Embedded Systems Development

Lecture 13
Real-Time Scheduling

Dr. Daniel Kästner
AbsInt Angewandte Informatik GmbH
kaestner@absint.com
Model-based Software Development

- Esterel SCADE
 - SCADE language ✓
 - SyncCharts ✓

- Lustre programs
- Esterel programs
- C Code
- Binary Code

- aiT WCET Analyzer
 - Timing Validation

- SymTA/S
 - System-level Scheduling & Schedulability Analysis
Setting the scene

- Hard real-time systems can be designed as a set of cooperating sequential processes (tasks).

Questions:
- In which order to execute tasks?
- How to deal with shared resources?
- How to guarantee timely execution?
The Endless Loop

Do forever
 request input device;
 fetch input value;
 do computation;
 request output device;
 write output;
End
The Basic Cyclic Executive

- Let three procedures A, B, and C be given.

```plaintext
Do forever
    call A;
    call B;
    call C;
End
```
The Time-Driven Cyclic Executive

- Let three procedures A, B, and C be given.

```
Do forever
    wait for timer interrupt;
    call A;
    call B;
    call C;
End
```

- The rate of hardware timer interrupts is the rate at which the procedures (tasks) must execute.
Multi-Rate Cyclic Executive

- Let the following task system be given:

```
Do forever // The major cycle
  wait for timer interrupt; //1st
  A; B; C;
  wait for timer interrupt; //2nd
  A; B; D; E;
  wait for timer interrupt; //3rd minor cycle
  A; B; C;
  wait for timer interrupt; //4th minor cycle
  A; B; D;
End
```

<table>
<thead>
<tr>
<th>Task</th>
<th>Period</th>
<th>WCET</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>60</td>
<td>1</td>
</tr>
</tbody>
</table>

- Procedures are mapped onto a set of minor cycles that together constitute the complete schedule (or major cycle).
The Cyclic Executive

- Naive, but common way to implement concurrent hard real-time systems.
- No actual processes exist at run-time; each minor cycle is just a sequence of procedure calls.
- Procedures share a common address space and can thus pass data between themselves. Concurrent access is not possible, thus no protection (e.g. semaphores) required.
- All process periods must be a multiple of the minor cycle time.
The Cyclic Executive

- Simple process model:
 - Application consists of **fixed set of processes**
 - All processes are **periodic**
 - All processes are **independent** from each other
 - Context-switching times and other **overhead is ignored**
 - All processes have a **deadline equal to their period**
 - All processes have **known worst-case execution time**
The Cyclic Executive - Problems

- System is deterministic, but only fully so for the first task (at begin of major/minor cycle). All later tasks start to run whenever the preceding ones have ended.
- Hardware devices are polled. If they are not polled frequently enough, important events might be missed. If they are polled too frequently, processing power is wasted.
- Code for logically independent tasks is interleaved.
- Difficult to incorporate processes with long periods.
- If procedures are split up to form tasks with lower execution times, finding the right granularity of “processes” is difficult.
- Sporadic activities cannot be incorporated.
- Difficult to construct (NP complete) and difficult to maintain.
The Scheduling Problem: Classification

- Scheduling problems usually are classified according to a set of criteria:
 - the cost function
 - hard deadlines vs soft deadlines
 - periodic vs. aperiodic vs. sporadic events
 - preemptive vs. non-preemptive
 - static vs. dynamic
 - online vs offline
The Scheduling Problem: Classification

- Tasks which must be executed once every p units of time are called periodic, and p is called their period. Each execution of a periodic task is called a job.
- Tasks which are not periodic are called aperiodic.
- Aperiodic tasks requesting the processor at unpredictable times are called sporadic, if there is a minimum separation between the times at which they request the processor.

- A preemptive scheduler can arbitrarily suspend process’s execution and restart it later without affecting the functional behavior of the process. Preemption typically occurs when a higher priority process becomes runnable. Non-preemptive schedulers do not suspend processes in this way.
The Scheduling Problem: Classification

- An offline scheduling algorithm makes all scheduling decisions prior to the running of the system. Online scheduling algorithms schedule tasks at run-time; they can be either static or dynamic.

- In a static scheduling algorithm calculating the schedules is based on information about a process’s characteristics available before the system is run. It requires little runtime overhead.

- A dynamic method schedules at run-time, taking into account both process characteristics and the current state of the system. It has higher run-time cost but can deal with non-predicted events and can give greater processor utilization.
The Task Model

- Let $\Gamma = \{ T_i \}$ be a set of tasks. Then let
 - r_i be the release time (or arrival time) which is the time at which T_i is ready for processing
 - c_i be the worst-case execution time of T_i
 - d_i be the deadline interval, i.e., the time between T_i becoming available and the time until which T_i has to finish execution
 - $l_i = d_i - c_i$ be the laxity or slack of T_i.
- In $\{ T_i \}$ precedence constraints among tasks may be defined. $T_i \rightarrow T_j$ means that the processing of T_i must be completed before T_j can be started.
Task Model

- The following parameters can be calculated from a given schedule:
 - Completion Time C_i
 - Response Time $R_i = C_i - r_i$
 - Lateness $L_i = C_i - d_i$
 - Tardiness $D_i = \max \{ C_i - d_i, 0 \}$

- Some performance measures / goal functions:
 - Schedule Length (makespan) $C_{\text{max}} = \max\{ C_i \}$
 - Maximum Lateness $L_{\text{max}} = \max\{ L_i \}$

- Critical instant: That time at which the release of a task will produce the largest response time.

- Scheduling to minimize the makespan with release times and deadlines is NP hard.
Overview

- Static-Priority Scheduling (Fixed-priority Scheduling)
- Dynamic-Priority Scheduling
- Schedulability and Response Time Analysis

Further reading:
Fixed-Priority Scheduling

- Under fixed-priority scheduling, different jobs of a task are assigned the same priority.

- A fixed-priority scheduling scheme S is optimal if the following criterion is satisfied:
 If any process can be scheduled with some fixed-priority assignment scheme,
 then the given process can also be scheduled with scheme S.
Rate Monotonic Scheduling

- Let each process have a unique priority P_i based on its period π_i.
- We assume that the shorter the period, the higher the priority, i.e. $\pi_i < \pi_j \Leftrightarrow P_i > P_j$.
- Further assume $d_i = \pi_i$ for all tasks T_i.
- Example schedule: T_1 with $\pi_1=3$ and $c_1=0.5$, T_2 with $\pi_2=4$ and $c_2=1$ and T_3 with $\pi_3=6$ and $c_3=2$.
Rate Monotonic Scheduling

- The priority of a process is derived from its temporal requirements, not its importance to the system, nor its integrity.
- Note: priority 1 is lowest (least) priority.

<table>
<thead>
<tr>
<th>Task</th>
<th>Period π</th>
<th>Priority P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>35</td>
<td>3</td>
</tr>
</tbody>
</table>

- The schedulability depends on the period and the maximal computational requirements of each process.
Processor Utilization

- Let $\Gamma = \{ T_i \}$ be a set of tasks. The utilization U of a task set is defined as
 \[U = \sum_{i=1}^{N} \frac{C_i}{\pi_i} \]

- Corollary: If the utilization factor of a task set $\Gamma = \{ T_i \}_{i=1}^{N}$ is greater than one, the task set cannot be scheduled by any algorithm.

- Let $\Pi = \pi_1 \pi_2 ... \pi_N$ be the product of all periods. If $U > 1$, then also $U \Pi > \Pi$, which can be written as
 \[\sum_{i=1}^{N} \frac{\Pi}{\pi_i} c_i > \Pi \]

- Π/π_i is the number of times task T_i is executed in the interval Π.
- $(\Pi/\pi_i)c_i$ is the total computation time requested by T_i in the interval Π.
- Thus: if the total demand in computation time is higher than the available processor time, there can be no feasible schedule for the task set.
Processor Utilization

- There exists a maximum value of U below which Γ is schedulable and above which Γ is not schedulable. This limit depends on
 - the task set, ie. the relations among task’s periods
 - and on the algorithm used to schedule the tasks.
- Let $U_{ub}(\Gamma, A)$ be an upper bound of the processor utilization factor for a task set Γ under an algorithm A.
- When $U_{ub}(\Gamma, A) = U$, Γ fully utilizes the processor. Then Γ is schedulable but an increase in computation time in any of the tasks will make the set infeasible.
- For a given algorithm A, the least upper bound $U_{lub}(A)$ is the minimum of the utilization factors over all task sets that fully utilize the processor:
 $$U_{lub}(A) = \min_{\Gamma} U_{ub}(\Gamma, A)$$
- Any task set whose processor utilization factor is below $U_{lub}(A)$ is schedulable by $A \Rightarrow$ With U_{lub} schedulability can be easily verified!
Rate Monotonic Scheduling

- Theorem [Liu and Layland]: A system of N independent, preemptable periodic tasks T_i with $d_i = \pi_i$ can be feasibly scheduled on a processor according to the rate monotonic algorithm if its total utilization U is at most

 $$U_{RM} = N(2^{\frac{1}{N}} - 1)$$

- Note: U_{RM} asymptotically approaches $\ln 2$ (69.3%).

<table>
<thead>
<tr>
<th>N</th>
<th>$U_{RM}(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.828</td>
</tr>
<tr>
<td>3</td>
<td>0.779</td>
</tr>
<tr>
<td>4</td>
<td>0.756</td>
</tr>
<tr>
<td>5</td>
<td>0.743</td>
</tr>
<tr>
<td>6</td>
<td>0.734</td>
</tr>
</tbody>
</table>
Example: Process Set A

<table>
<thead>
<tr>
<th>Process</th>
<th>Period π</th>
<th>WCET c</th>
<th>Priority P</th>
<th>Utilization U</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>50</td>
<td>12</td>
<td>1</td>
<td>0.240</td>
</tr>
<tr>
<td>T2</td>
<td>40</td>
<td>10</td>
<td>2</td>
<td>0.250</td>
</tr>
<tr>
<td>T3</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>0.333</td>
</tr>
</tbody>
</table>

- The combined utilization is $U = \frac{12}{50} + \frac{10}{40} + \frac{10}{30} = 0.823$.
- Since this is above the threshold for three processes ($URM(3) = 0.78$), this process set fails the utilization test.
Example: Process Set B

<table>
<thead>
<tr>
<th>Process</th>
<th>Period π</th>
<th>WCET c</th>
<th>Priority P</th>
<th>Utilization U</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>80</td>
<td>32</td>
<td>1</td>
<td>0.400</td>
</tr>
<tr>
<td>T2</td>
<td>40</td>
<td>5</td>
<td>2</td>
<td>0.125</td>
</tr>
<tr>
<td>T3</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>0.250</td>
</tr>
</tbody>
</table>

- The combined utilization is $U = \frac{32}{80} + \frac{5}{40} + \frac{5}{20} = 0.775$.
- Since this is below the threshold for three processes ($U_{RM}(3) = 0.78$), this process set will meet all its deadlines.
Example: Process Set C

<table>
<thead>
<tr>
<th>Process</th>
<th>Period π</th>
<th>WCET c</th>
<th>Priority P</th>
<th>Utilization U</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
<td>40</td>
<td>1</td>
<td>0.500</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>10</td>
<td>2</td>
<td>0.250</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>0.250</td>
</tr>
</tbody>
</table>

- The combined utilization is 1.0.
- Since this is above the threshold for three processes ($U_{RM}(3)=0.78$), this process set fails the utilization test. Nevertheless the process set will meet all its deadlines.
Critical Instants

- Corollary: A critical instant for a task occurs whenever the task is released simultaneously with all higher-priority tasks.

- Let $\Gamma = \{ T_i \}_{i=1..N}$ be a set of periodic tasks, ordered by increasing periods, ie $\pi_1 < \pi_2 < ... < \pi_n$ and, thus $P_1 > P_2 > ... > P_N$.

 ![Diagram of periodic tasks](image)

 - T_n
 - T_i

 $R_n = c_n + 2c_i$

 $R_n = c_n + 3c_i$

- Intuition:
 - The response time of task T_n is delayed by the interference of a task T_i with higher priority.
 - Advancing the release time of T_i may increase the completion time of T_n.
Optimality of Rate Monotonic Scheduling

- **Observation:** If all tasks are feasible at their critical instants, then the task set is schedulable in any other condition.

- **Theorem:** If a task set is schedulable by an arbitrary fixed priority assignment, then it is also schedulable by RM.

- Let T_1 and T_2 be two periodic tasks with $\pi_1 < \pi_2$. Assume that their priorities are not assigned according to RM, ie $P_2 > P_1$.

- At a critical instant, the schedule is feasible if the following inequality is satisfied:

$$c_1 + c_2 \leq \pi_1 \quad (Eq. 1)$$
Optimality of Rate Monotonic Scheduling

Now we want to show that T_1 and T_2 are also schedulable with the RM priority scheme, i.e., when $P_1 > P_2$.

Let $m = \left\lfloor \frac{\pi_2}{\pi_1} \right\rfloor$ be the number of periods of T_1 entirely contained in π_2.

Then two cases have to be distinguished:

Case 1: The computation time c_1 is short enough that all requests of T_1 within the critical time zone of T_2 are completed before the second request of T_2. That is: $c_1 \leq \pi_2 - m \pi_1$.

![Diagram of T1 and T2 with m and pi1 annotations]
Optimality of Rate Monotonic Scheduling

- Then the task set is schedulable if
 \[(m + 1)c_1 + c_2 \leq \pi_2 \quad (Eq. 2)\]

- We have to show that Eq.1 ⇒ Eq.2.
 \[c_1 + c_2 \leq \pi_1 \quad (Eq. 1)\]
 \[\iff mc_1 + mc_2 \leq m\pi_1\]
 \[\iff mc_1 + c_2 \leq mc_1 + mc_2 \leq m\pi_1, \text{ since } m \geq 1\]
 \[\iff (m + 1)c_1 + c_2 \leq m\pi_1 + c_1\]
 \[\iff (m + 1)c_1 + c_2 \leq m\pi_1 + c_1 \leq \pi_2, \text{ since } c_1 \leq \pi_2 - m\pi_1\]
Case 2: The execution of the last request of \(T_1 \) in the critical time zone of \(T_2 \) overlaps the second request of \(T_2 \). That is:

\[
c_1 > \pi_2 - m\pi_1
\]

Then the task set obviously is schedulable, if

\[
mc_1 + c_2 \leq m\pi_1 \quad (Eq. 3)
\]

We have to show that Eq.1 \(\Rightarrow \) Eq.3.
Consider again Eq. 1.

\[c_1 + c_2 \leq \pi_1 \quad (Eq. 1) \]

\[\Leftrightarrow \quad mc_1 + mc_2 \leq m\pi_1 \]

\[\Leftrightarrow \quad mc_1 + c_2 \leq mc_1 + mc_2 \leq m\pi_1, \text{ since } m \geq 1 \]

This directly shows

\[mc_1 + c_2 \leq m\pi_1 \quad (Eq. 3) \]
Deadline Monotonic Scheduling

- Let each process have a unique priority P_i based on its relative deadline d_i.
- Same as rate monotonic, if each task’s relative deadline equals its period.
- We assume that the shorter the deadline, the higher the priority, ie $d_i < d_j \iff P_i > P_j$.
- Example schedule: T_1 with $\pi_1 = d_1 = 3$ and $c_1 = 0.5$, T_2 with $\pi_2 = 4$, $d_2 = 2$ and $c_2 = 1$ and T_3 with $\pi_3 = d_3 = 6$ and $c_3 = 2$.