Embedded Systems Development

Lecture 5
Esterel, LUSTRE & SCADE

Daniel Kästner
AbsInt Angewandte Informatik GmbH
kaestner@absint.com
Trap Level Propagation

\[\text{Must}(\uparrow^m \text{trap } T \text{ in } p \text{ end}, \overline{E}) = \text{Must}(\{\uparrow^{m+1} \text{ } p\}^T, \overline{E}) \]

\[\text{Must}(\{\uparrow^m q\}^T, \overline{E}) = \left\langle \text{Must}_s(\uparrow^m q, \overline{E}'), \downarrow \text{Must}_k(\uparrow^m q, \overline{E}') \right\rangle \]

where \(\overline{E}' = (E, \tau') \) and \(\tau'(T) = m \)

\[\text{Must}(\uparrow^m q, \overline{E}) = \left\langle \text{Must}_s(q, \overline{E}), \uparrow^m \text{ Must}_k(q, \overline{E}) \right\rangle \]

\[\text{Must}(\uparrow^m \text{ exit } T, \overline{E}) = \left\langle \emptyset, \text{Must}_k(\uparrow^m \text{ exit } T, \overline{E}) \right\rangle \]

\[\text{Must}_k(\uparrow^m \text{ exit } T, \overline{E}) = 2 + m - \tau(T) \]

Intuitive completion code rule:

- exit \(T \) is encoded by 2, if the directly enclosing trap declaration is that of \(T \), and \(n + 2 \) if \(n \) trap declarations have to be traversed before reaching that of \(T \).

\[\text{Must}_k(\text{trap } T \text{ in exit } T \text{ end}, \overline{E}) = \text{Must}_k(\{\uparrow \text{ exit } T\}^T, \overline{E}) \]

\[= \text{Must}_k(\{2 + 1 - 1\}^T, \overline{E}) = \text{Must}_k(\{2\}^T, \overline{E}) = \downarrow 2 = 0 \]
Trap Level Propagation

\[\text{Can}^x(\uparrow^m \text{trap } T \text{ in } p \text{ end}, \overline{E}) = \text{Can}^x(\{\uparrow^m + 1 \ p\}^T, \overline{E}) \]
\[\text{Can}^x(\{\uparrow^m q\}^T, \overline{E}) = \left\langle \text{Can}^x_S(\uparrow^m q, \overline{E}'), \downarrow \text{Can}^x_k(\uparrow^m q, \overline{E}') \right\rangle \]
where \(\overline{E}' = (E, \tau') \) and \(\tau'(T) = m \)
\[\text{Can}^x(\uparrow^m q, \overline{E}) = \left\langle \text{Can}^x_S(q, \overline{E}), \uparrow^m \text{Can}^x_k(q, \overline{E}) \right\rangle \]
\[\text{Can}^x(\uparrow^m \text{ exit } T, \overline{E}) = \left\langle \emptyset, \text{Can}^x_k(\uparrow^m \text{ exit } T, \overline{E}) \right\rangle \]
\[\text{Can}^x_k(\uparrow^m \text{ exit } T, \overline{E}) = 2 + m - \tau(T) \]

\[\downarrow k = \begin{cases}
0, & \text{if } k = 0 \text{ or } k = 2 \\
1, & \text{if } k = 1 \\
k - 1, & \text{if } k > 2
\end{cases} \]
\[\uparrow k = \begin{cases}
k, & \text{if } k = 0 \text{ or } k = 1 \\
k + 1, & \text{if } k \geq 2
\end{cases} \]
Constructive Causality: Example

module awaitImmediate:
 input S;
 output O;
 trap T in
 loop
 present S
 then exit T
 else pause
 end present
 end loop
end trap
emit O;
end module
Advanced Constructiveness

- Preemption statements behave as tests for the guard in each instant where the guard is active.

module Py:
output O;
abort
 sustain O
when O

constructive in the first instant
non-constructive (non reactive) in later instants
- Now for something completely different...
Program Analysis – An Outlook

- Analysis for constructive causality (Must and Can predicates) is a program analysis, more precisely dataflow analysis at the Esterel level.
- Program analyses can be defined for any programming language, including, e.g., processor instruction sets.
- Observation: Cache analysis at the executable level is very similar to analysis for constructive causality:
 - Must Analysis:
 For each program point and calling context, find out which blocks must be in the cache → cache hit.
 - May Analysis:
 For each program point and calling context, find out which blocks may be in the cache → complement: cache miss.
- General semantics-based framework for program analysis: Abstract Interpretation.
Program Analysis – An Outlook

Example:
Fully associative data cache (2 elements) with Least Recently Used (LRU) replacement

Load of data at memory address a

- $a \rightarrow a$ (hit)
- $b \rightarrow b$ (miss)
- $b \rightarrow a$ (miss)
- $a \rightarrow a$ (hit)
- $a \rightarrow b$ (hit)
- $d \rightarrow d$ (hit)
- $d \rightarrow a$ (hit)
- $a \rightarrow d$ (hit)
- $d \rightarrow a$ (miss)
- $a \rightarrow a$ (hit)
- $a \rightarrow d$ (hit)
- $d \rightarrow a$ (miss)
- $a \rightarrow d$ (hit)

Must: a
May: a, d, b

Example:
Fully associative data cache (2 elements) with Least Recently Used (LRU) replacement

Load of data at memory address a

- $a \rightarrow a$ (hit)
- $b \rightarrow b$ (miss)
- $b \rightarrow a$ (miss)
- $a \rightarrow a$ (hit)
- $a \rightarrow b$ (hit)
- $d \rightarrow d$ (hit)
- $d \rightarrow a$ (hit)
- $a \rightarrow d$ (hit)
- $d \rightarrow a$ (miss)
- $a \rightarrow d$ (hit)
- $d \rightarrow a$ (miss)
- $a \rightarrow d$ (hit)

Must: a
May: a, d, b

Example:
Fully associative data cache (2 elements) with Least Recently Used (LRU) replacement

Load of data at memory address a

- $a \rightarrow a$ (hit)
- $b \rightarrow b$ (miss)
- $b \rightarrow a$ (miss)
- $a \rightarrow a$ (hit)
- $a \rightarrow b$ (hit)
- $d \rightarrow d$ (hit)
- $d \rightarrow a$ (hit)
- $a \rightarrow d$ (hit)
- $d \rightarrow a$ (miss)
- $a \rightarrow d$ (hit)
- $d \rightarrow a$ (miss)
- $a \rightarrow d$ (hit)

Must: a
May: a, d, b

Example:
Fully associative data cache (2 elements) with Least Recently Used (LRU) replacement

Load of data at memory address a

- $a \rightarrow a$ (hit)
- $b \rightarrow b$ (miss)
- $b \rightarrow a$ (miss)
- $a \rightarrow a$ (hit)
- $a \rightarrow b$ (hit)
- $d \rightarrow d$ (hit)
- $d \rightarrow a$ (hit)
- $a \rightarrow d$ (hit)
- $d \rightarrow a$ (miss)
- $a \rightarrow d$ (hit)
- $d \rightarrow a$ (miss)
- $a \rightarrow d$ (hit)

Must: a
May: a, d, b
- ... and back again.
Model-based Software Development

- Esterel programs
 - SCADE language
 - SyncCharts

- aiT WCET Analyzer
 - Timing Validation

- SymTA/S
 - System-level
 - Schedulability Analysis

- Generator
- Compiler
- C Code
- Binary Code
LUSTRE

- Programs are structured into nodes:
 - Node: subprogram defining its output parameters as functions of its input parameters.
 - Definition given by unordered set of equations (\rightarrow declarative language)
- Based on synchronous data-flow model:
 - Functional: no side effects.
 - All nodes work simultaneously, ie at the same speed.
 - No broadcasting of signals; sequencing and synchronization only from data dependences.
 - Each variable takes a value at every cycle of the program.

\[
\begin{align*}
 x & \rightarrow 2 \\
 y & \rightarrow + \\
 \ast & \rightarrow s \\
\end{align*}
\]

At any cycle n:
\[
 s_n = 2(x_n + y_n)
\]

- Basis of SCADE.
- Example:

```plaintext
node Counter (init, incr: int; reset: bool)
  returns (count:int);
let
    count = if reset then init
            else pre(count)+incr;
tel
```
Required Properties

- **Causality:** The output at any instant t may only depend upon input received before or at t.

- **Bounded memory:** There must be a finite bound such that, at each instant the number of past input values necessary to produce a new output value remains smaller than that bound.

- **Efficient** code generation.

- Execution time **predictability:** no unbounded loops, no recursion.
Flows and Clocks

- Any variable and expression denotes a flow, i.e., a pair made \((x, b_x)\) of
 - a possibly infinite sequence \(X\) of values of a given type
 - a clock \(b_x\), representing a sequence of times.
- \(x\) is defined at instant \(i\) iff \(b_x(i) = true\).
- A flow takes its \(n\)-th value in the \(n\)-th time of its clock.
- Input variables are defined at every instant: their clock is called the basic clock.
- Example: Let \(x\) run on the basic clock \(C\), \(y\) on a slower clock. This gives the following time scales:

<table>
<thead>
<tr>
<th>Basic time-scale</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_x)</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>(x) time-scale</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>(b_y)</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>(y) time-scale</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types, Equations, Assertions

- Variables are declared with their type:
 - Basic types: boolean, integer, real.
 - Type constructor tuple.
 - Semantics is Cartesian product.
 - Abstract types via import (cf. Esterel).

- Equations:
 - Variables are defined via equations, e.g. \(X = E \) with variable \(X \) and expression \(E \).
 - **Substitution** principle: \(X \) can be substituted to \(E \) anywhere in the program and vice versa.
 - **Definition** principle: The behavior of \(X \) must be completely specified by this equation.

- Assertions:
 - Assertions \(\text{assert}(E) \): \(E \) must hold during execution.
 - Used to optimize code generation, for simulation and for verification.
Variables and Expressions

- Operators only operate on operands sharing the same clock.
- As variables and expressions are streams, operators also produce streams. Example: With $x = (0,1,2,3,4,...)$ and $y = (2,4,6,8,10,...)$: $x+y=(2,5,8,11,14,...)$
- Expressions are build from variables, constants and operators.
- Three types of operators:
 - Data operators:
 - arithmetic, boolean and relational expressions
 - conditional expressions: $if \ E \ then \ X \ else \ Y$
 - Imported operators:
 - functions imported from host language
 - Temporal (sequence) operators.
Temporal Operators

- 'previous' operator \texttt{pre}:
 - \((\text{pre}(E))_0 = \bot\) (undefined, also denoted nil)
 - \((\text{pre}(E))_n = E_{n-1}\)
- 'followed by' operator \texttt{->}
 - \((E->F)_0 = E_0\)
 - \((E->F)_n = F_n\)
- (Down-)Sampling: \texttt{when}
 - Let \(E\) be an expression and \(B\) a boolean expression with the same clock: \((E \text{ when } B)\) is the sequence of values of \(E\) when \(B\) is true.
- Upsampling/Interpolation/Projection: \texttt{current}
 - Let \(E\) be an expression and \(B\) a boolean expression defining the clock of \(E\): Then \(\text{current } E\) has the same clock as \(B\); and \((\text{current } E)\) is the sequence of values of \(E\) at the last time when \(B\) was true.
Example

<table>
<thead>
<tr>
<th>B</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>x_6</td>
<td>x_7</td>
<td>x_8</td>
</tr>
<tr>
<td>Y = X when B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z = current Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>B</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>x_6</td>
<td>x_7</td>
<td>x_8</td>
</tr>
<tr>
<td>Y = X when B</td>
<td>x_2</td>
<td>x_4</td>
<td></td>
<td></td>
<td>x_7</td>
<td>x_8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z = current Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: `gaps` are not filled.
Example

<table>
<thead>
<tr>
<th>B</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>x_6</td>
<td>x_7</td>
<td>x_8</td>
</tr>
<tr>
<td>$Y = X$ when B</td>
<td></td>
<td>x_2</td>
<td></td>
<td>x_4</td>
<td></td>
<td></td>
<td>x_7</td>
<td>x_8</td>
</tr>
<tr>
<td>$Z = \text{current } Y$</td>
<td>\perp</td>
<td>x_2</td>
<td>x_2</td>
<td>x_4</td>
<td>x_4</td>
<td>x_4</td>
<td>x_7</td>
<td>x_8</td>
</tr>
</tbody>
</table>
Clock Rules

- Let a clock environment ω be a function from identifiers to clocks.
- Let $CK(E, \omega)$ be the clock of the expression E in the environment ω.
- For an equation $X=E$ holds $\omega(X)=CK(E, \omega)$.
- Let \perp be the undefined clock and T the erroneous clock. Then
 $$ck \leq ck' \Leftrightarrow (ck = \perp \lor ck' = T \lor ck \equiv ck')$$
- Let \cup denote the least upper bound operator.
- Constants: For any constant k, $CK(k, \omega)=true$ (the basic clock).
- Variables: For any identifier X, $CK(X, \omega)=\omega(X)$.
- Synchronous operators:
 $$CK(op(E_1, E_2, ..., E_n), \omega) = \bigcup_{i=1}^{n} CK(E_i, \omega)$$
Clock Rules

- **Downsampling**: The operands of the `when` operator must be on the same clock: $CK(E \ when\ ck, \omega)=ck$.
- **Upsampling**: Let ck be the clock of E, $ck \neq true$: $CK(current(E), \omega)=ck$.
- Clock of a node instance: clock of its effective inputs.
- Initialization problem: $current(X \ when\ C)$ exists but is undefined (\bot) until C becomes $true$ for the first time.
- Solution: activation conditions
 - Not an operator, rather a macro.
 - $x = CONDUCT(OP, \ clk, \ args, \ dflt)$ equivalent to $X = if \ clk \ then \ current(OP(args \ when \ clk)) else (dflt \ -> \ pre(X))$
 - Provided by SCADE (not part of LUSTRE).
Example

<table>
<thead>
<tr>
<th>C</th>
<th>true</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[n = (0 \rightarrow \text{pre}(n) + 1) \]

\[e = (1 \rightarrow \text{not pre}(e)) \]

\[\text{n when e} \]

\[\text{current(n when e)} \]

\[\text{Counter((1,1,false) when C)} \]

\[\text{Counter(1,1,false) when C} \]

```plaintext
node Counter (init, incr: int; reset: bool)
    returns (count:int);
let
    count = init -> if reset then init
               else \text{pre(count)} + incr;
tel
```
Example

<table>
<thead>
<tr>
<th>C</th>
<th>true</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n=(0->pre(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e = (1->not pre(e))</td>
<td>n when e</td>
<td>current(n when e)</td>
<td>Counter((1,1,false) when C)</td>
<td>Counter(1,1,false) when C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

``` cider
node Counter (init: int; incr: int; reset: bool) 
  returns (count: int);
let 
  count = init -> if reset then init 
  else pre(count)+incr;
tel
```
Example

<table>
<thead>
<tr>
<th>C</th>
<th>true</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n=(0->pre(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e = (1->not pre(e))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

n when e

current(n when e)

Counter((1,1,false) when C)

Counter(1,1,false) when C

```
node Counter (init, incr: int; reset: bool)
  returns (count:int);
  let
  
  count = init -> if reset then init
  
  else pre(count)+incr;

tel
```
Example

<table>
<thead>
<tr>
<th>C</th>
<th>true</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n=(0->pre(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e = (1->not pre(e))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n when e</td>
<td>0</td>
<td>2</td>
<td></td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>current(n when e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter((1,1,false) when C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter(1,1,false) when C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

node Counter (init, incr: int; reset: bool)
 returns (count:int);
let
 count = init -> if reset then init
 else pre(count)+incr;
tel
Example

<table>
<thead>
<tr>
<th>C</th>
<th>true</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n=(0->pre(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e = (1->not pre(e))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n when e</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current(n when e)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Counter((1,1,false) when C)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
node Counter (init, incr: int; reset: bool)
    returns (count: int);
let
    count = init -> if reset then init
    else pre(count)+incr;
tel
```
Example

<table>
<thead>
<tr>
<th>C</th>
<th>true</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n=(0->pre(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e = (1->not pre(e))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n when e</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current(n when e)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Counter((1,1,false) when C)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter(1,1,false) when C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```latex
node Counter (init, incr: int; reset: bool)
    returns (count:int);
let
    count = init -> if reset then init
        else pre(count)+incr;
tel
```
Example

<table>
<thead>
<tr>
<th>C</th>
<th>true</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n=(0->pre(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e = (1->not pre(e))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n when e</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>current(n when e)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Counter((1,1,false) when C)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter(1,1,false) when C</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```node
Counter (init, incr: int; reset: bool)
returns (count:int);
let
count = init -> if reset then init
else pre(count)+incr;
tel
```
Program Structure

- **Nodes** are LUSTRE subprograms. General structure:

 \[
 \text{node } N \left(x_1: \tau_1; x_2: \tau_2; \ldots; x_p: \tau_p \right) \\
 \text{returns } \left(y_1: \theta_1; y_2: \theta_2; \ldots; y_p: \theta_q \right) \\
 \text{var } z_1: \gamma_1; z_2: \gamma_2; \ldots; z_k: \gamma_k \\
 \text{let} \\
 \quad z_1 = E_1; \ldots; z_k = E_i; \\
 \quad y_1 = E_j; \ldots; y_p = E_m; \\
 \text{tel}
 \]

- **Node instantiation**: if \(N \) is the name of a node with above signature and if \(E_1, \ldots, E_p \) are expressions of type \(\tau_1, \ldots, \tau_p \), then \(N(E_1, \ldots, E_p) \) is an expression of type \(\text{tuple}(\theta_1, \ldots, \theta_q) \).

- Conditional and sequence operators are polymorphic and can be applied to tuples.
Arrays and Recursion

- Let \(n \) be a constant. Given type \(\tau \), \(\tau_n \) defines an array with \(n \) entries of type \(\tau \).
- Example: \(x:bool_n \)
- The bounds of an array must be known at compile time; the compiler transforms an array of \(n \) values into \(n \) different variables.
- \(X[i] \) denotes \(i \)th element.
- \(X[i..j] \) denotes the array made of elements \(i \) to \(j \) of \(X \).

- LUSTRE only allows static recursion: the recursion is completely unrolled.
- Attention: if the recursion is not bounded the compiler will not stop.
Compilation of LUSTRE Programs

- Static compiler checks:
 - Definition checking: any local and output variable must have exactly one definition.
 - No recursive node calls.
 - Clock consistency.
 - Absence of uninitialized expressions (yielding ⊥).
 - Absence of cyclic definitions.

- Compilation to
 - single-loop code
 - automata code.
Causality Problems

- LUSTRE only allows acyclic equation systems. Note: acyclic equations have a unique solution.
- $X = E$ is acyclic if X does not occur in E unless as subterm of the pre operator.
- Examples:
 - $X = X$ and $pre(X)$ is cyclic
 - $X = Y$ and $pre(X)$ is acyclic

- Also structural deadlocks which are not true ones are rejected:
 - $X = if \ C \ then \ Y \ else \ Z$
 - $Y = if \ C \ then \ Z \ else \ X$
- Improved causality analysis in SCADE.
Clock Consistency

- Consider the following (illegal) example:
 \[
 b = \text{true} -> \text{not pre b;}
 y = x + (x \text{ when b});
 \]

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(x \text{ when b})</td>
<td>(x_0)</td>
<td></td>
<td>(x_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x + (x \text{ when b}))</td>
<td>(x_0 + x_0)</td>
<td>(x_1 + x_2)</td>
<td>(x_2 + x_4)</td>
<td>(x_3 + x_6)</td>
<td></td>
</tr>
</tbody>
</table>

- The computation of the \(2n\)th value of \(y\) needs the \(2n\)th and the \(n\)th values of \(x\).
- Problem: not possible with bounded memory.
- Consequence: only streams of the same clock can be combined.
- Problem: undecidable whether two boolean expressions denote the same flow.
Clock Consistency (c’ed)

- Thus: two boolean expressions define the same clock iff they can be **syntactically** unified.
- Examples:
 \[x = a \text{ when } (y \gt z) \]
 \[y = b + c \]
 \[u = d \text{ when } (b + c \gt z) \]
 \[v = e \text{ when } (z \lt y) \]

- \(x \) and \(u \) share the same clock.
- \(x \) and \(v \) have different clocks.
Node Expansion

- **No modular compilation**: the code for a node may depend on its context.
- **Example**:

  ```
  node two_copies(a,b: int) returns (x,y: int);
  let x=a; y=b; end
  ```

- Two possible sequential codes:
 - `x:=a; y:=b`
 - `y:=b; x:=a`

- For the call `(x,y)=two_copies(a,x)`, only the first variant is correct.

- Thus: all nodes have to be expanded before compilation.
 - Formal parameters are substituted with actual ones.
 - Local variables are given unique names.
 - Called node body is inserted into the calling node body.