Background 3: Fixpoint Algorithms

Consider:

\[x_i \sqsupseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \]

Observation:

RR-Iteration is **inefficient**:

→ We require a complete round in order to detect termination :-(
→ If in some round, the value of just one unknown is changed, then we still re-compute all :-(
→ The practical run-time depends on the ordering on the variables :-(

405
Idea: Worklist Iteration

If an unknown x_i changes its value, we re-compute all unknowns which depend on x_i. Technically, we require:

→ the lists $\text{Dep } f_i$ of unknowns which are accessed during evaluation of f_i. From that, we compute the lists:

$$I[x_i] = \{ x_j \mid x_i \in \text{Dep } f_j \}$$

i.e., a list of all x_j which depend on the value of x_i;

→ the values $D[x_i]$ of the x_i where initially $D[x_i] = \perp$;

→ a list W of all unknowns whose value must be recomputed ...
The Algorithm:

\[
W = [x_1, \ldots, x_n];
\]

while \((W \neq [])\) {

\[
x_i = \text{extract } W;
\]

\[
t = f_i \text{ eval};
\]

\[
t = D[x_i] \sqcup t;
\]

if \((t \neq D[x_i])\) {

\[
D[x_i] = t;
\]

\[
W = \text{append } I[x_i] W;
\]

}

}

where: \(eval \ x_j = D[x_j]\)
Example:

\[
\begin{align*}
x_1 & \supseteq \{a\} \cup x_3 \\
x_2 & \supseteq x_3 \cap \{a, b\} \\
x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>({x_3})</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>({x_1, x_2})</td>
</tr>
</tbody>
</table>
Example:

\[x_1 \supseteq \{a\} \cup x_3 \]
\[x_2 \supseteq x_3 \cap \{a, b\} \]
\[x_3 \supseteq x_1 \cup \{c\} \]

<table>
<thead>
<tr>
<th></th>
<th>(D[x_1])</th>
<th>(D[x_2])</th>
<th>(D[x_3])</th>
<th>(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td></td>
<td>(x_1, x_2, x_3)</td>
</tr>
<tr>
<td>({a})</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td></td>
<td>(x_2, x_3)</td>
</tr>
<tr>
<td>({a})</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td></td>
<td>(x_3)</td>
</tr>
<tr>
<td>({a})</td>
<td>(\emptyset)</td>
<td>({a, c})</td>
<td></td>
<td>(x_1, x_2)</td>
</tr>
<tr>
<td>({a, c})</td>
<td>(\emptyset)</td>
<td>({a, c})</td>
<td></td>
<td>(x_3, x_2)</td>
</tr>
<tr>
<td>({a, c})</td>
<td>(\emptyset)</td>
<td>({a, c})</td>
<td></td>
<td>(x_2)</td>
</tr>
<tr>
<td>({a, c})</td>
<td>({a})</td>
<td>({a, c})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(I\):

<table>
<thead>
<tr>
<th></th>
<th>(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>({x_3})</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>({x_1, x_2})</td>
</tr>
</tbody>
</table>
Theorem

Let \(x_i \sqsupseteq f_i(x_1, \ldots, x_n), \ i = 1, \ldots, n \) denote a constraint system over the complete lattice \(\mathbb{D} \) of height \(h > 0 \).

(1) The algorithm terminates after at most \(h \cdot N \) evaluations of right-hand sides where

\[
N = \sum_{i=1}^{n} (1 + \#(Dep f_i)) \quad \text{// size of the system} \quad :-) \]

(2) The algorithm returns a solution.
If all \(f_i \) are monotonic, it returns the least one.
Proof:

Ad (1):

Every unknown x_i may change its value at most h times :-)

Each time, the list $I[x_i]$ is added to W.

Thus, the total number of evaluations is:

\[
\begin{align*}
\leq & \quad n + \sum_{i=1}^{n} (h \cdot \#(I[x_i])) \\
= & \quad n + h \cdot \sum_{i=1}^{n} \#(I[x_i]) \\
= & \quad n + h \cdot \sum_{i=1}^{n} \#(Dep f_i) \\
\leq & \quad h \cdot \sum_{i=1}^{n} (1 + \#(Dep f_i)) \\
= & \quad h \cdot N
\end{align*}
\]
Ad (2):

We only consider the assertion for monotonic f_i. Let D_0 denote the least solution. We show:

- $D_0[x_i] \subseteq D[x_i]$ (all the time)
- $D[x_i] \not\subseteq f_i \text{ eval} \implies x_i \in W$ (at exit of the loop body)
- On termination, the algo returns a solution :-))
Discussion:

- In the example, fewer evaluations of right-hand sides are required than for RR-iteration
- The algo also works for non-monotonic f_i
- For monotonic f_i, the algo can be simplified:
 \[
 t = D[x_i] \sqcup t; \quad \Longrightarrow \quad ;
 \]
- In presence of widening, we replace:
 \[
 t = D[x_i] \sqcup t; \quad \Longrightarrow \quad t = D[x_i] \sqcup t;
 \]
- In presence of Narrowing, we replace:
 \[
 t = D[x_i] \sqcup t; \quad \Longrightarrow \quad t = D[x_i] \sqcap t;
 \]
Warning:

- The algorithm relies on explicit dependencies among the unknowns. So far in our applications, these were obvious. This need not always be the case :
- We need some strategy for extract which determines the next unknown to be evaluated.
- It would be ingenious if we always evaluated first and then accessed the result ... :-)

 ➔ recursive evaluation ...
Idea:

→ If during evaluation of f_i, an unknown x_j is accessed, x_j is first solved recursively. Then x_i is added to $I[x_j]$.

\[
\text{eval } x_i \ x_j = \text{solve } x_j;
\]

\[
I[x_j] = I[x_j] \cup \{x_i\};
\]

\[
D[x_j];
\]

→ In order to prevent recursion to descend infinitely, a set $Stable$ of unknown is maintained for which solve just looks up their values.

Initially, $Stable = \emptyset$...
The Function solve:

$$\text{solve } x_i = \begin{cases} \text{if } (x_i \notin \text{Stable}) \{ \\
\text{Stable} = \text{Stable} \cup \{x_i\}; \\
t = f_i(\text{eval } x_i); \\
t = D[x_i] \sqcup t; \\
\text{if } (t \neq D[x_i]) \{ \\
W = I[x_i]; \quad I[x_i] = \emptyset; \\
D[x_i] = t; \\
\text{Stable} = \text{Stable}\setminus W; \\
\text{app solve } W; \\
\} \\
\} \\
\}$$
Helmut Seidl, TU München ;-)}
Example:

Consider our standard example:

\[
\begin{align*}
 x_1 & \supseteq \{a\} \cup x_3 \\
 x_2 & \supseteq x_3 \cap \{a, b\} \\
 x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]

A trace of the fixpoint algorithm then looks as follows:
solve x_2 eval $x_2 \ x_3$ solve x_3 eval $x_3 \ x_1$ solve x_1 eval $x_1 \ x_3$ solve x_3

stable!

$I[x_3] = \{x_1\}$
$⇒ \emptyset$

$I[x_3] = \emptyset$

$D[x_1] = \{a\}$
$I[x_1] = \{x_3\}$
$⇒ \{a\}$

$D[x_3] = \{a, c\}$
$I[x_3] = \emptyset$

$solve \ x_1$ eval $x_1 \ x_3$ solve x_3

stable!

$I[x_3] = \{x_1\}$
$⇒ \{a, c\}$

$D[x_1] = \{a, c\}$
$I[x_1] = \emptyset$

$solve \ x_3$ eval $x_3 \ x_1$ solve x_1

stable!

$I[x_1] = \{x_3\}$
$⇒ \{a, c\}$

$D[x_2] = \{a\}$

$I[x_3] = \{x_1, x_2\}$
$⇒ \{a, c\}$

ok
Evaluation starts with an interesting unknown x_i (e.g., the value at $stop$)

Then automatically all unknowns are evaluated which influence x_i :-(

The number of evaluations is often smaller than during worklist iteration ;-

The algorithm is more complex but does not rely on pre-computation of variable dependencies :-(

It also works if variable dependencies during iteration change !!!

⇒ interprocedural analysis