Application:

Assume that we have computed the value of $x + y$ at program point u:

$$\begin{array}{c}
\circ \quad x+y \\
\downarrow \quad \pi \\
\circ \quad \pi \\
\end{array}$$

We perform a computation along path π and reach v where we evaluate again $x + y$...

Idea:

If x and y have not been modified in π, then evaluation of $x + y$ at v must return the same value as evaluation at u

We can check this property at every edge in π
Idea:

If x and y have not been modified in π, then evaluation of $x + y$ at v must return the same value as evaluation at u.

We can check this property at every edge in π.

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.
Idea:

If x and y have not been modified in π, then evaluation of $x + y$ at v must return the same value as evaluation at u.

We can check this property at every edge in π.

More generally:

Assume that the values of the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.

Every edge k transforms this set into a set $[k]^# A$ of expressions whose values are available after execution of k.
This transformations can be composed to the effect of a path
\[\pi = k_1 \ldots k_r: \]
\[[\pi]^\# = [k_r]^\# \circ \ldots \circ [k_1]^\# \]
... which transformations can be composed to the effect of a path \(\pi = k_1 \ldots k_r \):

\[
[\pi]^\# = [k_r]^\# \circ \ldots \circ [k_1]^\#
\]

The effect \([k]^\# \) of an edge \(k = (u, lab, v) \) only depends on the label \(lab \), i.e., \([k]^\# = [lab]^\# \)
... which transformations can be composed to the effect of a path \(\pi = k_1 \ldots k_r \):

\[
[\pi]^\# = [k_r]^\# \circ \ldots \circ [k_1]^\#
\]

\(k = (u, \text{lab}, v) \) only depends on the label \text{lab}, i.e., \([k]^\# = [\text{lab}]^\# \)

where:

\[
\begin{align*}
[;]^\# A &= A \\
[\text{Pos}(e)]^\# A &= [\text{Neg}(e)]^\# A &= A \cup \{e\} \\
[x = e;]^\# A &= (A \cup \{e\}) \setminus \text{Expr}_x
\end{align*}
\]

\(\text{Expr}_x \) all expressions which contain \(x \)
\[[x = M[e];] \# A \quad = \quad (A \cup \{e\}) \backslash \text{Expr}_x \]

\[[M[e_1] = e_2;] \# A \quad = \quad A \cup \{e_1, e_2\} \]
\[[x = M[e];]\] \# A = (A \cup \{e\}) \setminus \text{Expr}_x \\
\[[M[e_1] = e_2;]\] \# A = A \cup \{e_1, e_2\}

By that, every path can be analyzed.

A given program may admit several paths.

Depending on the input, different paths may be chosen.
\[[x = M[e];] \triangledown A \; = \; (A \cup \{e\}) \setminus \text{Expr}_x \]
\[[M[e_1] = e_2;] \triangledown A \; = \; A \cup \{e_1, e_2\} \]

By that, every path can be analyzed
A given program may admit several paths
For any given input, another path may be chosen

\[\Rightarrow \quad \text{For each node } v, \text{ we need the set:} \]
\[A[v] \; = \; \bigcap \{[\pi] \triangledown \emptyset \mid \pi : \text{start} \to^* v\} \]
Concretely:

→ The analysis considers all paths π that reach v.

→ For every path π, the analysis determines the set of expressions that are available along π.

→ Initially at program start, nothing is available

→ An expression is available at v if it is available along all paths to v. Therefore, the analysis computes the intersection of the availability sets as safe information
Concretely:

→ We consider all paths π which reach v.

→ For every path π, we determine the set of expressions which are available along π.

→ Initially at program start, nothing is available

→ We compute the intersection safe information

How do we exploit this information???
Transformation UT (unique temporaries):

We provide novel registers T_e as storage for the e:

```
x = e;
```

```
T_e = e;
```

```
x = T_e;
```
Transformation UT:

We provide novel registers T_e as storage for the e:
... analogously for \(R = M[e] \); and \(M[e_1] = e_2 \).

Transformation AEE (available expression elimination):

If \(e \) is available at program point \(u \), then \(e \) need not be re-evaluated:

We replace the assignment with \textit{Nop}
Example:

\[
\begin{align*}
x &= y + 3; \\
x &= 7; \\
z &= y + 3;
\end{align*}
\]
Example:

\[
\begin{align*}
 x &= y + 3; \\
 x &= 7; \\
 z &= y + 3; \\
 T &= y + 3; \\
 x &= T; \\
 x &= 7; \\
 T &= y + 3; \\
 z &= T;
\end{align*}
\]
Example:

\[
\begin{align*}
 x &= y + 3; \\
 x &= 7; \\
 z &= y + 3;
\end{align*}
\]

\[
\begin{align*}
 \{y + 3\} & \quad T = y + 3; \\
 \{y + 3\} & \quad x = T; \\
 \{y + 3\} & \quad x = 7; \\
 \{y + 3\} & \quad T = y + 3; \\
 \{y + 3\} & \quad z = T; \\
 \{y + 3\} & \quad T = y + 3;
\end{align*}
\]
Example:

\[
\begin{align*}
x &= y + 3; \\
x &= 7; \\
z &= y + 3;
\end{align*}
\]

\[
\begin{align*}
\{y + 3\} &\quad x = T; \\
\{y + 3\} &\quad x = 7; \\
\{y + 3\} &\quad ; \\
\{y + 3\} &\quad z = T; \\
\{y + 3\} &\quad T = y + 3;
\end{align*}
\]
Correctness: (Idea)

Transformation UT preserves the semantics and $A[u]$ for all program points u.

Assume $\pi : start \rightarrow^* u$ is the path taken by a computation. If $e \in A[u]$, then also $e \in [\pi]^2 \emptyset$.

Therefore, π can be decomposed into:

```
\begin{xy}
  0 *+[F]{\text{start}}; u_1 =< \pi_1 \\
  u_1 =< k \cong u_2 \\
  u_2 =< \pi_2 \\
  \end{xy}
```

with the following properties:
- The expression e is evaluated at the edge k;
- The expression e is not removed from the set of available expressions at any edge in π_2, i.e., no variable of e receives a new value
• The expression e is evaluated at the edge k;
• The expression e is not removed from the set of available expressions at any edge in π_2, i.e., no variable of e receives a new value

The register T_e contains the value of e whenever u is reached
Warning:

Transformation UT is only meaningful for assignments $x = e$; where:

$\rightarrow e \not\in Vars$;

\rightarrow the evaluation of e is non-trivial
Warning:

Transformation UT is only meaningful for assignments $x = e$; where:

$\rightarrow x \notin Vars(e)$;

$\rightarrow e \notin Vars$;

\rightarrow the evaluation of e is non-trivial

Which leaves us with the following question ...
Question:

How do we compute $A[u]$ for every program point u
Question:

How can we compute $A^*[u]$ for every program point u.

We collect all constraints on the values of $A[u]$ into a system of constraints:

- $A[\text{start}] \subseteq \emptyset$
- $A[v] \subseteq [k]^\circ (A[u])$

$k = (u,_,v)$ edge

Why \subseteq?
Wanted:

- a greatest solution (??)
- an algorithm that computes this solution

Example:

```
0
  y = 1;

1
  Neg(x > 1)  Pos(x > 1)

3
  x = x - 1;

4

2
  y = x * y;
```
Wanted:

- a greatest solution
- an algorithm that computes this solution

Example:
Wanted:

- a greatest solution (??)
- an algorithm that computes this solution

Example:

\[\mathcal{A}[0] \subseteq \emptyset \]
\[\mathcal{A}[1] \subseteq (\mathcal{A}[0] \cup \{1\}) \setminus \text{Expr}_y \]
\[\mathcal{A}[1] \subseteq \mathcal{A}[4] \]
Wanted:

- a greatest solution (??)
- an algorithm that computes this solution

Example:

\[
\begin{align*}
A[0] & \subseteq \emptyset \\
A[1] & \subseteq (A[0] \cup \{1\}) \backslash \text{Expr}_y \\
\end{align*}
\]
Wanted:

- a **greatest** solution (??)
- an algorithm that computes this solution

Example:

\[
\begin{align*}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq (\mathcal{A}[0] \cup \{1\}) \setminus \text{Expr}_y \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup \{x > 1\} \\
\mathcal{A}[3] & \subseteq (\mathcal{A}[2] \cup \{x * y\}) \setminus \text{Expr}_y
\end{align*}
\]
Wanted:

- a greatest solution (??)
- an algorithm that computes this solution

Example:

\[
\begin{align*}
&\text{Neg}(x > 1) \\
&A[0] \subseteq \emptyset \\
&A[1] \subseteq (A[0] \cup \{1\}) \backslash Expr_y \\
\end{align*}
\]
Wanted:

- a greatest solution (??)
- an algorithm that computes this solution

Example:

\[
\begin{align*}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq (\mathcal{A}[0] \cup \{1\}) \setminus \text{Expr}_y \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup \{x > 1\} \\
\mathcal{A}[3] & \subseteq (\mathcal{A}[2] \cup \{x \times y\}) \setminus \text{Expr}_y \\
\mathcal{A}[4] & \subseteq (\mathcal{A}[3] \cup \{x - 1\}) \setminus \text{Expr}_x \\
\mathcal{A}[5] & \subseteq \mathcal{A}[1] \cup \{x > 1\}
\end{align*}
\]
Wanted:

- a greatest solution (??)
- an algorithm that computes this solution

Example:

Solution:

\[A[0] = \emptyset \]
\[A[1] = \{1\} \]
\[A[2] = \{1, x > 1\} \]
\[A[3] = \{1, x > 1\} \]
\[A[4] = \{1\} \]
\[A[5] = \{1, x > 1\} \]
Observation:

- The possible values for $A[u]$ form a complete lattice:

 \[\mathcal{D} = 2^{\text{Expr}} \]
 with \[B_1 \subseteq B_2 \]
 iff \[B_1 \supseteq B_2 \]

 By convention: \[a \leq 5 \]
 iff \[a \] is not less precise than 6
Observation:

- The possible values for $A[u]$ form a complete lattice:
 \[\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \subseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2 \]

- The functions $[k]^\#: \mathbb{D} \rightarrow \mathbb{D}$ are monotonic, i.e.,
 \[[k]^\#(B_1) \subseteq [k]^\#(B_2) \quad \text{iff} \quad B_1 \subseteq B_2 \]
Background 2: Complete Lattices

A set \mathbb{D} together with a relation $\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for all $a, b, c \in \mathbb{D}$,

- $a \sqsubseteq a$ \hspace{1cm} \text{reflexivity}
- $a \sqsubseteq b \land b \sqsubseteq a \implies a = b$ \hspace{1cm} \text{anti-symmetry}
- $a \sqsubseteq b \land b \sqsubseteq c \implies a \sqsubseteq c$ \hspace{1cm} \text{transitivity}

Examples:

1. $\mathbb{D} = 2^{\{a, b, c\}}$ with the relation “\sqsubseteq”:
 $\sqsubseteq = \subseteq$
2. \(\mathbb{Z} \) with the relation \(\leq \) :

3. \(\mathbb{Z}_\bot = \mathbb{Z} \cup \{ \bot \} \) with the ordering:

Flat lattice
$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \subseteq d \quad \text{for all } x \in X$$
\[d \in \mathcal{D} \text{ is called upper bound for } X \subseteq \mathcal{D} \text{ if} \]

\[x \subseteq d \text{ for all } x \in X \]

\[d \text{ is called least upper bound (lub) if} \]

1. \(d \) is an upper bound and

2. \(d \subseteq y \) for every upper bound \(y \) of \(X \).
$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \subseteq d \quad \text{for all } x \in X$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \subseteq y$ for every upper bound y of X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0, 2, 4\} \subseteq \mathbb{Z}$ has the upper bounds $4, 5, 6, \ldots$
A partially ordered set \mathbb{D} is a **complete lattice (cl)** if every subset $X \subseteq \mathbb{D}$ has a least upper bound $\bigcup X \in \mathbb{D}$.

Note:

Every complete lattice has

\rightarrow **a least element** $\bot = \bigcup \emptyset \in \mathbb{D}$;

\rightarrow **a greatest element** $\top = \bigcup \mathbb{D} \in \mathbb{D}$.
Examples:

1. $\mathbb{D} = 2^{\{a, b, c\}}$ is a cl
2. $\mathbb{D} = \mathbb{Z}$ with \leq is not a cl.
3. $\mathbb{D} = \mathbb{Z}_\bot$ is also not
4. With an extra element \top, we obtain the flat lattice $\mathbb{Z}_\top = \mathbb{Z} \cup \{\bot, \top\}$.

\[\begin{align*}
&\text{\ldots -2 -1 0 1 2 \ldots} \\
&\text{\ldots} \\
&\text{\ldots}
\end{align*} \]
Back to the system of constraints for Available Expressions!

\[A[start] \subseteq \emptyset \]
\[A[v] \subseteq \llbracket k \rrbracket^\partial (A[u]) \quad k = (u, _, v) \text{ edge} \]

Combine all constraints for each variable \(v \) by applying the least-upper-bound operator \(\rightarrow \)

\[A[v] \subseteq \bigcap \{\llbracket k \rrbracket^\partial (A[u]) \mid k = (u, _, v) \text{ edge}\} \]

Correct because:

\[x \supseteq d_1 \land \ldots \land x \supseteq d_k \quad \text{iff} \quad x \supseteq \bigcup\{d_1, \ldots, d_k\} \]
We derive a generic form of the systems of constraints:

\[x_i \equiv f_i(x_1, \ldots, x_n) \]

relation to the running example:

\(x_i \)	unknown	here: \(A[u] \)
\(D \)	values	here: \(2^{Expr} \)
\(\subseteq \subseteq D \times D \)	ordering relation	here: \(\supseteq \)
\(f_i: D^n \rightarrow D \)	constraint	here: \(\ldots \)
A mapping \(f : \mathbb{D}_1 \rightarrow \mathbb{D}_2 \) is called monotonic, if \(f(a) \sqsubseteq f(b) \) for all \(a \sqsubseteq b \).
A mapping \(f : \mathcal{D}_1 \rightarrow \mathcal{D}_2 \) is called monotonic, if \(f(a) \subseteq f(b) \) for all \(a \subseteq b \).

Examples:

(1) \(\mathcal{D}_1 = \mathcal{D}_2 = 2^U \) for a set \(U \) and \(f x = (x \cap a) \cup b \).

Obviously, every such \(f \) is monotonic
A mapping \(f : \mathbb{D}_1 \rightarrow \mathbb{D}_2 \) is called \textit{monotonic}, is \(f(a) \sqsubseteq f(b) \) for all \(a \sqsubseteq b \).

Examples:

(1) \(\mathbb{D}_1 = \mathbb{D}_2 = 2^U \) for a set \(U \) and \(f x = (x \cap a) \cup b \).

Obviously, every such \(f \) is monotonic.

(2) \(\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z} \) (with the ordering “\(\leq \)”). Then:

- \(\text{inc } x = x + 1 \) is monotonic.
- \(\text{dec } x = x - 1 \) is monotonic.
A mapping \(f : \mathcal{D}_1 \rightarrow \mathcal{D}_2 \) is called **monotonic** if \(f(a) \subseteq f(b) \) for all \(a \subseteq b \).

Examples:

1. \(\mathcal{D}_1 = \mathcal{D}_2 = 2^U \) for a set \(U \) and \(f x = (x \cap a) \cup b \).

 Obviously, every such \(f \) is monotonic.

2. \(\mathcal{D}_1 = \mathcal{D}_2 = \mathbb{Z} \) (with the ordering “\(\leq \)”). Then:

 - \(\text{inc } x = x + 1 \) is monotonic.
 - \(\text{dec } x = x - 1 \) is monotonic.
 - \(\text{inv } x = -x \) is not monotonic.
Theorem:

If $f_1 : \mathcal{D}_1 \to \mathcal{D}_2$ and $f_2 : \mathcal{D}_2 \to \mathcal{D}_3$ are monotonic, then also $f_2 \circ f_1 : \mathcal{D}_1 \to \mathcal{D}_3$
Theorem:
If $f_1 : D_1 \to D_2$ and $f_2 : D_2 \to D_3$ are monotonic, then also $f_2 \circ f_1 : D_1 \to D_3$.

Theorem:
If D_2 is a complete lattice, then the set $[D_1 \to D_2]$ of monotonic functions $f : D_1 \to D_2$ is also a complete lattice where

\[
f \sqsubseteq g \quad \text{iff} \quad f x \sqsubseteq g x \quad \text{for all} \quad x \in D_1\]
Theorem:
If \(f_1 : \mathcal{D}_1 \rightarrow \mathcal{D}_2 \) and \(f_2 : \mathcal{D}_2 \rightarrow \mathcal{D}_3 \) are monotonic, then also \(f_2 \circ f_1 : \mathcal{D}_1 \rightarrow \mathcal{D}_3 \)

Theorem:
If \(\mathcal{D}_2 \) is a complete lattice, then the set \([\mathcal{D}_1 \rightarrow \mathcal{D}_2]\) of monotonic functions \(f : \mathcal{D}_1 \rightarrow \mathcal{D}_2 \) is also a complete lattice where
\[
 f \sqsubseteq g \text{ iff } f x \sqsubseteq g x \text{ for all } x \in \mathcal{D}_1
\]

In particular for \(F \subseteq [\mathcal{D}_1 \rightarrow \mathcal{D}_2] \),
\[
 \bigsqcup F = f \text{ mit } f x = \bigsqcup \{g x \mid g \in F\}
\]
A frequently occurring form of functions \(f_i x = a_i \cap x \cup b_i \).

The operations "\(\circ \)", "\(\sqcup \)" and "\(\sqcap \)" can be explicitly defined by:

\[
\begin{align*}
(f_2 \circ f_1) x &= a_1 \cap a_2 \cap x \cup a_2 \cap b_1 \cup b_2 \\
(f_1 \sqcup f_2) x &= (a_1 \cup a_2) \cap x \cup b_1 \cup b_2 \\
(f_1 \sqcap f_2) x &= (a_1 \cup b_1) \cap (a_2 \cup b_2) \cap x \cup b_1 \cap b_2
\end{align*}
\]
Wanted: least solution for:

\[x_i \equiv f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \quad (\ast) \]

where all \(f_i : \mathbb{D}^n \to \mathbb{D} \) are monotonic.
Wanted: minimally small solution for:

\[x_i \equiv f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \quad (\ast) \]

where all \(f_i : \mathbb{D}^n \to \mathbb{D} \) are monotonic.

Idea:

- Consider \(F : \mathbb{D}^n \to \mathbb{D}^n \) where

\[F(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \quad \text{with} \quad y_i = f_i(x_1, \ldots, x_n). \]
Wanted: minimally small solution for:

\[x_i \equiv f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \]

\((*)\)

where all \(f_i : \mathbb{D}^n \to \mathbb{D} \) are monotonic.

Idea:

- Consider \(F : \mathbb{D}^n \to \mathbb{D}^n \) where

\[F(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \quad \text{with} \quad y_i = f_i(x_1, \ldots, x_n). \]

- If all \(f_i \) are monotonic, then also \(F \)
Wanted: minimally small solution for:

\[x_i \equiv f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \quad (\star) \]

where all \(f_i : \mathbb{D}^n \to \mathbb{D} \) are monotonic.

Idea:

- Consider \(F : \mathbb{D}^n \to \mathbb{D}^n \) where

\[F(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \text{ with } y_i = f_i(x_1, \ldots, x_n). \]

- If all \(f_i \) are monotonic, then also \(F \)

- We successively approximate a solution. We construct:

\[\bot, \quad F \bot, \quad F^2 \bot, \quad F^3 \bot, \quad \ldots \]

Hope: We eventually reach a solution ... ????
Example: \[\mathcal{D} = 2^{\{a, b, c\}}, \quad \subseteq = \subseteq \]

\[
\begin{align*}
x_1 & \supseteq \{a\} \cup x_3 \\
x_2 & \supseteq x_3 \cap \{a, b\} \\
x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]
Example: \[D = 2^{\{a,b,c\}}, \quad \subseteq = \subseteq \]

\[x_1 \supseteq \{a\} \cup x_3 \]
\[x_2 \supseteq x_3 \cap \{a, b\} \]
\[x_3 \supseteq x_1 \cup \{c\} \]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>0</td>
<td>{a}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td>{a}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>0</td>
<td>{c}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: $\mathbb{D} = 2^{\{a,b,c\}}, \quad \subseteq = \subseteq$

\[
\begin{align*}
x_1 & \supseteq \{a\} \cup x_3 \\
x_2 & \supseteq x_3 \cap \{a, b\} \\
x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>\emptyset</td>
<td>${a}$</td>
<td>${a, c}$</td>
<td>\emptyset</td>
<td>${a, c}$</td>
</tr>
<tr>
<td>x_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>x_3</td>
<td>\emptyset</td>
<td>${c}$</td>
<td>${a, c}$</td>
<td>${a, c}$</td>
<td>${a, c}$</td>
</tr>
</tbody>
</table>
Example: \(\mathbb{D} = 2^\{a, b, c\}, \quad \subseteq = \subseteq \)

- \(x_1 \supseteq \{a\} \cup x_3 \)
- \(x_2 \supseteq x_3 \cap \{a, b\} \)
- \(x_3 \supseteq x_1 \cup \{c\} \)

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>\emptyset</td>
<td>{a}</td>
<td>{a, c}</td>
<td>{a, c}</td>
<td>{a, c}</td>
</tr>
<tr>
<td>(x_2)</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>(x_3)</td>
<td>\emptyset</td>
<td>{c}</td>
<td>{a, c}</td>
<td>{a, c}</td>
<td>{a, c}</td>
</tr>
</tbody>
</table>
Example: \[\mathbb{D} = 2^{\{a,b,c\}}, \quad \subseteq = \subseteq \]

\[
x_1 \supseteq \{a\} \cup x_3
\]
\[
x_2 \supseteq x_3 \cap \{a, b\}
\]
\[
x_3 \supseteq x_1 \cup \{c\}
\]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(\emptyset)</td>
<td>({a})</td>
<td>({a, c})</td>
<td>({a, c})</td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>({a})</td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>(\emptyset)</td>
<td>({c})</td>
<td>({a, c})</td>
<td>({a, c})</td>
<td></td>
</tr>
</tbody>
</table>
Example: \(\mathbb{D} = 2^{\{a,b,c\}}, \quad \mathbb{C} = \subseteq \)

\[
\begin{align*}
x_1 & \supseteq \{a\} \cup x_3 \\
x_2 & \supseteq x_3 \cap \{a, b\} \\
x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(\emptyset)</td>
<td>({a})</td>
<td>({a, c})</td>
<td>({a, c})</td>
<td>ditto</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>({a})</td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>(\emptyset)</td>
<td>({c})</td>
<td>({a, c})</td>
<td>({a, c})</td>
<td></td>
</tr>
</tbody>
</table>

119
Theorem

- \(\bot, F \bot, F^2 \bot, \ldots \) form an ascending chain:

\[
\bot \subseteq F \bot \subseteq F^2 \bot \subseteq \ldots
\]

- If \(F^k \bot = F^{k+1} \bot \), a solution is obtained which is the least one.
- If all ascending chains are finite, such a \(k \) always exists.
Theorem

- \(\bot, F \bot, F^2 \bot, \ldots \) form an ascending chain:

\[
\bot \subseteq F \bot \subseteq F^2 \bot \subseteq \ldots
\]

- If \(F^k \bot = F^{k+1} \bot \), a solution is obtained which is the least one
- If all ascending chains are finite, such a \(k \) always exists.

Proof

The first claim follows by induction:

Foundation: \(F^0 \bot = \bot \subseteq F^1 \bot \)
Step: Assume \(F^{i-1} \bot \subseteq F^i \bot \). Then

\[
F^i \bot = F(F^{i-1} \bot) \subseteq F(F^i \bot) = F^{i+1} \bot
\]

since \(F \) monotonic
Step: Assume $F^{i-1} \perp \subseteq F^i \perp$. Then

$$F^i \perp = F (F^{i-1} \perp) \subseteq F (F^i \perp) = F^{i+1} \perp$$

since F monotonic

Conclusion:

If \mathbb{D} is finite, a solution can be found which is definitely the least

Question:

What, if \mathbb{D} is not finite ???