Embedded Systems Development

Lecture 2
Finite Automata & SyncCharts

Daniel Kästner
AbsInt Angewandte Informatik GmbH
kaestner@absint.com
Some things I forgot to mention

- Remember the HISPOS registration until 01.12. (Bachelor/Master CS+CuK).
- My email address: kaestner@cs.uni-sb.de
- Office in Science Park 1, AbsInt GmbH: 3rd floor, room 339 (with appointment).
Today

- Finite State Automata (FSA)
 - Definition
 - Deterministic vs. non-deterministic FSA
 - DFA minimization
 - Mealy/Moore automata

- SyncCharts
Model-based Software Development

- Lustre programs
- Esterel programs
- C Code
- Binary Code

Esterel SCADE
- SCADE language
- SyncCharts

aiT WCET Analyzer
- Timing Validation

SymTA/S
- System-level Schedulability Analysis
Model-based Software Development

SyncCharts as Enhancement to FSA

Esterel SCADE
- SCADE language
- SyncCharts
Model-based Software Development

Esterel SCADE
- SCADE language
- SyncCharts

Lustre programs
Esterel programs

C Code

Automata Minimization

Generator

Compiler

Compiler
Embedded Systems

- Typically, embedded systems are reactive systems:

 „A reactive system is one which is in continual interaction with its environment and executes at a pace determined by that environment“ [Bergé, 1995]

 Behavior depends on input and current state.

- automata model appropriate
Finite Automata
Finite Automata

- **Non-deterministic** finite automaton (NFA):
 \[M = (\Sigma, Q, \Delta, q_0, F) \] where
 - \(\Sigma \): finite alphabet
 - \(Q \): finite set of states
 - \(q_0 \in Q \): initial state
 - \(F \subseteq Q \): final states
 - \(\Delta \subseteq Q \times (\Sigma \cup \{ \epsilon \}) \times Q \)

- \(M \) is called a **deterministic** finite automaton, if \(\Delta \) is a partial function

\[\delta : Q \times \Sigma \rightarrow Q \]
Simple State Transition Diagram

- Used to represent a finite automaton
- Nodes: states
- q_0 has special entry mark
- Final states are doubly circled
- An edge from p to q is labelled by a if $(p, a, q) \in \Delta$
- Example: integer and real constants:
Language Accepted by an Automaton

- $M = (\Sigma, Q, \Delta, q_0, F)$
- For $q \in Q, w \in \Sigma^*$: (q, w) is a configuration.
- Binary step relation \mathcal{M} on configurations:

 $$(q, aw) \mathcal{M} (p, w) \iff (q, a, p) \in \Delta : Q \times \Sigma \to Q$$
- Reflexive transitive closure of \mathcal{M} is denoted by \mathcal{M}^*
- Language accepted by M:

 $$L(M) = \{ w \mid w \in \Sigma^*, \exists q_f \in F : (q_0, w) \mathcal{M}^* (q_f, \varepsilon) \}$$
Regular Languages / Expressions

- Let Σ be an alphabet. The regular languages are defined inductively over Σ by:
 - $\emptyset, \{\varepsilon\}$ are regular languages over Σ
 - For all $a \in \Sigma$, $\{a\}$ is a regular language
 - If R_1 and R_2 are regular languages over Σ, then also $R_1 \cup R_2, R_1R_2, R_1^*$.

- Regular expressions over Σ are defined by:
 - \emptyset is a regular expression and describes the language \emptyset
 - ε is a regular expression and describes the language $\{\varepsilon\}$
 - a (for $a \in \Sigma$) is a regular expression and denotes $\{a\}$
 - $(r_1|r_2)$ is a regular expression over Σ and denotes $R_1 \cup R_2$
 - (r_1r_2) is a regular expression over Σ and denotes R_1R_2
 - $(r_1)^*$ is a regular expression over Σ and denotes R_1^*.
Regular Expressions and FA

- For every regular language \(R \), there exists an NFA \(M \), such that \(L(M) = R \).

- Constructive Proof (Subset Construction):
 - A regular language is defined by a regular expression \(r \)
 - Construct an NFA with one final state, \(q_f \) and the transition

- Decompose \(r \) and develop the NFA according to the following rules -> until only transitions under single characters and \(\varepsilon \) remain.
Example: $a(a|0)^*$
Nondeterminism

- Sources of nondeterminism:
 - many transitions may be possible under the same character in a given state
 - ε-moves (next character is not read) may compete with non-ε-moves

- DFA:
 - No ε-transition
 - At most one transition from every state under a given character, ie for every $q \in Q$, $a \in \Sigma$:

\[| \{ q' \mid (q, a, q') \in \Delta \} | \leq 1 \]
NFA -> DFA

- Let \(M = (\Sigma, Q, \Delta, q_0, F) \) be an NFA and let \(q \in Q \). The set of \(\epsilon \) successor states of \(q \), \(\epsilon\)-SS, is

\[
\epsilon\text{-SS}(q) = \{ p \mid (q, \epsilon) \in \Delta^*(p, \epsilon) \}
\]

or the set of all states \(p \), including \(q \), for which there exists an \(\epsilon \) path from \(q \) to \(p \) in the transition diagram for \(M \).

We extend \(\epsilon\)-SS to sets of states \(S \subseteq Q \):

\[
\epsilon\text{-SS}(S) = \bigcup_{q \in S} \epsilon\text{-SS}(q)
\]
NFA -> DFA

- If a language L is accepted by a NFA then there is also a DFA accepting L.

- Let $M = (\Sigma, Q, \Delta, q_0, F)$ be an NFA. The DFA associated with M, $M' = (\Sigma, Q', \delta, q_0', F')$ is defined by:
 - $Q' \subseteq P(Q)$
 - $q_0' = \varepsilon\text{-SS}(q_0)$
 - $F' = \{S \subseteq Q \mid S \cap F \neq \emptyset\}$
 - $\delta(S, a) = \varepsilon\text{-SS}(\{p \mid (q, a, p) \in \Delta \text{ for } q \in S\})$ for $a \in \Sigma$

- Thus, the successor state S under a character a in M' is obtained by combining the successor states of all states $q \in S$ under a and adding the ε successor states.
Algorithm NFA→DFA

$q'_0 := ε$-SS(q_0); $Q' := \{q'_0\}$;
marked(q'_0):=false; $δ := \emptyset$;

while $∃ S ∈ Q'$ and marked(S)=false do
 marked(S):=true;
 foreach $a ∈ Σ$ do
 $T := ε$-SS($\{p ∈ Q | (q, a, p) ∈ Δ$ and $q ∈ S\}$);
 if $T ∉ Q'$
 $Q' := Q' ∪ \{T\}; // new state$
 marked(T):=false
 $δ := δ ∪ \{(S, a)→T\}; // new transition$
Example: $a(a|0)^*$
DFA Minimization

- After NFA->DFA the DFA need not have **minimal size**, i.e., minimal number of states and transitions.
- p and q are **undistinguishable**, iff for all words w both (q,w) and (p,w) lead by \mathcal{L}_{M}^{*} into either F' or $Q' - F'$.
- Undistinguishable states can be **merged**.
DFA Minimization

- **Input:** DFA \(M = (\Sigma, Q, \delta, q_0, F) \)
- **Output:** DFA \(M_{\text{min}} = (\Sigma, Q_{\text{min}}, \delta_{\text{min}}, q_{0\text{min}}, F_{\text{min}}) \) with \(L(M) = L(M_{\text{min}}) \) and \(Q_{\text{min}} \) minimal.
- Iteratively refine a partition of the set of states where each set \(S \) in the partition consists of states so far undistinguishable.
- Start with the partition \(\Pi = \{ F, Q - F \} \).
- Refine the current \(\Pi \) by splitting sets \(S \in \Pi \) into \(S_1, S_2 \) if there exist \(q_1, q_2 \in S \) such that
 - \(\delta(q_1, a) \in S_1 \)
 - \(\delta(q_2, a) \in S_2 \)
 - \(S_1 \neq S_2 \)
- Merge sets of undistinguishable states into a single state.
Algorithm minDFA

\[\Pi := \{F, Q-F\} \]
do changed := false
\[\Pi' := \Pi; \]
foreach K in \(\Pi \) do
\[\Pi' := (\Pi' - \{K\}) \cup \{\{K_i\}_{1 \leq i \leq n}\} \text{ with } K_i \text{ maximal such that } \]
\[K = \bigcup_{1 \leq i \leq n} K_i \text{ and } \forall a \in \Sigma \forall q \in K_i \exists K'_i \in \Pi : \delta(q, a) \in K'_i \]
if \(n > 1 \) then changed := true fi
\[\Pi := \Pi'; \]
until not changed;
\[Q_{\text{min}} = \Pi - (\text{Dead } \cup \text{ Unreachable}); \]

\[q_{0\text{min}} \quad \text{Class of } \Pi \text{ containing } q_0 \]
\[F_{\text{min}} \quad \text{Classes containing an element of } F \]
\[\delta_{\text{min}}(K,a)=K' \text{ if } \delta(q,a)=p \text{ with } a \in \Sigma \text{ and } p \in K' \text{ for one (ie for all) } q \in K \]
\[K \in \text{Dead} \quad \text{if } K \text{ is not final state and contains only transitions to itself} \]
\[K \text{ Unreachable} \quad \text{if there is no path from the initial state to } K \]
Example: $a(a|0)^*$
Mealy Automata

- Mealy automata are finite-state machines that act as transducers, or translators, taking a string on an input alphabet and producing a string of equal length on an output alphabet.
- A machine in state q_j, after reading symbol σ_k, writes symbol λ_k; the output symbol depends on the state just reached and the corresponding input symbol.
- A Mealy automaton is a six-tuple $M_E=(Q, \Sigma, \Gamma, \delta, \lambda, q_0)$ where
 - Q is a finite set of states
 - Σ is a finite input alphabet
 - Γ is a finite output alphabet
 - $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
 - $\lambda: Q \times \Sigma \rightarrow \Gamma$ is the output function
 - q_0 is the initial state
Moore Automata

- Moore automata are finite-state machines that act as transducers, or translators, taking a string on an input alphabet and producing a string of equal length on an output alphabet.
- Symbols are output after the transition to a new state is completed; output symbol depends only on the state just reached.

A Moore automaton is a six-tuple $M_O=(Q, \Sigma, \Gamma, \delta, \lambda, q_0)$ where

- Q is a finite set of states
- Σ is a finite input alphabet
- Γ is a finite output alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $\lambda: Q \rightarrow \Gamma$ is the output function
- q_0 is the initial state
State Transition Diagrams

- **State transition**: When event γ occurs in state A, if Condition P is true at the time, the system executes action a and transfers to state C.
- State diagrams are directed graphs with nodes denoting states, and arrows (labelled with the triggering event, guarding conditions and action to be executed) denoting transitions.
- Example:

![State Transition Diagram](image)

- Problem: all combinations of states have to be represented explicitly, leading to exponential blow-up.
State Transition Diagrams

- **Disadvantages:**
 - No **structure** (no strategy for bottom-up of top-down development)
 - State-transition diagrams are **flat**, i.e., without hierarchy
 - **Uneconomical wrt transitions** (e.g., interrupt): exponential blow-up
 - **Uneconomical wrt states:** exponential blow-up
 - **Uneconomical wrt parallel composition:** exponential blow-up
 - **Inherently sequential:** parallelism cannot be expressed in a natural way
SyncCharts

- Visual formalism for describing states and transitions of a system in a modular fashion.

- Extension of state-transition diagrams (Mealy/Moore automata):
 - Hierarchy
 - Modularity
 - Parallelism

- Is fully deterministic.

- Tailored to control-oriented applications (drivers, protocols).

- Implements synchronous principle.
Synchronous Programming

- Two simple ways of implementing reactive systems:
 - Event-driven
    ```cpp
    <Initialize Memory>
    Foreach input_event do
      <Compute Outputs>
      <Update Memory>
    End
    ```
 - Sampling
    ```cpp
    <Initialize Memory>
    Foreach period do
      <Read Inputs>
      <Compute Outputs>
      <Update Memory>
    End
    ```
Synchronoous Programming

- Program typically implements an automaton:
 - **state**: valuations of memory
 - **transition**: reaction, possibly involving many computations

- **Synchronous paradigm**: reactions are considered atomic, ie they take no time. (Computational steps execute like combinatorial circuits.)

- **Synchronous broadcast**: instantaneous communication, ie each automaton in the system considers the outputs of others as being part of its own inputs.
Synchronous Programming

- Important requirement: guaranteeing deterministic behavior.

- Time is divided into discrete ticks (also called cycles, steps, instants).

- Implicit assumption: presence of a global clock. This makes application in distributed environments difficult.

- In order to validate the timing behavior it is sufficient to prove that the worst-case execution time (WCET) of any reaction is smaller than the minimal time interval between two external events.
Overview

- **StateCharts:**
 - First, and probably most popular formal language for the design of reactive systems.
 - Focus on specification and design, not designed as a programming language.
 - Determinism is not ensured.
 - No standardized semantics.

- Programming languages for designing reactive systems:
 - **ESTEREL** [Berry]: textual imperative language.
 - **SyncCharts / SSM**: Graphical formalism for ESTEREL.
 - **LUSTRE** [Caspi, Halbwachs]: textual declarative language. Tailored to data-flow oriented systems (e.g. regulation systems).
 - **SCADE** [Esterel Inc.]. Graphical formalism for (enhanced) LUSTRE.
Cyclic Evolution

- Reactions consist of three phases:
 1. Read input signals (input event)
 2. Compute the reaction
 3. Perform outputs (output event)

- All phases happen in one instant, ie have 0-duration.
SyncCharts

- **States (circles and rectangles):**
 - can be named
 - two types:
 - *simple state* (circle)
 - *macrostate* (rounded rectangle): contain a hierarchy of other states
 - are optionally labelled*: /<effect>

- **Transitions (arrows):**
 - are labelled*: <trigger>/<effect>
 - All components are optional.
 - three types:
 - strong abort
 - weak abort
 - normal termination
 - can have priorities (→ determinism)

*Triggers and effects are signals, or combinations of signals using boolean operations *or*, *and* and *not.*
States & State Transition Graphs

- Special states:
 - Initial state: s (alternative notation: $\text{Initial state: } s$)
 - Terminal state: \bigcirc

- State Transition Graph: connected labeled graph made of states connected by transitions, with an initial state.

- Two types of states:
 - Simple state: just carries a label.
 - Macrostate: contains at least one state transition graph.

- At each instant there is one and only one active state.
- An active state waits for the satisfaction of the trigger of one of its outgoing transitions, at an instant *strictly posterior* to its entering (activation).
State and Transition Labels

- Signals are characterized by their presence status (+, -, ⊥).
 - Valued signal: signals conveys a value of a given type.
 - Pure signal: no value conveyed.
- tick: implicit signal present at every instant.
- A trigger is satisfied ⇔ associated signal is present.
- Transition labels:
 - When the trigger is satisfied, the transition is said to be enabled.
 - The transition is immediately taken and emits the associated signals.
 - The firing of a transition is fully deterministic and takes no time.
- Node labels:
 - Signal emission depends on transition type (strong/weak abort)
 - Signals are emitted when...

<table>
<thead>
<tr>
<th>Weak abort</th>
<th>...entering</th>
<th>...in</th>
<th>...exiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Strong abort</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Example: Strong vs. Weak Abort

<table>
<thead>
<tr>
<th>Instant</th>
<th>Input</th>
<th>TFF-SA Output</th>
<th>TFF-WA Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Strong vs. Weak Abort

<table>
<thead>
<tr>
<th>Instant</th>
<th>Input</th>
<th>TFF-SA Output</th>
<th>TFF-WA Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>C, OFF</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>C, OFF</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>
Example: Strong vs. Weak Abort

<table>
<thead>
<tr>
<th>Instant</th>
<th>Input</th>
<th>TFF-SA Output</th>
<th>TFF-WA Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>ON</td>
<td>OFF,ON</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>C, OFF</td>
<td>ON,C,OFF</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>ON</td>
<td>OFF,ON</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>C,OFF</td>
<td>ON,C,OFF</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>ON</td>
<td>OFF,ON</td>
</tr>
<tr>
<td>9</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>
Concurrent

- A macrostate can contain a parallel composition of separate concurrent STGs. Graphical notation: dashed separation line.
- STGs are coupled by shared signals.
- A local signal is declared by the keyword signal and its scope is the containing macrostate.
- A set of (concurrent) active states is called a configuration.

Notation:
- Active state \(S^+ \): presence of signal \(S \) \(S^- \): absence of signal \(S \)
Example Reaction
Concurrency and Normal Termination

- When each concurrent STG in a macrostate reaches a final state, then the macrostate is immediately exited by its normal termination transition.
Concurrency and Abort

ABRO

ABO

WaitAandB

wA

wB

A

B

dA

dB

/O

done

R

R+ B+

ABRO

ABO

WaitAandB

wA

wB

A

B

dA

dB

/O

done

R
Transitions

- A strong abort prevents any execution in the preempted state.

- For any state
 - every outgoing transition has a different priority
 - any strong abort transition has priority over any weak abort transition
 - any weak abort transition has priority over a normal termination transition

- There are no inter-level transitions.