffix.

\[\text{Diagram:}\]

```
A A A A A A
```

\[\text{Diagram:}\]

```
A A A A A A
```

```
T = e;
```

```
v
```
We conclude:

- Whenever the value of e is required, e is available
 \implies correctness of the transformation

- Every $T = e$; which is inserted into a path corresponds to an e
 which is replaced with T
 \implies non-degradation of the efficiency