Exercise 3.1: Live Variables vs. Truly Live Variables (Points: 6)

Perform an analysis for live variables as well as an analysis for truly live variables on the following program. Use Round-Robin Iteration to solve your systems of inequations. Please write down all iteration steps. Assume X, the set of variables live at the end of the program, to be the empty set.

```
x = 5;
y = 6;
c:
if(y > 0) {
x = x * x;
x = x - 1;
y = y - 1;
goto c;
}
y = y * 1;
stopAt = y;
M[RESULT] = x;
```

Exercise 3.2: Truly Live Variables (Points: 5)

Implement a truly live variables analysis in PAG/WWW.

Exercise 3.3: Dead Variables (Points: 4)

In the lecture we discussed two analyses that enable the removal of unnecessary assignments: live and truly live variable analysis. In this exercise you should design a third analysis enabling such an optimization: an analysis that determines the set of (definitely) dead variables at each program point.

Exercise 3.4: Parameters (Points: 5)

Design an analysis that determines which variables can be classified as parameters. A parameter in this sense is simply a variable that is read before it is written by the program.

Exercise 3.5: Forward or Backward? (Bonus Points: 5)

In the first lecture, you learned that each analysis can be implemented as a forward or a backward analysis. However, one direction may be more complicated and less intuitive than the other. An analysis to compute available expressions as designed in Exercise 1.2 is typically realized as a forward analysis. In this exercise you are to redesign your available expressions analysis as a backward analysis. I.e., construct a backward analysis that computes what expressions are available at the different program points.