Mathematical Theory
Lattice Definition

• A complete lattice \((L, \sqsubseteq)\) is a set \(L\) with a partial ordering \(\sqsubseteq\):
 - Reflexive: \(1 \sqsubseteq 1\)
 - Transitive: \(l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_3 \Rightarrow l_1 \sqsubseteq l_3\)
 - Anti-symmetric: \(l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_1 \Rightarrow l_1 = l_2\)

and such that all subsets \(Y\) have least upper bounds \(\sqcup Y\):
 - Upper bound: \(\forall l \in Y: l \sqsubseteq \sqcup Y\)
 - Least: if \(\forall l \in Y: l \sqsubseteq l_0\) then \(\sqcup Y \sqsubseteq l_0\)
Lattice Theory: Implications

- A lattice is non-empty.
- Every lattice L has a unique greatest element $\top \in L$.
- All subsets Y of L have greatest lower bounds $\forall Y \in L$.
- Every lattice L has a unique least element $\bot \in L$.
Fixed point

A **fixed point** (sometimes shortened to **fixpoint**) of a function is a point that is mapped to itself by the function.

Definition

\[x \in L \text{ is a fixed point of the function } f: L \rightarrow L \text{ if and only if } f(x) = x \]
Knaster–Tarski theorem

Knaster–Tarski theorem, named after Bronisław Knaster (1893-1990) and Alfred Tarski (1902-1983)

Let L be a complete lattice and let $f : L \rightarrow L$ be a monotone function. Then the set of fixed points of f in L is also a complete lattice.
Tarski: Implications

- Every monotone function (on a complete lattice) has a fixpoint.
- There is a unique least fixpoint.
- There is a unique greatest fixpoint.
Ascending Chain Condition

A lattice \((L, \sqsubseteq)\) satisfies the **ascending chain condition** if every ascending chain
\(l_0 \sqsubseteq l_1 \sqsubseteq \ldots\)
eventually stabilizes i.e.
\(\exists \ m \in \mathbb{N} : l_m = l_{m+1}\)
Kleene fixpoint theorem

Given a complete lattice \((L, \sqsubseteq)\) satisfying the ascending chain condition, and a monotone function \(f : L \rightarrow L\) the least fixpoint of \(f\) \(\text{lfp}(f)\) can be computed as \(f^k(\bot)\) with some \(\exists \ k \in \mathbb{N}\) where

\[
\begin{align*}
f^0(x) &= \bot \\
f^{n+1}(x) &= f(f^n(x))
\end{align*}
\]
Repetition
Notation

`Analysis_o` input to the transfer function

`Analysis_·` output of the transfer function

Forward

```
Analysis_·
  ▼
Analysis_o
  ▼
Analysis_·
  ▼
Analysis_·
  ▼
```

Backward

```
Analysis_·
  ▼
Analysis_o
  ▼
Analysis_·
  ▼
Analysis_·
  ▼
```
Available Expressions

kill and **gen** functions

\[
\begin{align*}
\text{kill}_{\text{AE}}([x \leftarrow a]^\ell) & = \{ a' \in \text{AExp}_* \mid x \in \text{FV}(a') \} \\
\text{kill}_{\text{AE}}([\text{skip}]^\ell) & = \emptyset \\
\text{kill}_{\text{AE}}([b]^\ell) & = \emptyset \\
\text{gen}_{\text{AE}}([x \leftarrow a]^\ell) & = \{ a' \in \text{AExp}(a) \mid x \notin \text{FV}(a') \} \\
\text{gen}_{\text{AE}}([\text{skip}]^\ell) & = \emptyset \\
\text{gen}_{\text{AE}}([b]^\ell) & = \text{AExp}(b)
\end{align*}
\]

data flow equations:

\[
\begin{align*}
\text{AE}_\circ (\ell) & = \begin{cases}
\emptyset & \text{if } \ell = \text{init}(S_*), \\
\cap \{ \text{AE}_\bullet (\ell') \mid (\ell', \ell) \in \text{flow}(S_*) \} & \text{otherwise}
\end{cases} \\
\text{AE}_\bullet (\ell) & = (\text{AE}_\circ (\ell) \setminus \text{kill}_{\text{AE}}(B^\ell)) \cup \text{gen}_{\text{AE}}(B^\ell)
\end{align*}
\]

where \(B^\ell \in \text{blocks}(S_*) \)
Reaching Definitions

kill and **gen** functions

\[
\begin{align*}
\text{kill}_{\text{RD}}([x := a]^\ell) &= \{(x, ?)\} \\
&\cup \{(x, \ell') \mid B^{\ell'} \text{ is an assignment to } x \text{ in } S_\ast\}
\end{align*}
\]

\[
\begin{align*}
\text{kill}_{\text{RD}}([\text{skip}]^\ell) &= \emptyset \\
\text{kill}_{\text{RD}}([b]^\ell) &= \emptyset
\end{align*}
\]

\[
\begin{align*}
\text{gen}_{\text{RD}}([x := a]^\ell) &= \{(x, \ell)\} \\
\text{gen}_{\text{RD}}([\text{skip}]^\ell) &= \emptyset \\
\text{gen}_{\text{RD}}([b]^\ell) &= \emptyset
\end{align*}
\]

Data flow equations: RD^RD

\[
\begin{align*}
\text{RD}_\circ (\ell) &= \begin{cases}
\{(x, ?) \mid x \in \text{FV}(S_\ast)\} \\
\cup \text{RD}_\bullet (\ell') & (\ell', \ell) \in \text{flow}(S_\ast) \end{cases} \\
& \quad \text{if } \ell = \text{init}(S_\ast) \\
& \quad \text{otherwise}
\end{align*}
\]

\[
\text{RD}_\bullet (\ell) = \left(\text{RD}_\circ (\ell) \backslash \text{kill}_{\text{RD}}(B^\ell) \right) \cup \text{gen}_{\text{RD}}(B^\ell)
\]

where $B^\ell \in \text{blocks}(S_\ast)$
Very Busy Expressions

Kill and gen functions

\[
\begin{align*}
\text{kill}_{\text{VB}}([x := a]^\ell) &= \{ a' \in \text{AExp}_\bullet | x \in FV(a') \} \\
\text{kill}_{\text{VB}}([\text{skip}]^\ell) &= \emptyset \\
\text{kill}_{\text{VB}}([b]^\ell) &= \emptyset \\
\text{gen}_{\text{VB}}([x := a]^\ell) &= \text{AExp}(a) \\
\text{gen}_{\text{VB}}([\text{skip}]^\ell) &= \emptyset \\
\text{gen}_{\text{VB}}([b]^\ell) &= \text{AExp}(b)
\end{align*}
\]

Data flow equations:

\[
\begin{align*}
\text{VB}_{\bullet}^\circ (\ell) &= \begin{cases} \\
\emptyset & \text{if } \ell \in \text{final}(S_\bullet) \\
\bigcap \{ \text{VB}_{\bullet} (\ell') | (\ell', \ell) \in \text{flow}^R(S_\bullet) \} & \text{otherwise}
\end{cases} \\
\text{VB}_{\bullet} (\ell) &= (\text{VB}_{\bullet}^\circ (\ell) \setminus \text{kill}_{\text{VB}}(B^\ell)) \cup \text{gen}_{\text{VB}}(B^\ell) \\
\text{where } B^\ell &\in \text{blocks}(S_\bullet)
\end{align*}
\]
Live Variables

\textit{kill} and \textit{gen} functions

\[\text{kill}_{LV}(\llbracket x := a \rrbracket^\ell) = \{ x \} \]
\[\text{kill}_{LV}(\llbracket \text{skip} \rrbracket^\ell) = \emptyset \]
\[\text{kill}_{LV}(\llbracket b \rrbracket^\ell) = \emptyset \]
\[\text{gen}_{LV}(\llbracket x := a \rrbracket^\ell) = \text{FV}(a) \]
\[\text{gen}_{LV}(\llbracket \text{skip} \rrbracket^\ell) = \emptyset \]
\[\text{gen}_{LV}(\llbracket b \rrbracket^\ell) = \text{FV}(b) \]

data flow equations: \text{LV}$^\text{F}$

\[\text{LV}_0^\text{F}(\ell) = \begin{cases} \emptyset & \text{if } \ell \in \text{final}(S_\ast) \\ \bigcup \{ \text{LV}_0^\text{F}(\ell') | (\ell', \ell) \in \text{flow}^R(S_\ast) \} & \text{otherwise} \end{cases} \]
\[\text{LV}_0^\text{F}(\ell) = (\text{LV}_0^\text{F}(\ell) \setminus \text{kill}_{LV}(B^\ell)) \cup \text{gen}_{LV}(B^\ell) \]
where \(B^\ell \in \text{blocks}(S_\ast) \)
Analysis Design
Design of Dataflow Analysis

often the desired results can not be computed directly by a data flow analysis

→Calculate other information and derive the desired results.

Example:

• Dead Assignments → Live Variables
• true dependence → Reaching definitions
Used definition chain

\(\text{UD} : \text{Var} \times \text{Lab} \rightarrow \mathcal{P}(\text{Lab}) \)

\(\text{UD}(x,l) : \) the set of all nodes whose assignments can reach the use of \(x \) at \(l \)

\[[x:=0]^1; [x:=3]^2; (\text{if } [z=x]^3 \text{ then } [z:=0]^4 \text{ else } [z:=x]^5); [y:=x]^6; [x:=y+z]^7 \]

\[
\text{UD}(x, \ell) = \begin{cases}
\{ \ell' \mid (x, \ell') \in \text{RD}_{\text{entry}}(\ell) \} & \text{if } x \in \text{gen}_{\text{LV}}(B^\ell) \\
\emptyset & \text{otherwise}
\end{cases}
\]
Monotone Frameworks
The Overall Pattern

Each of the four classical analyses take the form

\[
\text{Analysis}_\circ(\ell) = \begin{cases}
 \mathcal{I} & \text{if } \ell \in E \\
 \bigcup \{ \text{Analysis}_\bullet(\ell') \mid (\ell', \ell) \in F \} & \text{otherwise}
\end{cases}
\]

\[
\text{Analysis}_\bullet(\ell) = f_\ell(\text{Analysis}_\circ(\ell))
\]

where

- \(\bigcup \) is \(\cap \) or \(\cup \) (and \(\sqcup \) is \(\cup \) or \(\cap \)),
- \(F \) is either \(\text{flow}(S_\star) \) or \(\text{flow}^R(S_\star) \),
- \(E \) is \(\{ \text{init}(S_\star) \} \) or \(\text{final}(S_\star) \),
- \(\mathcal{I} \) specifies the initial or final analysis information, and
- \(f_\ell \) is the transfer function associated with \(B_\ell \in \text{blocks}(S_\star) \).
Forward versus backward

- The *forward analyses* have F to be $\text{flow}(S_\star)$ and then Analysis_\circ concerns entry conditions and Analysis_\bullet concerns exit conditions; the equation system presupposes that S_\star has isolated entries.

- The *backward analyses* have F to be $\text{flow}^R(S_\star)$ and then Analysis_\circ concerns exit conditions and Analysis_\bullet concerns entry conditions; the equation system presupposes that S_\star has isolated exits.
Union versus Intersection

- When \sqcup is \cap we require the greatest sets that solve the equations and we are able to detect properties satisfied by *all execution paths* reaching (or leaving) the entry (or exit) of a label; the analysis is called a *must*-analysis.

- When \sqcap is \sqcup we require the smallest sets that solve the equations and we are able to detect properties satisfied by *at least one execution path* to (or from) the entry (or exit) of a label; the analysis is called a *may*-analysis.
Property Spaces

The *property space*, L, is used to represent the data flow information, and the *combination operator*, $\cup: \mathcal{P}(L) \to L$, is used to combine information from different paths.

- L is a *complete lattice*, that is, a partially ordered set, (L, \sqsubseteq), such that each subset, Y, has a least upper bound, $\bigcup Y$.

- L satisfies the *Ascending Chain Condition*; that is, each ascending chain eventually stabilises (meaning that if $(l_n)_n$ is such that $l_1 \sqsubseteq l_2 \sqsubseteq l_3 \sqsubseteq \cdots$, then there exists n such that $l_n = l_{n+1} = \cdots$).
Transfer Functions

The set of transfer functions, \mathcal{F}, is a set of monotone functions over L, meaning that

$$l \subseteq l' \text{ implies } f_\ell(l) \subseteq f_\ell(l')$$

and furthermore they fulfil the following conditions:

- \mathcal{F} contains all the transfer functions $f_\ell : L \rightarrow L$ in question (for $\ell \in \text{Lab}_*$)

- \mathcal{F} contains the identity function

- \mathcal{F} is closed under composition of functions
Frameworks

A *Monotone Framework* consists of:

- a complete lattice, L, that satisfies the Ascending Chain Condition; we write \sqcup for the least upper bound operator

- a set \mathcal{F} of monotone functions from L to L that contains the identity function and that is closed under function composition

A *Distributive Framework* is a Monotone Framework where additionally all functions f in \mathcal{F} are required to be distributive:

$$f(l_1 \sqcup l_2) = f(l_1) \sqcup f(l_2)$$
Instances

An *instance* of a Framework consists of:

- the complete lattice, L, of the framework
- the space of functions, \mathcal{F}, of the framework
- a finite flow, F (typically $\text{flow}(S_\star)$ or $\text{flow}^R(S_\star)$)
- a finite set of *extremal labels*, E (typically $\{\text{init}(S_\star)\}$ or $\text{final}(S_\star)$)
- an *extremal value*, $\iota \in L$, for the extremal labels
- a mapping, f_\star, from the labels Lab_\star to transfer functions in \mathcal{F}
Equations of Instances

$$\text{Analysis}_o(\ell) = \bigsqcup \{ \text{Analysis}_i(\ell') \mid (\ell', \ell) \in F \} \sqcup \iota_E^\ell$$

where $$\iota_E^\ell = \begin{cases}
\iota & \text{if } \ell \in E \\
\bot & \text{if } \ell \notin E
\end{cases}$$

$$\text{Analysis}_i(\ell) = f_\ell(\text{Analysis}_o(\ell))$$
Examples Revisited

<table>
<thead>
<tr>
<th></th>
<th>Available Expressions</th>
<th>Reaching Definitions</th>
<th>Very Busy Expressions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>(\mathcal{P}(AExp_\ast))</td>
<td>(\mathcal{P}(Var_\ast \times Lab_\ast))</td>
<td>(\mathcal{P}(AExp_\ast))</td>
<td>(\mathcal{P}(Var_\ast))</td>
</tr>
<tr>
<td>(\sqsubseteq)</td>
<td>(\sqsubseteq)</td>
<td>(\subseteq)</td>
<td>(\sqsubseteq)</td>
<td>(\subseteq)</td>
</tr>
<tr>
<td>(\sqcup)</td>
<td>(\sqcap)</td>
<td>(\cup)</td>
<td>(\sqcap)</td>
<td>(\cup)</td>
</tr>
<tr>
<td>(\bot)</td>
<td>(AExp_\ast)</td>
<td>(\emptyset)</td>
<td>(AExp_\ast)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\iota)</td>
<td>(\emptyset)</td>
<td>({ (x, ?) \mid x \in FV(S_\ast) })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(E)</td>
<td>({ \text{init}(S_\ast) })</td>
<td>({ \text{init}(S_\ast) })</td>
<td>(\text{final}(S_\ast))</td>
<td>(\text{final}(S_\ast))</td>
</tr>
<tr>
<td>(F)</td>
<td>(\text{flow}(S_\ast))</td>
<td>(\text{flow}(S_\ast))</td>
<td>(\text{flow}^R(S_\ast))</td>
<td>(\text{flow}^R(S_\ast))</td>
</tr>
<tr>
<td>(\mathcal{F})</td>
<td>({ f : L \to L \mid \exists l_k, l_g : f(l) = (l \setminus l_k) \cup l_g })</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td></td>
</tr>
<tr>
<td>(f_\ell)</td>
<td>(f_\ell(l) = (l \setminus \text{kill}(B^\ell)) \cup \text{gen}(B^\ell)) where (B^\ell \in \text{blocks}(S_\ast))</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td></td>
</tr>
</tbody>
</table>
Bit Vector Frameworks

A *Bit Vector Framework* has

- \(L = \mathcal{P}(D) \) for \(D \) finite
- \(\mathcal{F} = \{ f \mid \exists l_k, l_g : f(l) = (l \setminus l_k) \cup l_g \} \)

Examples:

- Available Expressions
- Live Variables
- Reaching Definitions
- Very Busy Expressions

Bit Vector Frameworks are always Distributive Frameworks
Constant Propagation Frame

An example of a Monotone Framework that is not a Distributive Framework

The aim of the *Constant Propagation Analysis* is to determine

For each program point, whether or not a variable has a constant value whenever execution reaches that point.

Example:

\[
[x := 6]^1; [y := 3]^2; \text{while } [x > y]^3 \text{ do } ([x := x - 1]^4; [z := y * y]^6)
\]

The analysis enables a transformation into

\[
[x := 6]^1; [y := 3]^2; \text{while } [x > 3]^3 \text{ do } ([x := x - 1]^4; [z := 9]^6)
\]
Elements of L

\[
\text{State}_{CP} = ((\text{Var}_* \rightarrow Z^\top)_{\perp}, \sqsubseteq)
\]

Idea:

- \perp is the least element: no information is available

- $\widehat{\sigma} \in \text{Var}_* \rightarrow Z^\top$ specifies for each variable whether it is constant:
 - $\widehat{\sigma}(x) \in Z$: x is constant and the value is $\widehat{\sigma}(x)$
 - $\widehat{\sigma}(x) = \top$: x might not be constant
Partial Ordering on L

The partial ordering \subseteq on $(\text{Var}_* \rightarrow Z^\top)\bot$ is defined by

$$\forall \hat{\sigma} \in (\text{Var}_* \rightarrow Z^\top)\bot : \bot \subseteq \hat{\sigma}$$

$$\forall \hat{\sigma}_1, \hat{\sigma}_2 \in \text{Var}_* \rightarrow Z^\top : \hat{\sigma}_1 \subseteq \hat{\sigma}_2 \quad \text{iff} \quad \forall x : \hat{\sigma}_1(x) \subseteq \hat{\sigma}_2(x)$$

where $Z^\top = Z \cup \{T\}$ is partially ordered as follows:

$$\forall z \in Z^\top : z \subseteq T$$

$$\forall z_1, z_2 \in Z : (z_1 \subseteq z_2) \Leftrightarrow (z_1 = z_2)$$

\[
\begin{array}{c|c|c|c}
 x \rightarrow 3 & x \rightarrow 4 & x \rightarrow 3 & x \rightarrow 5 \\
 y \rightarrow 5 & y \rightarrow 5 & y \rightarrow 5 & y \rightarrow 4 \\
\end{array}
\]
Flat
Instances

Constant Propagation is a forward analysis, so for the program S_\star:

- the flow, F, is $\text{flow}(S_\star)$,

- the extremal labels, E, is $\{\text{init}(S_\star)\}$,

- the extremal value, ν_{CP}, is $\lambda x. T$, and

- the mapping, f_{CP}, of labels to transfer functions is as shown next
Constant Propagation Analysis

\[\mathcal{A}_{CP} : \text{AExp} \rightarrow (\text{State}_{CP} \rightarrow \mathbb{Z}^\top) \]

\[\mathcal{A}_{CP}[x]\widehat{\sigma} = \begin{cases} \bot & \text{if } \widehat{\sigma} = \bot \\ \widehat{\sigma}(x) & \text{otherwise} \end{cases} \]

\[\mathcal{A}_{CP}[n]\widehat{\sigma} = \begin{cases} \bot & \text{if } \widehat{\sigma} = \bot \\ n & \text{otherwise} \end{cases} \]

\[\mathcal{A}_{CP}[a_1 \ fatop_a \ a_2]\widehat{\sigma} = \mathcal{A}_{CP}[a_1]\widehat{\sigma} \ fatop_a \mathcal{A}_{CP}[a_2]\widehat{\sigma} \]

transfer functions: \(f^\ell_{CP} \)

\[[x := a]^\ell : f^\ell_{CP}(\widehat{\sigma}) = \begin{cases} \bot & \text{if } \widehat{\sigma} = \bot \\ \widehat{\sigma}[x \mapsto \mathcal{A}_{CP}[a]\widehat{\sigma}] & \text{otherwise} \end{cases} \]

\[[\text{skip}]^\ell : f^\ell_{CP}(\widehat{\sigma}) = \widehat{\sigma} \]

\[[b]^\ell : f^\ell_{CP}(\widehat{\sigma}) = \widehat{\sigma} \]

Constant Propagation is not a Distributive Framework
Introduction to PAG

- PAG supports the instances of monotone frameworks
- Input: concise specifications
- Output: ANSI C code
- Advantages:
 - rapid implementation
 - integrated debugging facilities
 - short specification
PAG/WWW

• Web interface to PAG
• Restricted features
• Simplified specification language
• Fixed input language

www.program-analysis.com
PAG/WWW vs. PAG

- for WHILE programs only
- restricted specification languages
- restricted syntax
- additionally predefined functionality
- intended for educational purposes
- restricted to a certain iteration algorithm

- full system not bound to a specific language
- additional specification features
- more complicated syntax
- intended to work in a compiler
- also for research purposes
- different interprocedural iteration algorithms
Reaching Definitions Demo

with explanation of textual results
Interpreting Textual Analysis Results

- Automatically labeled program
- Showing Entry (Analysis_o) and Exit (Analysis_...) information
- Procedure parameters are underlined
- \([\text{BOTTOM: } x \rightarrow 7] :\)
 function mapping \(x\) to 7 and everything else to bot (see constant propagation)
Reaching Definitions Demo

with explanation of graphical results
Interpreting Graphical Results

• A picture for each computation step
• Exit information beside outgoing edges
• Entry information not displayed
• Color legend:
 • Red: information is about to be changed
 • Blue: nodes in the worklist
• Node labels: numbered elementary statements
 • $D \rightarrow \bot$
 • $x \rightarrow 7$ is equivalent to $[\rightarrow \text{BOTTOM}: x \rightarrow 7]$
Analysis Specification

[Image of a Romanesco broccoli]
Parts of Specification

- **TYPE**: define the analysis lattice
- **PROBLEM**: define analysis parameters
- **TRANSFER**: define the transfer functions
- **SUPPORT**: define additional functions

Specification in a specialized functional language **FULA** (ML like)
Lattice Specification
Predefined Datatypes

- **snum** Signed integer
- **bool** Boolean
- **str** String
- **Label** Program label (Lab*)
- **Var** Program variable (Var*)
- **Proc** Program procedure
- **Expression** Non-trivial program expression (Aexp*)
Lattice Construction

- \texttt{set(\langle ld\rangle)}
 - Set over \langle ld\rangle

- \texttt{list(\langle ld\rangle)}
 - List over \langle ld\rangle
 - NOT a lattice!

- \langle ld1\rangle \times \langle ld2\rangle \ldots
 - Tuple space

- \langle ld1\rangle \rightarrow \langle ld2\rangle
 - Function space

- \texttt{flat(<ld>)}
 - Flat lattice

- \texttt{lift(<ld>)}
 - Lifted lattice
Predefined Sets

- LabelSet \(\text{set}(\text{label}) \)
- VarSet \(\text{set}(\text{Var}) \)
- ProcSet \(\text{set}(\text{Proc}) \)
- ExpressionSet \(\text{set}(\text{Expression}) \)
- ExpressionList \(\text{list}(\text{Expression}) \)
Example: Live Variables

• TYPE
 VarSetLifted = lift(VarSet)
Excursion: Solution Algorithm

- In PAG the worklist is initialized only with the start node.
- The programmer must ensure that each node of interest is visited at least once.
 - Add extra ⊥ if the ⊥ of the lattice has a meaningful value.
Lift
Problem Description
Problem Section

- direction Forward/backward
- carrier Analysis lattice
- init Initial value
- init_start Value for the extremal node
- combine Combination function
Example: Live Variables

- PROBLEM Live_Variabes
 direction : backward
 carrier : VarSetLifted
 init : bot
 init_start : lift({})
 combine : lub
FULA Basics

• Primitives: snum, str, bool
• Sets: { <e1>, ..., <en> } {}
• Lattice elements top bot
• Lists: [<e1>, ..., <en>] []
 <e>:list
• Tuples: (<e1>, ..., <en>)
• Functions: static/dynamic
 f(<e>) [-> <e>] f[[<e1>-><e2>]]
FULA Control Structures

- if ... then ... [else ...] endif
- case <e1>, ..., <en> of
 <p1>, ..., <pn> => <e> ...
endcase
- let <p1>=<e1>, ..., <pn>=<en> in <e>
- let <p1> <= <e1>, ... in <e>
 ⇔ if <e1> = top then top else
 if <e1> = bot then bot else
 let <p1> = drop(<e1>) in <e>
endif endif
TRANSFER Section

• Define the exit value in terms of the entry value (@), or vice versa for backward problems

• Definition by cases for the WHILE statements

• Optional matching of the edge type
Example: Live Variables

- **TRANSFER**

```plaintext
let lifeVars <= @ in

IF(exp) =

if @ = top then top
else if @ = bot then bot
else let lifeVars = drop(@) in
  lift(lifeVars lub
      variables(exp))
endif endif
```
Example: Live Variables

- TRANSFER

\[
\text{IF}(\text{exp}) = \\
\text{let } \text{lifeVars} \leq @ \text{ in} \\
\text{lift}(\text{lifeVars lub variables}(\text{exp}))
\]
Example: Live Variables

- TRANSFER
 IF(exp) =

 let lifeVars <= @ in
 lift(lifeVars lub
 variables(exp))
Example: Live Variables

- $\text{ASSIGN}(\text{var, exp}) =$

 let lifeVars $\leq \@$ in

 lift((lifeVars - var) lub

 variables(exp))
FULA Operators

- \(=, \neq \), arithmetic operators
- \(<, \leq, >, \geq\) for lattice and snum
- Boolean \&\&, ||, !
- \((x,y)\#1, x?\{x,y\}\)
- \(\text{lub}, \text{glb}\) for lattices
- \(\text{lift}(x), \text{drop}(x)\)
- \(+\) for string concatenation, set union, set insertion, list append
SUPPORT Section

- Define additional functions
- Each function needs a type declaration
- Definition by cases possible
Example: Live Variables

variables :: Expression -> VarSet
variables(expression) =
{ expVar(exp) | exp in
 subExpressions(expression);
 expType(exp) = "VAR" }