Please hand in the solutions to the theoretical exercises until the beginning of the next lecture, Wed. 2011-06-01, 10:00. Please write the number of your tutorial group and/or the date/time slot on the first sheet of your solution.

Exercise 6.1: Reaching Definitions (Points: 8)

Design Design a static analysis that determines which variable definitions reach which program points. Your analysis shall compute for each program point u the set $R[u]$ that contains for each program variable $x \in Vars$ a pair (x, p), where p is the program point at which x was defined, i.e., lastly written to.

Please state explicitly what domain you use for your information carriers and what its top and bottom elements are. Furthermore, give a definition of the edge effects for all language constructs of our toy language, define the MOP, and state how to construct the systems of inequalities used to compute the MOP.

Example Consider the following program. Draw its control-flow graph and construct the system of inequalities your reaching definitions analysis generates for this program. Find a least solution to this system of inequalities using a worklist algorithm!

```plaintext
x = 314;
y = 42;
i = 0;
c:
  if(x > 0) {
    x = x - y;
i = i + 1;
goto c;
  }
```