1.2 Removing Assignments to Dead Variables

Example:

1: \(x = y + 2; \)
2: \(y = 5; \)
3: \(x = y + 3; \)

The value of \(x \) at program points 1, 2 is over-written before it can be used.

Therefore, we call the variable \(x \) dead at these program points.
Note:

→ Assignments to dead variables can be removed
→ Such inefficiencies may originate from other transformations.
Note:

→ Assignments to dead variables can be removed
→ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable \(x \) is called \textit{live at} \(u \) along the path \(\pi \) starting at \(u \) relative to a set \(X \) of variables either:

if \(x \in X \) and \(\pi \) does not contain a \textit{definition} of \(x \); or:

if \(\pi \) can be decomposed into: \(\pi = \pi_1 k \pi_2 \) such that:

\begin{itemize}
 \item \(k \) is a \textit{use} of \(x \); and
 \item \(\pi_1 \) does not contain a \textit{definition} of \(x \).
\end{itemize}
Thereby, the set of all defined or used variables at an edge $k = (_, \textit{lab}, _) \quad$ is defined by:

<table>
<thead>
<tr>
<th>lab</th>
<th>used</th>
<th>defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\text{Pos} \ (e)$</td>
<td>$\textit{Vars} \ (e)$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\text{Neg} \ (e)$</td>
<td>$\textit{Vars} \ (e)$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$x = e; \ _{\text{red}}$</td>
<td>$\textit{Vars} \ (e)$</td>
<td>${x}$</td>
</tr>
<tr>
<td>$x = M[e]; \ _{\text{red}}$</td>
<td>$\textit{Vars} \ (e)$</td>
<td>${x}$</td>
</tr>
<tr>
<td>$M[e_1] = e_2; \ _{\text{red}}$</td>
<td>$\textit{Vars} \ (e_1) \cup \textit{Vars} \ (e_2)$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A variable x which is not live at u along π (relative to X) is called **dead** at u along π (relative to X).

Example:

\[x = y + 2; \quad y = 5; \quad x = y + 3; \]

where $X = \emptyset$. Then we observe:

<table>
<thead>
<tr>
<th></th>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${y}$</td>
<td>${x}$</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>${x, y}$</td>
</tr>
<tr>
<td>2</td>
<td>${y}$</td>
<td>${x}$</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>${x, y}$</td>
</tr>
</tbody>
</table>
The variable \(x \) is live at \(u \) (relative to \(X \)) if \(x \) is live at \(u \) along some path to the exit (relative to \(X \)). Otherwise, \(x \) is called dead at \(u \) (relative to \(X \)).
The variable x is **live** at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called **dead** at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u??
The variable x is live at u (relative to X) if x is live at u along some path to the exit (relative to X). Otherwise, x is called dead at u (relative to X).

Question:

How can the sets of all dead/live variables be computed for every u???

Idea:

For every edge $k = (u, _, v)$, define a function $[k]^+$ which transforms the set of variables which are live at v into the set of variables which are live at u...
Let $\mathbb{L} = 2^{\text{Vars}}$.

For $k = (_, \text{lab}, _)$, define $\llbracket k \rrbracket^\# = \llbracket \text{lab} \rrbracket^\#$ by:

$$
\llbracket _ \rrbracket^\# L = L
$$

$$
\llbracket \text{Pos}(e) \rrbracket^\# L = \llbracket \text{Neg}(e) \rrbracket^\# L = L \cup \text{Vars}(e)
$$

$$
\llbracket x = e; \rrbracket^\# L = (L \setminus \{x\}) \cup \text{Vars}(e)
$$

$$
\llbracket x = M[e]; \rrbracket^\# L = (L \setminus \{x\}) \cup \text{Vars}(e)
$$

$$
\llbracket M[e_1] = e_2; \rrbracket^\# L = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
$$
Let $\mathbb{L} = 2^{\text{Vars}}$.

For $k = (_-, \text{lab}, _-)$, define $[k]^\# = [\text{lab}]^\#$ by:

\[
\begin{align*}
[;]^\# L &= L \\
[\text{Pos}(e)]^\# L &= [\text{Neg}(e)]^\# L = L \cup \text{Vars}(e) \\
[x = e;]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e];]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2;]^\# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]

$[k]^\#$ can again be composed to the effects of $[\pi]^\#$ of paths $\pi = k_1 \ldots k_r$ by:

$[\pi]^\# = [k_1]^\# \circ \ldots \circ [k_r]^\#$
We verify that these definitions are meaningful

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]
We verify that these definitions are meaningful

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]
We verify that these definitions are meaningful.
We verify that these definitions are meaningful.
We verify that these definitions are meaningful

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]
We verify that these definitions are meaningful.

\[
\begin{align*}
x &= y + 2; & y &= 5; & x &= y + 2; & M[y] &= x; \\
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 \\
\{y\} & \quad \emptyset & \quad \{y\} & \quad \{x, y\} & \quad \emptyset
\end{align*}
\]
The set of variables which are live at \(u \) then is given by:

\[
\mathcal{L}^*[u] = \bigcup \{ [[\pi]]^\# X \mid \pi : u \rightarrow^* \text{stop} \}
\]

... literally:

- The paths start in \(u \)
- As partial ordering for \(\mathbb{L} \) we use \(\subseteq = \subseteq \).
- The set of variables which are live at program exit is given by the set \(X \)
Transformation DE (Dead assignment Elimination):

\[x = e; \]
\[x \notin \mathcal{L}^*[v] \]
\[x = M[e]; \]
\[x \notin \mathcal{L}^*[v] \]
Correctness Proof:

→ Correctness of the effects of edges: If \(L \) is the set of variables which are live at the exit of the path \(\pi \), then \([\pi]^* L\) is the set of variables which are live at the beginning of \(\pi \).

→ Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant.

→ Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values as in the original program.
Computation of the sets $L^*[u]$:

(1) Collecting constraints:

\[
\begin{align*}
L[\text{stop}] & \supseteq X \\
L[u] & \supseteq [k]^\# (L[v]) \\
k & = (u, _, v) \quad \text{edge}
\end{align*}
\]

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate.

(3) If the exit is (formally) reachable from every program point, then the smallest solution L of the constraint system equals L^* since all $[k]^\#$ are distributive.
Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

\[
\begin{align*}
\mathcal{L}[\text{stop}] & \supseteq X \\
\mathcal{L}[u] & \supseteq [k]^\#(\mathcal{L}[v]) \\
k &= (u, _, v) \quad \text{edge}
\end{align*}
\]

(2) Solving the constraint system by means of RR iteration. Since \mathbb{L} is finite, the iteration will terminate.

(3) If the exit is (formally) reachable from every program point, then the smallest solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[k]^\#$ are distributive.

Caveat: The information is propagated backwards !!!
Example:

```
x = M[I];
y = 1;
Neg(x > 1)
M[R] = y;
```

```
\mathcal{L}[0] \supseteq (\mathcal{L}[1] \setminus \{x\}) \cup \{I\}
\mathcal{L}[1] \supseteq \mathcal{L}[2] \setminus \{y\}
\mathcal{L}[2] \supseteq (\mathcal{L}[6] \cup \{x\}) \cup (\mathcal{L}[3] \cup \{x\})
\mathcal{L}[3] \supseteq (\mathcal{L}[4] \setminus \{y\}) \cup \{x, y\}
\mathcal{L}[4] \supseteq (\mathcal{L}[5] \setminus \{x\}) \cup \{x\}
\mathcal{L}[5] \supseteq \mathcal{L}[2]
\mathcal{L}[6] \supseteq \mathcal{L}[7] \cup \{y, R\}
\mathcal{L}[7] \supseteq \emptyset
```
Example:

\[
\begin{align*}
0 & \quad x = M[I]; \\
1 & \quad y = 1; \\
2 & \quad \text{Neg}(x > 1) \quad \text{Pos}(x > 1) \\
3 & \quad y = x \ast y; \\
4 & \quad x = x - 1; \\
5 & \quad \text{dito} \\
6 & \quad M[R] = y; \\
7 & \quad \text{dito}
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>\emptyset</td>
<td>\text{dito}</td>
</tr>
<tr>
<td>6</td>
<td>{y, R}</td>
<td>\text{dito}</td>
</tr>
<tr>
<td>5</td>
<td>{x, y, R}</td>
<td>\text{dito}</td>
</tr>
<tr>
<td>4</td>
<td>{x, y, R}</td>
<td>\text{dito}</td>
</tr>
<tr>
<td>3</td>
<td>{x, y, R}</td>
<td>\text{dito}</td>
</tr>
<tr>
<td>2</td>
<td>{x, R}</td>
<td>\text{dito}</td>
</tr>
<tr>
<td>1</td>
<td>{I, R}</td>
<td>\text{dito}</td>
</tr>
</tbody>
</table>
The left-hand side of no assignment is \textit{dead}

\textbf{Caveat:}

Removal of assignments to dead variables may kill further variables:

1
\[x = y + 1; \]

2
\[z = 2 \times x; \]

3
\[M[R] = y; \]

4
\[\emptyset \]
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:

1. \(x = y + 1; \)
2. \(z = 2 \times x; \)
3. \(y, R \)
 \[M[R] = y; \]
4. \(\emptyset \)
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:

1. $x = y + 1$
2. x, y, R
3. $z = 2 \times x$
4. y, R
5. $M[R] = y$
6. \emptyset
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:

```
1  y, R
   x = y + 1;
2  x, y, R
   z = 2 * x;
3  y, R
   M[R] = y;
4  ∅
```
The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

1. \(y, R \)
2. \(x = y + 1; \)
3. \(z = 2 \times x; \)
4. \(M[R] = y; \)
5. \(\emptyset \)

1. \(x = y + 1; \)
2. \(\emptyset \)
3. \(M[R] = y; \)
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:
Re-analyzing the program is inconvenient

Idea: Analyze **true** liveness!

x is called **truly live** at u along a path π (relative to X), either if $x \in X$, π does not contain a definition of x; or if π can be decomposed into $\pi = \pi_1 \ k \ \pi_2$ such that:

- k is a **true** use of x;
- π_1 does not contain any **definition** of x.

236
The set of truely used variables at an edge $k = (_ , lab , v)$ is defined as:

<table>
<thead>
<tr>
<th>lab</th>
<th>truely used</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos(e)</td>
<td>$\text{Vars}(e)$</td>
</tr>
<tr>
<td>Neg(e)</td>
<td>$\text{Vars}(e)$</td>
</tr>
<tr>
<td>$x = e;$</td>
<td>$\text{Vars}(e)$ (*)</td>
</tr>
<tr>
<td>$x = M[e];$</td>
<td>$\text{Vars}(e)$ (*)</td>
</tr>
<tr>
<td>$M[e_1] = e_2;$</td>
<td>$\text{Vars}(e_1) \cup \text{Vars}(e_2)$</td>
</tr>
</tbody>
</table>

(*): given that x is truely live at v
Example:

1. \(x = y + 1; \)
2. \(z = 2 \times x; \)
3. \(M[R] = y; \)
4. \(\emptyset \)
Example:

1

\[x = y + 1; \]

2

\[z = 2 \times x; \]

3

\[y, R \]

\[M[R] = y; \]

4

\[\emptyset \]
Example:

1
 \[x = y + 1; \]
 \[y, R \]
 \[z = 2 \times x; \]
 \[y, R \]
2
 \[M[R] = y; \]
 \[\emptyset \]
3
 \[4 \]
Example:

1. \(y, R \)
 \[x = y + 1; \]

2. \(y, R \)
 \[z = 2 \times x; \]

3. \(y, R \)
 \[M[R] = y; \]

4. \(\emptyset \)
Example:

```
x = y + 1;
y, R
z = 2 * x;
y, R
M[R] = y;

∅
```

```
M[R] = y;
```
The Effects of Edges:

\[
\begin{align*}
\text{[;] }^\# L & = L \\
\text{[Pos}(e)\text{]}^\# L & = \text{[Neg}(e)\text{]}^\# L = L \cup Vars(e) \\
[x = e;]^\# L & = (L \setminus \{x\}) \cup Vars(e) \\
[x = M[e];]^\# L & = (L \setminus \{x\}) \cup Vars(e) \\
[M[e_1] = e_2;]^\# L & = L \cup Vars(e_1) \cup Vars(e_2)
\end{align*}
\]
The Effects of Edges:

\[
\begin{align*}
[;] L & = L \\
[\text{Pos}(e)] L & = [\text{Neg}(e)] L = L \cup \text{Vars}(e) \\
[x = e;] L & = (L \setminus \{x\}) \cup (x \in L) \ ? \ \text{Vars}(e) : \emptyset \\
[x = M[e];] L & = (L \setminus \{x\}) \cup (x \in L) \ ? \ \text{Vars}(e) : \emptyset \\
[M[e_1] = e_2;] L & = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
Note:

- The effects of edges for truely live variables are more complicated than for live variables
- Nonetheless, they are distributive !!
Note:

- The effects of edges for truely live variables are more complicated than for live variables.
- Nonetheless, they are distributive!!

To see this, consider for $D = 2^U$, $f y = (u \in y) \cdot b : \emptyset$ We verify:

$$f (y_1 \cup y_2) = (u \in y_1 \cup y_2) \cdot b : \emptyset$$
$$= (u \in y_1 \lor u \in y_2) \cdot b : \emptyset$$
$$= (u \in y_1) \cdot b : \emptyset \lor (u \in y_2) \cdot b : \emptyset$$
$$= f y_1 \lor f y_2$$
Note:

- The effects of edges for truly live variables are more complicated than for live variables.
- Nonetheless, they are distributive !!

To see this, consider for \(\mathbb{D} = 2^U \), \(f \ y = (u \in y) \ ? \ b : \emptyset \). We verify:

\[
\begin{align*}
 f (y_1 \cup y_2) &= (u \in y_1 \cup y_2) \ ? \ b : \emptyset \\
 &= (u \in y_1 \lor u \in y_2) \ ? \ b : \emptyset \\
 &= (u \in y_1) \ ? \ b : \emptyset \cup (u \in y_2) \ ? \ b : \emptyset \\
 &= f \ y_1 \cup f \ y_2
\end{align*}
\]

\[\implies \text{the constraint system yields the MOP}\]
• True liveness detects \textbf{more} superfluous assignments than repeated liveness !!!

\[
x = x - 1;\]

;
True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:
• True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

\[
x = x - 1;
\]
1.3 Removing Superfluous Moves

Example:

\[T = x + 1; \]
\[y = T; \]
\[M[R] = y; \]

This variable-variable assignment is obviously useless
1.3 Removing Superfluous Moves

Example:

1. $T = x + 1;$
2. $y = T;$
3. $M[R] = y;$
4.

This variable-variable assignment is obviously useless.

Instead of y, we could also store T.

252
1.3 Removing Superfluous Moves

Example:

This variable-variable assignment is obviously useless

Instead of \(y \), we could also store \(T \)
1.3 Removing Superfluous Moves

Example:

1. $T = x + 1$
2. $y = T$
3. $M[R] = y$
4. $M[R] = T$

Advantage: Now, y has become dead
1.3 Removing Superfluous Moves

Example:

```
1  \[T = x + 1;\]
2                   2 \[T = x + 1;\]
3  \[y = T;\]  \rightarrow  3 \[y = T;\]  \rightarrow  3 \[y = T;\]
4  \[M[R] = y;\]                             \[M[R] = T;\]                             \[M[R] = T;\]
```

Advantage: Now, \(y\) has become dead
Idea:

For each expression, we record the variable which currently contains its value

We use: \(\forall = \textit{Expr} \rightarrow 2^{\textit{Vars}} \) ...
Idea:

For each expression, we record the variable which currently contains its value

We use: $\forall = \mathit{Expr} \rightarrow 2^{\mathit{Vars}}$ and define:

$$\text{[;]\# V} \quad = \quad V$$

$$\text{[Pos(e)]\# V} e' \quad = \quad \text{[Neg(e)]\# V} e' \quad = \quad \begin{cases} \emptyset & \text{if } e' = e \\ V e' & \text{otherwise} \end{cases}$$

...
\[[x = c;]^\# V e' = \begin{cases} (V c) \cup \{x\} & \text{if } e' = c \\ (V e') \setminus \{x\} & \text{otherwise} \end{cases} \]

\[[x = y;]^\# V e = \begin{cases} (V e) \cup \{x\} & \text{if } y \in V e \\ (V e) \setminus \{x\} & \text{otherwise} \end{cases} \]

\[[x = e;]^\# V e' = \begin{cases} \{x\} & \text{if } e' = e \\ (V e') \setminus \{x\} & \text{otherwise} \end{cases} \]

\[[x = M[c];]^\# V e' = (V e') \setminus \{x\} \]

\[[x = M[y];]^\# V e' = (V e') \setminus \{x\} \]

\[[x = M[e];]^\# V e' = \begin{cases} \emptyset & \text{if } e' = e \\ (V e') \setminus \{x\} & \text{otherwise} \end{cases} \]

// analogously for the diverse stores
In the Example:

\[T = x + 1; \]
\[y = T; \]
\[M[R] = y; \]
In the Example:

\[T = x + 1; \]
\[y = T; \]
\[M[R] = y; \]

We propagate information in forward direction

At start, \(V_0 e = \emptyset \) for all \(e \);

\(\sqsubseteq \subseteq \mathbb{V} \times \mathbb{V} \) is defined by:

\[V_1 \sqsubseteq V_2 \text{ iff } V_1 e \sqsubseteq V_2 e \text{ for all } e \]
Observation:

The new effects of edges are **distributive**:

To show this, we consider the functions:

1. \(f^x_1 \ V \ e = (V \ e) \setminus \{x\} \)
2. \(f^{e,a}_2 \ V = V \oplus \{e \mapsto a\} \)
3. \(f^{x,y}_3 \ V \ e = (y \in V \ e) \Rightarrow (V \ e \cup \{x\}) : ((V \ e) \setminus \{x\}) \)

Obviously, we have:

\[
\begin{align*}
[x = e;]^{\#} &= f^{e,\{x\}}_2 \circ f^x_1 \\
[x = y;]^{\#} &= f^{x,y}_3 \\
[x = M[e];]^{\#} &= f^{e,\emptyset}_2 \circ f^x_1
\end{align*}
\]

By closure under **composition**, the assertion follows
(1) For $f V e = (V e) \setminus \{x\}$, we have:

$$f (V_1 \sqcup V_2) e = ((V_1 \sqcup V_2) e) \setminus \{x\}$$
$$= ((V_1 e) \cap (V_2 e)) \setminus \{x\}$$
$$= ((V_1 e) \setminus \{x\}) \cap ((V_2 e) \setminus \{x\})$$
$$= (f V_1 e) \cap (f V_2 e)$$
$$= (f V_1 \sqcup f V_2) e$$
(2) For \(f \ V = V \uplus \{e \mapsto a\} \), we have:

\[
\begin{align*}
 f \ (V_1 \uplus V_2) \ e' & = \ ((V_1 \uplus V_2) \uplus \{e \mapsto a\}) \ e' \\
 & = \ (V_1 \uplus V_2) \ e' \\
 & = \ (f \ V_1 \uplus f \ V_2) \ e' \quad \text{given that} \quad e \neq e' \\
\end{align*}
\]

\[
\begin{align*}
 f \ (V_1 \uplus V_2) \ e & = \ ((V_1 \uplus V_2) \uplus \{e \mapsto a\}) \ e \\
 & = \ a \\
 & = \ ((V_1 \uplus \{e \mapsto a\}) \ e) \cap ((V_2 \uplus \{e \mapsto a\}) \ e) \\
 & = \ (f \ V_1 \uplus f \ V_2) \ e
\end{align*}
\]
(3) For \(f V e = (y \in V e) \cup (V e \cup \{x\}) : ((V e)\setminus\{x\}) \), we have:

\[
f (V_1 \cup V_2) e &= (((V_1 \cup V_2) e)\setminus\{x\}) \cup (y \in (V_1 \cup V_2) e) \cup \{x\} : \emptyset \\
&= ((V_1 e \cap V_2 e)\setminus\{x\}) \cup (y \in (V_1 e \cap V_2 e) \cup \{x\} : \emptyset \\
&= ((V_1 e \cap V_2 e)\setminus\{x\}) \cup \\
&\quad ((y \in V_1 e) \cup \{x\} : \emptyset) \cap ((y \in V_2 e) \cup \{x\} : \emptyset) \\
&= (((V_1 e)\setminus\{x\}) \cup (y \in V_1 e) \cup \{x\} : \emptyset) \cap \\
&\quad (((V_2 e)\setminus\{x\}) \cup (y \in V_2 e) \cup \{x\} : \emptyset) \\
&= (f V_1 \cup f V_2) e
\]
We conclude:

→ Solving the constraint system returns the MOP solution
→ Let \mathcal{V} denote this solution.

If $x \in \mathcal{V}[u] e$, then x at u contains the value of e — which we have stored in T_e

\implies the access to x can be replaced by the access to T_e

For $V \in \mathcal{V}$, let V^- denote the variable substitution with:

$$V^- x = \begin{cases} T_e & \text{if } x \in V e \\ x & \text{otherwise} \end{cases}$$

if $Ve \cap Ve' = \emptyset$ for $e \neq e'$. Otherwise: $V^- x = x$
Transformation CE:

\[u \xrightarrow{\text{Pos}(e)} u \]

\[\sigma = V[u]^- \]

\[u \xrightarrow{\text{Pos}(\sigma(e))} u \]

... analogously for edges with \(\text{Neg}(e) \)

\[u \xrightarrow{x = e;} u \]

\[\sigma = V[u]^- \]

\[u \xrightarrow{x = \sigma(e);} u \]
Transformation CE (cont.):

\[x = M[e]; \quad \sigma = \mathcal{V}[u]^- \]

\[x = M[\sigma(e)]; \]

\[M[e_1] = e_2; \quad \sigma = \mathcal{V}[u]^- \]

\[M[\sigma(e_1)] = \sigma(e_2); \]
Procedure as a whole:

(1) Availability of expressions:
 + removes arithmetic operations
 - inserts superfluous moves

(2) Values of variables:
 + creates dead variables

(3) (true) liveness of variables:
 + removes assignments to dead variables
Example: \(a[7]--; \)

\[
\begin{align*}
A_1 &= A + 7; \\
B_1 &= M[A_1]; \\
B_2 &= B_1 - 1; \\
A_2 &= A + 7; \\
M[A_2] &= B_2;
\end{align*}
\]

\[
\begin{align*}
T_1 &= A + 7; \\
A_1 &= T_1; \\
B_1 &= M[A_1]; \\
T_2 &= B_1 - 1; \\
B_2 &= T_2; \\
T_1 &= A + 7; \\
A_2 &= T_1; \\
M[A_2] &= B_2;
\end{align*}
\]
Example: $a[7]--;$

$A_1 = A + 7;$

$B_1 = M[A_1];$

$B_2 = B_1 - 1;$

$A_2 = A + 7;$

$M[A_2] = B_2;$

$T_1 = A + 7;$

$A_1 = T_1;$

$B_1 = M[A_1];$

$T_2 = B_1 - 1;$

$B_2 = T_2;$

$T_1 = A + 7;$

$A_2 = T_1;$

$M[A_2] = B_2;$

$T_1 = A + 7;$

$A_1 = T_1;$

$B_1 = M[A_1];$

$T_2 = B_1 - 1;$

$B_2 = T_2;$

$;$

$A_2 = T_1;$

$M[A_2] = B_2;$
Example (cont.): \[a[7] \] --;

\[
T_1 = A + 7;
\]

\[
A_1 = T_1;
\]

\[
B_1 = M[A_1];
\]

\[
T_2 = B_1 - 1;
\]

\[
B_2 = T_2;
\]

\;

\[
A_2 = T_1;
\]

\[
M[A_2] = B_2;
\]

\[
T_1 = A + 7;
\]

\[
A_1 = T_1;
\]

\[
B_1 = M[T_1];
\]

\[
T_2 = B_1 - 1;
\]

\[
B_2 = T_2;
\]

\;

\[
A_2 = T_1;
\]

\[
M[T_1] = T_2;
\]
Example (cont.): \[a[7] -- ; \]

\[
\begin{align*}
T_1 &= A + 7; \\
A_1 &= T_1; \\
B_1 &= M[A_1]; \\
T_2 &= B_1 - 1; \\
B_2 &= T_2; \\
\vdots \\
A_2 &= T_1; \\
M[A_2] &= B_2;
\end{align*}
\]

\[
\begin{align*}
T_1 &= A + 7; \\
A_1 &= T_1; \\
B_1 &= M[T_1]; \\
T_2 &= B_1 - 1; \\
B_2 &= T_2; \\
\vdots \\
A_2 &= T_1; \\
M[T_1] &= T_2;
\end{align*}
\]

\[
\begin{align*}
T_1 &= A + 7; \\
A_1 &= T_1; \\
B_1 &= M[T_1]; \\
T_2 &= B_1 - 1; \\
B_2 &= T_2; \\
\vdots \\
A_2 &= T_1; \\
M[T_1] &= T_2;
\end{align*}
\]