Reinhard Wilhelm

Universität des Saarlandes

Development of Safety-Critical Embedded Systems
Static Program Analysis

Winter Semester 2012/2013

Slides based on:

- R. Wilhelm, B. Wachter: Abstract Interpretation with Applications to Timing Validation. CAV 2008: 22-36
- Helmut Seidl’s slides
A Short History of Static Program Analysis

- Early high-level programming languages were implemented on very small and very slow machines.

- Compilers needed to generate executables that were extremely efficient in space and time.

- Compiler writers invented efficiency-increasing program transformations, wrongly called optimizing transformations.

- Transformations must not change the semantics of programs.

- Enabling conditions guaranteed semantics preservation.

- Enabling conditions were checked by static analysis of programs.
Theoretical Foundations of Static Program Analysis

- Theoretical foundations for the solution of recursive equations: Kleene (30s), Tarski (1955)

- Gary Kildall (1972) clarified the lattice-theoretic foundation of data-flow analysis.

- Patrick Cousot (1974) established the relation to the programming-language semantics.
Static Program Analysis as a Verification Method

- Automatic method to derive invariants about program behavior, answers questions about program behavior:
 - will index always be within bounds at program point p?
 - will memory access at p always hit the cache?

- answers of sound static analysis are correct, but approximate: don’t know is a valid answer!

- analyses proved correct wrt. language semantics,
Proposed Lectures Content:

1. Introductory example: rules-of-sign analysis
2. theoretical foundations: lattices
3. an operational semantics of the language
4. another example: constant propagation
5. relating the semantics to the analysis—correctness proofs
6. Further static analyses in compilers: Elimination of superfluous computations
 → available expressions
 → live variables
 → array-bounds checks
7. timing (WCET) analysis
8. analysis for runtime errors
1 Introduction

... in this course and in the Seidl/Wilhelm/Hack book:

a simple imperative programming language with:

- variables // registers
- \(R = e; \) // assignments
- \(R = M[e]; \) // loads
- \(M[e_1] = e_2; \) // stores
- if \((e) \ s_1 \) else \(s_2 \) // conditional branching
- goto \(L; \) // no loops

An intermediate language into which (almost) everything can be translated.
In particular, no procedures. So, only \textit{intra-procedural analyses}!
2 Example — Rules-of-Sign Analysis

Problem: Determine at each program point the sign of the values of all variables of numeric type.

Example program:

1: x = 0;
2: y = 1;
3: while (y > 0) do
4: y = y + x;
5: x = x + (-1);
Program representation as *control-flow graphs*

\[
\begin{align*}
0: & \quad x = 0 \\
1: & \quad y = 1 \\
2: & \quad \text{true}(y > 0) \quad \text{false}(y > 0) \\
4: & \quad y = y + x \\
5: & \quad x = x + (-1) \\
3: & \quad \text{true}(y > 0) \quad \text{false}(y > 0)
\end{align*}
\]
What are the ingredients that we need?
More ingredients?
All the ingredients:

- a set of information elements, each a set of possible signs,
- a partial order, “⊑”, on these elements, specifying the ”relative strength” of two information elements,
- these together form the abstract domain, a lattice,
- functions describing how signs of variables change by the execution of a statement, abstract edge effects,
- these need an abstract arithmetic, an arithmetic on signs.
We construct the abstract domain for single variables starting with the lattice $\text{Signs} = 2^{\{-,0,+,\}}$ with the relation "\(\subseteq\)" ="\(\supseteq\)".
The analysis should ”bind” program variables to elements in \(Signs \).
So, the abstract domain is \(D = (Vars \rightarrow Signs)_\bot \), a Sign-environment.
\(\bot \in D \) is the function mapping all arguments to \(\{\} \).
The partial order on \(D \) is \(D_1 \sqsubseteq D_2 \) iff
\[
D_1 = \bot \quad \text{or} \\
D_1 x \supseteq D_2 x \quad (x \in Vars)
\]
Intuition?
The analysis should ”bind” program variables to elements in \(\text{Signs} \).

So, the abstract domain is \(\mathbb{D} = (\text{Vars} \rightarrow \text{Signs})\bot \). a Sign-environment.

\(\bot \in \mathbb{D} \) is the function mapping all arguments to \(\{\} \).

The partial order on \(\mathbb{D} \) is \(D_1 \sqsubseteq D_2 \) iff

\[
D_1 = \bot \quad \text{or} \quad D_1 x \supseteq D_2 x \quad (x \in \text{Vars})
\]

Intuition?

\(D_1 \) is at least as precise as \(D_2 \) since \(D_2 \) admits at least as many signs as \(D_1 \)
How did we analyze the program?

In particular, how did we walk the lattice for y at program point 5?

\[
\begin{align*}
0 & : x = 0 \\
1 & : y = 1 \\
2 & : \text{true}(y>0) \\
4 & : \text{false}(y>0) \\
5 & : y = y+x \\
3 & : x = x+(-1)
\end{align*}
\]
How is a solution found?

Iterating until a fixed-point is reached

How is a solution found?

Iterating until a fixed-point is reached
Idea:

- We want to determine the sign of the values of expressions.
Idea:

- We want to determine the sign of the values of expressions.
- For some sub-expressions, the analysis may yield \{+,-,0\}, which means, it couldn’t find out.
Idea:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield \{+, −, 0\}, which means, it couldn’t find out.
- We replace the concrete operators □ working on values by abstract operators □♯ working on signs:
Idea:

• We want to determine the signs of the values of expressions.
• For some sub-expressions, the analysis may yield \{+, -, 0\}, which means, it couldn’t find out.
• We replace the concrete operators \[\square\] working on values by abstract operators \[\square^\#\] working on signs:
• The abstract operators allow to define an abstract evaluation of expressions:

\[
[e]^\# : (\text{Vars} \rightarrow \text{Signs}) \rightarrow \text{Signs}
\]
Determining the sign of expressions in a Sign-environment works as follows:

\[
\begin{align*}
[c] \# D &= \begin{cases}
+ & \text{if } c > 0 \\
- & \text{if } c < 0 \\
0 & \text{if } c = 0
\end{cases} \\
[v] \# &= D(v) \\
[e_1 \Box e_2] \# D &= [e_1] \# D \Box [e_2] \# D \\
[\square e] \# D &= \square [e] \# D
\end{align*}
\]
Abstract operators working on signs (Addition)

<table>
<thead>
<tr>
<th></th>
<th>{0}</th>
<th>{+}</th>
<th>{-}</th>
<th>{-, 0}</th>
<th>{-, +}</th>
<th>{0, +}</th>
<th>{-, 0, +}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0}</td>
<td>{0}</td>
<td>{+}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{+}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{-}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{-, 0}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{-, +}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, +}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{-, 0, +}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract operators working on signs (Multiplication)

<table>
<thead>
<tr>
<th>$\times#$</th>
<th>${0}$</th>
<th>${+}$</th>
<th>${-}$</th>
<th>${-, 0}$</th>
<th>${-, +}$</th>
<th>${0, +}$</th>
<th>${-, 0, +}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${0}$</td>
<td>${0}$</td>
<td>${0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${+}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${-}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${-, 0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${-, +}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${0, +}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${-, 0, +}$</td>
<td>${0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract operators working on signs (unary minus)

<table>
<thead>
<tr>
<th>$-#$</th>
<th>${0}$</th>
<th>${+}$</th>
<th>${-}$</th>
<th>${-, 0}$</th>
<th>${-, +}$</th>
<th>${0, +}$</th>
<th>${-, 0, +}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${0}$</td>
<td>${0}$</td>
<td>${-}$</td>
<td>${+, 0}$</td>
<td>${-, +}$</td>
<td>${0, -}$</td>
<td>${-, 0, +}$</td>
<td></td>
</tr>
</tbody>
</table>
Working an example:

\[D = \{ x \mapsto \{+\}, y \mapsto \{+\} \} \]

\[
[x + 7]\# D = [x]\# D +\# [7]\# D \\
= \{+\} +\# \{+\} \\
= \{+\}
\]

\[
[x + (-y)]\# D = \{+\} +\# (-\#[y]\# D) \\
= \{+\} +\# (-\#\{+\}) \\
= \{+\} +\# \{-\} \\
= \{+,-,0\}
\]
$\text{[lab]}^\#$ is the abstract edge effects associated with edge k.

It depends only on the label lab:

\[
\begin{align*}
[;]^\#D &= D \\
[\text{true (e)}]^\#D &= D \\
[\text{false (e)}]^\#D &= D \\
[x = e;]^\#D &= D \oplus \{x \mapsto [e]^\#D\} \\
[x = M[e];]^\#D &= D \oplus \{x \mapsto \{+, -, 0\}\} \\
[M[e_1] = e_2;]^\#D &= D
\end{align*}
\]

... whenever $D \neq \perp$

These edge effects can be composed to the effect of a path $\pi = k_1 \ldots k_r$:

\[
[\pi]^\# = [k_r]^\# \circ \ldots \circ [k_1]^\#
\]
Consider a program node v:

\rightarrow For every path π from program entry $start$ to v the analysis should determine for each program variable x the set of all signs that the values of x may have at v as a result of executing π.

\rightarrow Initially at program start, no information about signs is available.

\rightarrow The analysis computes a superset of the set of signs as safe information.

$\implies\implies$ For each node v, we need the set:

$$S[v] = \bigcup\{[\pi]^* \downarrow \mid \pi : start \rightarrow^* v\}$$
Question:

How do we compute $S[u]$ for every program point u?
Question:

How can we compute $S[u]$ for every program point u?

Collect all constraints on the values of $S[u]$ into a system of constraints:

$$S[start] \supseteq \bot$$

$$S[v] \supseteq \lfloor k \rfloor^\sharp (S[u])$$

$k = (u, _, v)$ edge

Why \supseteq?
Wanted:

- a least solution (why least?)
- an algorithm that computes this solution

Example:
\[
\begin{align*}
S[0] & \supseteq \bot \\
S[1] & \supseteq S[0] \oplus \{x \mapsto \{0\}\} \\
S[2] & \supseteq S[1] \oplus \{y \mapsto \{+\}\} \\
S[2] & \supseteq S[5] \oplus \{x \mapsto [x + (-1)] \# S[5]\} \\
\end{align*}
\]
3 An Operational Semantics

Programs are represented as control-flow graphs.

Example:
void swap (int i, int j) {
 int t;
 if (a[i] > a[j]) {
 t = a[j];
 a[j] = a[i];
 a[i] = t;
 }
}

A_1 = A_0 + 1 \times i;
R_1 = M[A_1];
A_2 = A_0 + 1 \times j;
R_2 = M[A_2];

\text{Pos} (R_1 > R_2)
\text{Neg} (R_1 > R_2)

A_3 = A_0 + 1 \times j;

....
Thereby, represent:

<table>
<thead>
<tr>
<th>vertex</th>
<th>program point</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>program start</td>
</tr>
<tr>
<td>stop</td>
<td>program exit</td>
</tr>
<tr>
<td>edge</td>
<td>labeled with a statement or a condition</td>
</tr>
</tbody>
</table>
Thereby, represent:

<table>
<thead>
<tr>
<th>vertex</th>
<th>program point</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>program start</td>
</tr>
<tr>
<td>stop</td>
<td>program exit</td>
</tr>
<tr>
<td>edge</td>
<td>step of computation</td>
</tr>
</tbody>
</table>

Edge Labelings:

- **Test**: Pos (e) or Neg (e)
- **Assignment**: $R = e$;
- **Load**: $R = M[e]$;
- **Store**: $M[e_1] = e_2$;
- **Nop**: ;
Execution of a path is a computation.

A computation transforms a state \(s = (\rho, \mu) \) where:

| \(\rho : \text{Vars} \rightarrow \text{int} \) | values of variables (contents of symbolic registers) |
| \(\mu : \mathbb{N} \rightarrow \text{int} \) | contents of memory |

Every edge \(k = (u, lab, v) \) defines a partial transformation

\[
[k] = [lab]
\]

of the state:
\[
[;] (\rho, \mu) = (\rho, \mu)
\]

\[
[\text{Pos } (e)] (\rho, \mu) = (\rho, \mu) \quad \text{if } \lbrack e \rbrack \rho \neq 0
\]

\[
[\text{Neg } (e)] (\rho, \mu) = (\rho, \mu) \quad \text{if } \lbrack e \rbrack \rho = 0
\]
\[(;) (\rho, \mu) = (\rho, \mu) \]

\[\text{Pos} (e) \] \[(\rho, \mu) = (\rho, \mu) \quad \text{if} \quad [e] \rho \neq 0 \]
\[\text{Neg} (e) \] \[(\rho, \mu) = (\rho, \mu) \quad \text{if} \quad [e] \rho = 0 \]

// \[e \] : evaluation of the expression \(e \), e.g.

// \[[x + y]\{x \mapsto 7, y \mapsto -1\} = 6 \]
// \[![x == 4]\{x \mapsto 5\} = 1 \]
\[;\] (\(\rho, \mu\)) = (\(\rho, \mu\))

\[[\text{Pos} (e)]\] (\(\rho, \mu\)) = (\(\rho, \mu\)) \quad \text{if} \ [e] \rho \neq 0

\[[\text{Neg} (e)]\] (\(\rho, \mu\)) = (\(\rho, \mu\)) \quad \text{if} \ [e] \rho = 0

// \[[e]\] : \ evaluation \ of \ the \ expression \ e, \ \text{e.g.}

// \[[x + y]\ \{x \mapsto 7, y \mapsto -1\} = 6

// \[[!(x == 4)]\ \{x \mapsto 5\} = 1

\[[R = e;]\] (\(\rho, \mu\)) = (\(\rho \oplus \{R \mapsto [e] \rho\}, \mu\))

// where “\(\oplus\)” modifies a mapping at a given argument
$$\begin{align*}
[R = M[e];] (\rho, \mu) &= \left(\rho \oplus \{ R \mapsto \mu([e] \rho) \}, \mu \right) \\
[M[e_1] = e_2;] (\rho, \mu) &= (\rho, \mu \oplus \{ [e_1] \rho \mapsto [e_2] \rho \})
\end{align*}$$

Example:
$$[x = x + 1;] (\{ x \mapsto 5 \}, \mu) = (\rho, \mu) \quad \text{where}$$
\begin{align*}
\rho &= \{ x \mapsto 5 \} \oplus \{ x \mapsto [x + 1] \{ x \mapsto 5 \} \} \\
&= \{ x \mapsto 5 \} \oplus \{ x \mapsto 6 \} \\
&= \{ x \mapsto 6 \}
\end{align*}

A path \(\pi = k_1 k_2 \ldots k_m \) defines a computation in the state \(s \) if
\[
\begin{align*}
s &\in \text{def} (\llbracket k_m \rrbracket \circ \ldots \circ \llbracket k_1 \rrbracket)
\end{align*}
\]
The result of the computation is
\[
\llbracket \pi \rrbracket s = (\llbracket k_m \rrbracket \circ \ldots \circ \llbracket k_1 \rrbracket) s
\]
The approach:

A static analysis needs to collect correct and hopefully precise information about a program in a terminating computation.

Concepts:

- **partial orders** relate information for their contents/quality/precision,
- **least upper bounds** combine information in the best possible way,
- **monotonic functions** preserve the order, prevent loss of collected information, prevent oscillation.
4 Complete Lattices

A set \(\mathbb{D} \) together with a relation \(\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D} \) is a **partial order** if for all \(a, b, c \in \mathbb{D} \),

\[
\begin{align*}
& a \sqsubseteq a & \text{reflexivity} \\
& a \sqsubseteq b \land b \sqsubseteq a \implies a = b & \text{anti−symmetry} \\
& a \sqsubseteq b \land b \sqsubseteq c \implies a \sqsubseteq c & \text{transitivity}
\end{align*}
\]

Intuition: \(\sqsubseteq \) represents **precision**.

By convention: \(a \sqsubseteq b \) means \(a \) is **at least as precise as** \(b \).
Examples:

1. $\mathbb{D} = 2^{\{a,b,c\}}$ with the relation “\subseteq”:
2. The rules-of-sign analysis uses the following lattice \(\mathbb{D} = 2^{-,0,+} \) with the relation "\(\subseteq \)":
3. \mathbb{Z} with the relation “\leq”:

4. $\mathbb{Z}_\perp = \mathbb{Z} \cup \{\bot\}$ with the ordering:
$d \in \mathbb{D}$ is called **upper bound** for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d \quad \text{for all } x \in X$$
$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d \quad \text{for all } x \in X$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.
$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

\[x \sqsubseteq d \quad \text{for all } x \in X \]

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.

The least upper bound is the youngest common ancestor in the pictorial representation of lattices.

Intuition: It is the best combined information for X.

Caveat:

- $\{0, 2, 4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0, 2, 4\} \subseteq \mathbb{Z}$ has the upper bounds $4, 5, 6, \ldots$
A partially ordered set \mathbb{D} is a complete lattice (cl) if every subset $X \subseteq \mathbb{D}$ has a least upper bound $\bigcup X \in \mathbb{D}$.

Note:

Every complete lattice has

→ a least element $\bot = \bigcup \emptyset \in \mathbb{D}$;

→ a greatest element $\top = \bigcup \mathbb{D} \in \mathbb{D}$.
Examples:

1. $\mathcal{D} = 2\{a, b, c\}$ is a complete lattice.

2. $\mathcal{D} = \mathbb{Z}$ with “\leq” is not a complete lattice.

3. $\mathcal{D} = \mathbb{Z}_\perp$ is also not a complete lattice.

4. With an extra element \top, we obtain the flat lattice:

 $$\mathbb{Z}_\top = \mathbb{Z} \cup \{\bot, \top\}$$

\[\text{Diagram}\]
Theorem:

If \mathcal{D} is a complete lattice, then every subset $X \subseteq \mathcal{D}$ has a greatest lower bound $\bigcap X$.
Back to the system of constraints for Rules-of-Signs Analysis!

\[
S[start] \supseteq \top
\]
\[
S[v] \supseteq [k]^{\#}(S[u]) \quad k = (u, _, v) \quad \text{edge}
\]

Combine all constraints for each variable \(v\) by applying the least-upper-bound operator \(\sqcup\):

\[
S[v] \supseteq \biguplus\{[k]^{\#}(S[u]) \mid k = (u, _, v) \quad \text{edge}\}
\]

Correct because:

\[
x \supseteq d_1 \land \ldots \land x \supseteq d_k \quad \text{iff} \quad x \supseteq \biguplus\{d_1, \ldots, d_k\}
\]
Our generic form of the systems of constraints:

\[x_i \supseteq f_i(x_1, \ldots, x_n) \]

(\text{(*)})

Relation to the running example:

\(x_i\)	unknown \(S[u]\)
\(D\)	values \(Signs\)
\(\subseteq \subseteq D \times D\)	ordering relation \(\subseteq\)
\(f_i: D^n \rightarrow D\)	constraint \(\ldots\)
A mapping \(f : \mathbb{D}_1 \to \mathbb{D}_2 \) is called monotonic (order preserving) if \(f(a) \sqsubseteq f(b) \) for all \(a \sqsubseteq b \).
A mapping \(f : \mathbb{D}_1 \to \mathbb{D}_2 \) is called monotonic (order preserving) if \(f(a) \sqsubseteq f(b) \) for all \(a \sqsubseteq b \).

Examples:

(1) \(\mathbb{D}_1 = \mathbb{D}_2 = 2^U \) for a set \(U \) and \(f x = (x \cap a) \cup b \).

Obviously, every such \(f \) is monotonic.
A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic (order preserving) if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic.

(2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering “\leq”). Then:

- $\text{inc } x = x + 1$ is monotonic.
- $\text{dec } x = x - 1$ is monotonic.
A mapping $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic (order preserving) if $f(a) \subseteq f(b)$ for all $a \subseteq b$.

Examples:

(1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$.

 Obviously, every such f is monotonic

(2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering “\leq”). Then:

 - $\text{inc } x = x + 1$ is monotonic.
 - $\text{dec } x = x - 1$ is monotonic.
 - $\text{inv } x = -x$ is not monotonic
Theorem:

If \(f_1 : \mathbb{D}_1 \to \mathbb{D}_2 \) and \(f_2 : \mathbb{D}_2 \to \mathbb{D}_3 \) are monotonic, then also \(f_2 \circ f_1 : \mathbb{D}_1 \to \mathbb{D}_3 \)
Theorem:

If \(f_1 : D_1 \to D_2 \) and \(f_2 : D_2 \to D_3 \) are monotonic, then also
\(f_2 \circ f_1 : D_1 \to D_3 \).
Theorem:

If $f_1 : \mathbb{D}_1 \rightarrow \mathbb{D}_2$ and $f_2 : \mathbb{D}_2 \rightarrow \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1 : \mathbb{D}_1 \rightarrow \mathbb{D}_3$
Wanted: least solution for:

\[x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \quad (\ast) \]

where all \(f_i : D^n \rightarrow D \) are monotonic.
Wanted: least solution for:

\[x_i \equiv f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \]

(*)

where all \(f_i : \mathbb{D}^n \to \mathbb{D} \) are monotonic.

Idea:

- Consider \(F : \mathbb{D}^n \to \mathbb{D}^n \) where

\[F(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \quad \text{with} \quad y_i = f_i(x_1, \ldots, x_n). \]
Wanted: least solution for:

\[x_i \sqsupseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \]

where all \(f_i : \mathbb{D}^n \to \mathbb{D} \) are monotonic.

Idea:

- Consider \(F : \mathbb{D}^n \to \mathbb{D}^n \) where
 \[F(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \text{ with } y_i = f_i(x_1, \ldots, x_n). \]
- If all \(f_i \) are monotonic, then also \(F \)
Wanted: least solution for

\[x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n \quad (\star) \]

where all \(f_i : \mathbb{D}^n \to \mathbb{D} \) are monotonic.

Idea:

- Consider \(F : \mathbb{D}^n \to \mathbb{D}^n \) where
 \[F(x_1, \ldots, x_n) = (y_1, \ldots, y_n) \quad \text{with} \quad y_i = f_i(x_1, \ldots, x_n). \]
- If all \(f_i \) are monotonic, then also \(F \)
- We successively approximate a solution from below. We construct:

\[\bot, \quad F \bot, \quad F^2 \bot, \quad F^3 \bot, \quad \ldots \]

Intuition: This iteration eliminates unjustified assumptions.

Hope: We eventually reach a solution!
Example: \[\mathbb{D} = 2^{\{a,b,c\}}, \quad \subseteq = \subseteq \]

\[x_1 \supseteq \{a\} \cup x_3 \]
\[x_2 \supseteq x_3 \cap \{a, b\} \]
\[x_3 \supseteq x_1 \cup \{c\} \]
Example: \(\mathbb{D} = 2^{\{a,b,c\}} \), \(\subseteq = \subseteq \)

\[
\begin{align*}
x_1 & \supseteq \{a\} \cup x_3 \\
x_2 & \supseteq x_3 \cap \{a, b\} \\
x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(\emptyset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>(\emptyset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>(\emptyset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: \[\mathcal{D} = 2\{a,b,c\}, \quad \subseteq = \subseteq \]

\[
\begin{align*}
x_1 & \supseteq \{a\} \cup x_3 \\
x_2 & \supseteq x_3 \cap \{a, b\} \\
x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(\emptyset)</td>
<td>({a})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>(\emptyset)</td>
<td>({c})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: \(\mathcal{D} = 2^{\{a,b,c\}} \), \(\subseteq = \subseteq \)

\[
\begin{align*}
x_1 & \supseteq \{a\} \cup x_3 \\
x_2 & \supseteq x_3 \cap \{a, b\} \\
x_3 & \supseteq x_1 \cup \{c\}
\end{align*}
\]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>\emptyset</td>
<td>{a}</td>
<td>{a, c}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>\emptyset</td>
<td>{c}</td>
<td>{a, c}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: \[\mathcal{D} = 2\{a,b,c\}, \quad \subseteq = \subseteq \]

\[x_1 \supseteq \{a\} \cup x_3 \]
\[x_2 \supseteq x_3 \cap \{a, b\} \]
\[x_3 \supseteq x_1 \cup \{c\} \]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(\emptyset)</td>
<td>{a}</td>
<td>{a, c}</td>
<td>{a, c}</td>
<td>{a, c}</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>{a}</td>
<td>{a}</td>
</tr>
<tr>
<td>(x_3)</td>
<td>(\emptyset)</td>
<td>{c}</td>
<td>{a, c}</td>
<td>{a, c}</td>
<td>{a, c}</td>
</tr>
</tbody>
</table>
Example:

\[\mathcal{D} = 2\{a,b,c\}, \quad \subseteq = \subseteq \]

\[
\begin{align*}
\mathcal{D} &\supseteq \{a\} \cup \mathcal{D} \\
\mathcal{D} &\supseteq \mathcal{D} \cap \{a, b\} \\
\mathcal{D} &\supseteq \mathcal{D} \cup \{c\}
\end{align*}
\]

The Iteration:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>\emptyset</td>
<td>{a}</td>
<td>{a, c}</td>
<td>{a, c}</td>
<td>ditto</td>
</tr>
<tr>
<td>(x_2)</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{a}</td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>\emptyset</td>
<td>{c}</td>
<td>{a, c}</td>
<td>{a, c}</td>
<td></td>
</tr>
</tbody>
</table>
Theorem

- $\bot, F \bot, F^2 \bot, \ldots$ form an ascending chain:

 \[\bot \subseteq F \bot \subseteq F^2 \bot \subseteq \ldots \]

- If $F^k \bot = F^{k+1} \bot$, F^k is the least solution.

- If all ascending chains are finite, such a k always exists.
Theorem

- ⊥, F ⊥, F₂ ⊥, ... form an ascending chain:
 \[\bot \subseteq F \subseteq F^2 \subseteq \ldots \]

- If \(F^k \bot = F^{k+1} \bot \), a solution is obtained, which is the least one.

- If all ascending chains are finite, such a \(k \) always exists.

If \(D \) is finite, a solution can be found that is definitely the least solution.

Question: What, if \(D \) is not finite?
Theorem

Knaster – Tarski

Assume \mathbb{D} is a complete lattice. Then every **monotonic** function $f : \mathbb{D} \to \mathbb{D}$ has a **least fixed point** $d_0 \in \mathbb{D}$.

Application:

Assume $x_i \sqsupseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$ (**\ast**) is a **system of constraints** where all $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotonic.

\implies least solution of (**\ast**) \iff least fixed point of F
Example 1: \(D = 2^U, \quad f(x) = x \cap a \cup b \)
Example 1: \(\mathbb{D} = 2^U, \; \ f x = x \cap a \cup b \)

<table>
<thead>
<tr>
<th></th>
<th>(f)</th>
<th>(f^k \bot)</th>
<th>(f^k \top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(U)</td>
<td></td>
</tr>
</tbody>
</table>
Example 1: \(\mathbb{D} = 2^U, \quad f(x) = x \cap a \cup b \)

<table>
<thead>
<tr>
<th></th>
<th>(f^k \perp)</th>
<th>(f^k \top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(U)</td>
</tr>
<tr>
<td>1</td>
<td>(b)</td>
<td>(a \cup b)</td>
</tr>
</tbody>
</table>
Example 1: \(\mathcal{D} = 2^U, \quad f(x) = x \cap a \cup b \)

<table>
<thead>
<tr>
<th></th>
<th>(f^k \perp)</th>
<th>(f^k \top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(U)</td>
</tr>
<tr>
<td>1</td>
<td>(b)</td>
<td>(a \cup b)</td>
</tr>
<tr>
<td>2</td>
<td>(b)</td>
<td>(a \cup b)</td>
</tr>
</tbody>
</table>
Example 1: \(\mathcal{D} = 2^U, \quad f x = x \cap a \cup b \)

<table>
<thead>
<tr>
<th>(f)</th>
<th>(f^k \perp)</th>
<th>(f^k \top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>(U)</td>
</tr>
<tr>
<td>1</td>
<td>(b)</td>
<td>(a \cup b)</td>
</tr>
<tr>
<td>2</td>
<td>(b)</td>
<td>(a \cup b)</td>
</tr>
</tbody>
</table>
Conclusion:

Systems of inequalities can be solved through fixed-point iteration, i.e., by repeated evaluation of right-hand sides
Caveat: Naive fixed-point iteration is rather inefficient

Example:

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
```

Table:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns

Example:
\[y = 1 \]
The code for **Round Robin Iteration** in **Java** looks as follows:

```java
for (i = 1; i ≤ n; i++) xᵢ = ⊥;
do {
    finished = true;
    for (i = 1; i ≤ n; i++) {
        new = fᵢ(x₁, . . . , xₙ);
        if (!xᵢ ⊒ new) {
            finished = false;
            xᵢ = xᵢ ⊔ new;
        }
    }
} while (!finished);
```
What we have learned:

- The information derived by static program analysis is partially ordered in a complete lattice.

- the partial order represents information content/precision of the lattice elements.

- least upper-bound combines information in the best possible way.

- Monotone functions prevent loss of information.
For a complete lattice \(\mathbb{D} \), consider systems:

\[
\begin{align*}
\mathcal{I}[\text{start}] & \supseteq d_0 \\
\mathcal{I}[v] & \supseteq [k]^{\#}(\mathcal{I}[u]) \quad k = (u, _ , v) \quad \text{edge}
\end{align*}
\]

where \(d_0 \in \mathbb{D} \) and all \([k]^{\#} : \mathbb{D} \rightarrow \mathbb{D}\) are monotonic ...

Wanted: \textbf{MOP} (Merge Over all Paths)

\[
\mathcal{I}^*[v] = \bigsqcup \{ [\pi]^{\#} d_0 \mid \pi : \text{start} \rightarrow^* v \}
\]

Theorem \hspace{1cm} Kam, Ullman 1975

Assume \(\mathcal{I} \) is a solution of the constraint system. Then:

\[
\mathcal{I}[v] \supseteq \mathcal{I}^*[v] \quad \text{for every} \quad v
\]

In particular: \(\mathcal{I}[v] \supseteq [\pi]^{\#} d_0 \quad \text{for every} \quad \pi : \text{start} \rightarrow^* v \)
Disappointment: Are solutions of the constraint system just upper bounds?

Answer: In general: yes

Notable exception, all functions $[[k]^{\#}]$ are distributive.

The function $f : D_1 \to D_2$ is called distributive, if $f (\bigcup X) = \bigcup \{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq D$;

Remark: If $f : D_1 \to D_2$ is distributive, then it is also monotonic

Theorem

Assume all v are reachable from $start$.

Then: If all effects of edges $[[k]^{\#}]$ are distributive, $\mathcal{I}^*[v] = \mathcal{I}[v]$ holds for all v.

Question: Are the edge effects of the Rules-of-Sign analysis distributive?
5 Constant Propagation

Goal: Execute as much of the code at compile-time as possible!

Example:

\[
x = 7;
\]

if \((x > 0)\)

\[M[A] = B;\]
Obviously, \(x \) has always the value 7

Thus, the memory access is always executed

Goal:

\[x = 7; \]

\[\text{Neg} \ (x > 0) \quad \text{Pos} \ (x > 0) \]

\[M[A] = B; \]

;
Obviously, x has always the value 7

Thus, the memory access is always executed

Goal:

\[
\begin{align*}
1 & \quad x = 7; \\
2 & \quad \text{Neg } (x > 0) \quad \text{Pos } (x > 0) \\
3 & \quad M[A] = B; \\
4 & \quad ; \\
5 & \quad ;
\end{align*}
\]
Idea:

Design an analysis that for every program point u, determines the values that variables definitely have at u; As a side effect, it also tells whether u can be reached at all
Idea:

Design an analysis that for every program point \(u \), determines the values that variables \textit{definitely} have at \(u \);

As a side effect, it also tells whether \(u \) can be reached at all

We need to design a complete lattice for this analysis.

It has a nice relation to the operational semantics of our tiny programming language.
As in the case of the Rules-of-Signs analysis the complete lattice is constructed in two steps.

(1) The potential values of variables:

$$\mathbb{Z}^\top = \mathbb{Z} \cup \{\top\} \quad \text{with} \quad x \sqsubseteq y \quad \text{iff} \quad y = \top \quad \text{or} \quad x = y$$
Caveat: \(\mathbb{Z}^\top \) is not a complete lattice in itself

\[
(2) \quad \mathbb{D} = (\text{Vars} \rightarrow \mathbb{Z}^\top)_\perp = (\text{Vars} \rightarrow \mathbb{Z}^\top) \cup \{\perp\}
\]

// \(\perp \) denotes: “not reachable”

with \(D_1 \sqsubseteq D_2 \) iff \(\perp = D_1 \) or \(D_1 x \sqsubseteq D_2 x \) \((x \in \text{Vars}) \)

Remark: \(\mathbb{D} \) is a complete lattice
For every edge $k = (_, lab, _)$, construct an effect function $[k]# = [lab]# : \mathbb{D} \to \mathbb{D}$ which simulates the concrete computation.

Obviously, $[lab]# \perp = \perp$ for all lab.

Now let $\perp \neq D \in Vars \to \mathbb{Z}^\top$.
Idea:

- We use D to determine the values of expressions.
Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top
Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top

We must replace the concrete operators \boxtimes by abstract operators $\boxtimes#$ which can handle \top:

$$a \boxtimes# b = \begin{cases}
\top & \text{if } a = \top \text{ or } b = \top \\
\hat{a} \boxtimes b & \text{otherwise}
\end{cases}$$
Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top

We must replace the concrete operators \square by abstract operators $\square^\#$ which can handle \top:

$$a \square^\# b = \begin{cases} \top & \text{if } a = \top \text{ or } b = \top \\ a \square b & \text{otherwise} \end{cases}$$

- The abstract operators allow to define an abstract evaluation of expressions:

$$[e]^\# : (Vars \to \mathbb{Z}^\top) \to \mathbb{Z}^\top$$
Abstract evaluation of expressions is like the concrete evaluation — but with abstract values and operators. Here:

\[
\begin{align*}
[c]^\sharp D &= c \\
[e_1 \Box e_2]^\sharp D &= [e_1]^\# D \Box^\# [e_2]^\# D
\end{align*}
\]

... analogously for unary operators
Abstract evaluation of expressions is like the concrete evaluation — but with abstract values and operators. Here:

\[[c]^\# D = c \]
\[[e_1 \boxtimes e_2]^\# D = [e_1]^\# D \boxtimes [e_2]^\# D \]

... analogously for unary operators

Example: \[D = \{ x \mapsto 2, y \mapsto \top \} \]

\[= 2 + [7]^\# D \]
\[= 2 +\# 7 \]
\[= 9 \]

\[[x - y]^\# D = 2 - [y]^\# \top \]
\[= \top \]
Thus, we obtain the following abstract edge effects $[\text{lab}]^\#$:

\[
\begin{align*}
[;]^\# D &= D \\
[\text{true (} e \text{)}]^\# D &= \begin{cases}
\bot & \text{if } 0 = [e]^\# D \\
D & \text{otherwise}
\end{cases} \quad \text{definitely false} \\
[\text{false (} e \text{)}]^\# D &= \begin{cases}
D & \text{if } 0 \sqsubseteq [e]^\# D \\
\bot & \text{otherwise}
\end{cases} \quad \text{definitely true} \\
[x = e;]^\# D &= D \oplus \{x \mapsto [e]^\# D\} \\
[x = M[e];]^\# D &= D \oplus \{x \mapsto \top\} \\
[M[e_1] = e_2;]^\# D &= D
\end{align*}
\]

... whenever $D \neq \bot$
At *start*, we have \(D_{\top} = \{ x \mapsto \top \mid x \in Vars \} \).

Example:

\[
\begin{align*}
1 & \quad x = 7; \\
2 & \quad \text{Neg} (x > 0) \quad \text{Pos} (x > 0) \\
3 & \quad M[A] = B; \\
4 & \quad ; \\
5 &
\end{align*}
\]
At \textit{start}, we have \(D_T = \{ x \mapsto \top \mid x \in \text{Vars} \} \).

Example:

\begin{align*}
1 & \quad x = 7; \\
2 & \quad \text{Neg } (x > 0) \\
3 & \quad \text{Pos } (x > 0) \\
4 & \quad M[A] = B; \\
5 & \quad ;
\end{align*}

\begin{align*}
1 & \quad \{ x \mapsto \top \} \\
2 & \quad \{ x \mapsto 7 \} \\
3 & \quad \{ x \mapsto 7 \} \\
4 & \quad \{ x \mapsto 7 \} \\
5 & \quad \bot \sqcup \{ x \mapsto 7 \} = \{ x \mapsto 7 \}
\end{align*}

The abstract effects of edges \([k] \uparrow\) are again composed to form the effects of paths \(\pi = k_1 \ldots k_r \) by:

\[[\pi] \uparrow = [k_r] \uparrow \circ \ldots \circ [k_1] \uparrow : \mathbb{D} \rightarrow \mathbb{D} \]
Idea for Correctness: Abstract Interpretation

Cousot, Cousot 1977

Establish a description relation Δ between the concrete values and their descriptions with:

$$x \Delta a_1 \land a_1 \sqsubseteq a_2 \implies x \Delta a_2$$

Concretization: $\gamma a = \{x \mid x \Delta a\}$

// returns the set of described values
Values: \[\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^\top \]

\(z \Delta a \iff z = a \lor a = \top \)

Concretization:

\[
\gamma a = \begin{cases}
\{a\} & \text{if } a \sqsubseteq \top \\
\mathbb{Z} & \text{if } a = \top
\end{cases}
\]
(1) Values: \[\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^\top \]

\[z \Delta a \quad \text{iff} \quad z = a \lor a = \top \]

Concretization:

\[\gamma a = \begin{cases} \{a\} & \text{if } a \sqsubseteq \top \\ \mathbb{Z} & \text{if } a = \top \end{cases} \]

(2) Variable Bindings: \[\Delta \subseteq (Vars \rightarrow \mathbb{Z}) \times (Vars \rightarrow \mathbb{Z}^\top)_\perp \]

\[\rho \Delta D \quad \text{iff} \quad D \neq \perp \land \rho x \sqsubseteq D x \quad (x \in Vars) \]

Concretization:

\[\gamma D = \begin{cases} \emptyset & \text{if } D = \perp \\ \{\rho \mid \forall x : (\rho x) \Delta (D x)\} & \text{otherwise} \end{cases} \]
Example: \(\{x \mapsto 1, y \mapsto -7\} \triangleq \{x \mapsto \top, y \mapsto -7\} \)

(3) States:

\[
\Delta \subseteq ((\text{Vars} \to \mathbb{Z}) \times (\mathbb{N} \to \mathbb{Z})) \times (\text{Vars} \to \mathbb{Z}^\top)_{\bot}
\]

\[(\rho, \mu) \Delta D \quad \text{iff} \quad \rho \Delta D\]

Concretization:

\[
\gamma D = \begin{cases}
\emptyset & \text{if } D = \bot \\
\{(\rho, \mu) | \forall x : (\rho x) \Delta (D x)\} & \text{otherwise}
\end{cases}
\]
We show correctness:

\((\ast)\) If \(s \triangle D\) and \([\pi]s\) is defined, then:

\[
([\pi]s) \triangle ([\pi]\# D)
\]
The abstract semantics simulates the concrete semantics

In particular:

$$\boxed{\pi} S \in \gamma (\boxed{\pi}^\# D)$$
The abstract semantics simulates the concrete semantics
In particular:

\[[\pi] s \in \gamma ([\pi]_D) \]

In practice, this means for example that \(D x = -7 \) implies:

\[
\rho' x = -7 \quad \text{for all} \quad \rho' \in \gamma D
\]

\[\implies \rho_1 x = -7 \quad \text{for} \quad (\rho_1, _) = [\pi] s \]
The MOP-Solution:

$$D^*[v] = \bigsqcup \{ [[\pi]]^\# \ D_{\top} \mid \pi : start \rightarrow^* v \}$$

where $$D_{\top} x = \top \quad (x \in Vars)$$.

In order to approximate the MOP, we use our constraint system
Example:

\[x = 10; \]
\[y = 1; \]
\[M[R] = y; \]
\[y = x \ast y; \]
\[x = x - 1; \]
Example:

\[x = 10; \]
\[y = 1; \]
\[M[R] = y; \]
\[y = x \times y; \]
\[x = x - 1; \]

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
```

Table:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

116
Example:

\[x = 10; \]

\[y = 1; \]

\[\text{Neg}(x > 1) \]

\[\text{Pos}(x > 1) \]

\[M[R] = y; \]

\[y = x \cdot y; \]

\[x = x - 1; \]

\[0 \]

\[1 \]

\[2 \]

\[3 \]

\[4 \]

\[5 \]

\[6 \]

\[7 \]

\[1 \]

\[2 \]

\[\begin{array}{|c|c|c|c|}
\hline
x & y & x & y \\
\hline
0 & \top & \top & \top & \top \\
1 & 10 & \top & 10 & \top \\
2 & 10 & 1 & \top & \top \\
3 & 10 & 1 & \top & \top \\
4 & 10 & 10 & \top & \top \\
5 & 9 & 10 & \top & \top \\
6 & \bot & & \top & \top \\
7 & \bot & & \top & \top \\
\hline
\end{array} \]
Example:

\[x = 10; \]
\[y = 1; \]
\[\text{Neg}(x > 1) \]
\[M[R] = y; \]
\[y = x \ast y; \]
\[x = x - 1; \]

\[
\begin{array}{c|c|c|c|c|c}
 & 1 & 2 & 3 \\
\hline
x & y & x & y & x & y \\
\hline
0 & \top & \top & \top & \top & \top \\
1 & 10 & \top & 10 & \top & \top \\
2 & 10 & 1 & \top & \top & \top \\
3 & 10 & 1 & \top & \top & \top \\
4 & 10 & 10 & \top & \top & \top \\
5 & 9 & 10 & \top & \top & \top \\
6 & \bot & \top & \top & \top & \top \\
7 & \bot & \top & \top & \top & \top \\
\end{array}
\]

dito
Concrete vs. Abstract Execution:

Although program and all initial values are given, abstract execution does not compute the result!

On the other hand, fixed-point iteration is guaranteed to terminate:
For \(n \) program points and \(m \) variables, we maximally need:
\[n \cdot (m + 1) \text{ rounds} \]

Observation: The effects of edges are **not distributive**!
Counterexample: $f = [x = x + y;]$.

Let $D_1 = \{x \mapsto 2, y \mapsto 3\}$
$D_2 = \{x \mapsto 3, y \mapsto 2\}$

Then $f D_1 \sqcup f D_2 = \{x \mapsto 5, y \mapsto 3\} \sqcup \{x \mapsto 5, y \mapsto 2\}$
$= \{x \mapsto 5, y \mapsto \top\}$
$\neq \{x \mapsto \top, y \mapsto \top\}$
$= f \{x \mapsto \top, y \mapsto \top\}$
$= f (D_1 \sqcup D_2)$
We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$
We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$\mathcal{D}^*[v] \subseteq \mathcal{D}[v]$$

As an upper approximation, $\mathcal{D}[v]$ nonetheless describes the result of every program execution π that reaches v:

$$([\pi](\rho, \mu)) \triangle (\mathcal{D}[v])$$

whenever $[\pi](\rho, \mu)$ is defined.
6 Interval Analysis

Constant propagation attempts to determine values of variables. However, variables may take on several values during program execution. So, the value of a variable will often be unknown.

Next attempt: determine an interval enclosing all possible values that a variable may take on during program execution at a program point.
Example:

\[
\text{for } (i = 0; i < 42; i++) \\
\quad \text{if } (0 \leq i \land i < 42)\{ \\
\quad\quad A_1 = A + i; \\
\quad\quad M[A_1] = i; \\
\quad\} \\
\]

// A start address of an array
// if-statement does array-bounds check

Obviously, the inner check is superfluous.
Idea 1:

Determine for every variable x the tightest possible interval of potential values.

Abstract domain:

$$\mathcal{I} = \{[l, u] \mid l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{+\infty\}, l \leq u\}$$

Partial order:

$$[l_1, u_1] \sqsubseteq [l_2, u_2] \quad \text{iff} \quad l_2 \leq l_1 \land u_1 \leq u_2$$
Thus:

\[
[l_1, u_1] \sqcup [l_2, u_2] = [l_1 \sqcap l_2, u_1 \sqcup u_2]
\]
Thus:

\[
[l_1, u_1] \sqcup [l_2, u_2] = [l_1 \sqcap l_2, u_1 \sqcup u_2] \\
[l_1, u_1] \sqcap [l_2, u_2] = [l_1 \sqcup l_2, u_1 \sqcap u_2] \quad \text{whenever } (l_1 \sqcup l_2) \leq (u_1 \sqcap u_2)
\]
Caveat:

→ \mathbb{I} is not a complete lattice,

→ \mathbb{I} has infinite ascending chains, e.g.,

$$[0, 0] \sqsubseteq [0, 1] \sqsubseteq [-1, 1] \sqsubseteq [-1, 2] \sqsubseteq \ldots$$
Caveat:

→ \(\mathbb{I} \) is not a complete lattice,

→ \(\mathbb{I} \) has infinite ascending chains, e.g.,

\[
[0, 0] \sqsubset [0, 1] \sqsubset [-1, 1] \sqsubset [-1, 2] \sqsubset \ldots
\]

Description Relation:

\[
z \Delta [l, u] \quad \text{iff} \quad l \leq z \leq u
\]

Concretization:

\[
\gamma [l, u] = \{ z \in \mathbb{Z} \mid l \leq z \leq u \}
\]
Example:

\[\gamma [0, 7] = \{0, \ldots, 7\} \]
\[\gamma [0, \infty] = \{0, 1, 2, \ldots, \} \]

Computing with intervals: Interval Arithmetic.

Addition:

\[[l_1, u_1] +^\# [l_2, u_2] = [l_1 + l_2, u_1 + u_2] \quad \text{where} \]
\[-\infty + _- = -\infty \]
\[+\infty + _- = +\infty \]

// \(-\infty + \infty\) cannot occur
Negation:

$$-\# [l, u] = [-u, -l]$$

Multiplication:

$$[l_1, u_1] \ast\# [l_2, u_2] = [a, b] \quad \text{where}$$

$$a = l_1 l_2 \sqcap l_1 u_2 \sqcap u_1 l_2 \sqcap u_1 u_2$$

$$b = l_1 l_2 \sqcup l_1 u_2 \sqcup u_1 l_2 \sqcup u_1 u_2$$

Example:

$$[0, 2] \ast\# [3, 4] = [0, 8]$$

$$[-1, 2] \ast\# [3, 4] = [-4, 8]$$

$$[-1, 2] \ast\# [-3, 4] = [-6, 8]$$

$$[-1, 2] \ast\# [-4, -3] = [-8, 4]$$
Division: \[[l_1, u_1] /\# [l_2, u_2] = [a, b] \]

- If 0 is not contained in the interval of the denominator, then:
 \[
 a = \frac{l_1}{l_2} \cap \frac{l_1}{u_2} \cap \frac{u_1}{l_2} \cap \frac{u_1}{u_2}
 \]
 \[
 b = \frac{l_1}{l_2} \cup \frac{l_1}{u_2} \cup \frac{u_1}{l_2} \cup \frac{u_1}{u_2}
 \]

- If: \(l_2 \leq 0 \leq u_2 \), we define:
 \[
 [a, b] = [-\infty, +\infty]
 \]
Equality:

\[[l_1, u_1] = \# [l_2, u_2] = \begin{cases}
true & \text{if } l_1 = u_1 = l_2 = u_2 \\
false & \text{if } u_1 < l_2 \lor u_2 < l_1 \\
\top & \text{otherwise}
\end{cases} \]
Equality:

\[
[l_1, u_1] == ^# [l_2, u_2] = \begin{cases}
true & \text{if } l_1 = u_1 = l_2 = u_2 \\
false & \text{if } u_1 < l_2 \lor u_2 < l_1 \\
\top & \text{otherwise}
\end{cases}
\]

Example:

\[
[42, 42] == ^# [42, 42] = true \\
[0, 7] == ^# [0, 7] = \top \\
[1, 2] == ^# [3, 4] = false
\]
Less:

\[[l_1, u_1] <^\# [l_2, u_2] = \begin{cases}
 \text{true} & \text{if } u_1 < l_2 \\
 \text{false} & \text{if } u_2 \leq l_1 \\
 \top & \text{otherwise}
\end{cases} \]
Less:

\[
[l_1, u_1] \prec^# [l_2, u_2] = \begin{cases}
true & \text{if } u_1 < l_2 \\
false & \text{if } u_2 \leq l_1 \\
\top & \text{otherwise}
\end{cases}
\]

Example:

\[
[1, 2] \prec^# [9, 42] = true \\
[0, 7] \prec^# [0, 7] = \top \\
[3, 4] \prec^# [1, 2] = false
\]
By means of \(I \) we construct the complete lattice:

\[
\mathbb{D}_I = (Vars \rightarrow I)_\perp
\]

Description Relation:

\[
\rho \triangle D \quad \text{iff} \quad D \neq \perp \quad \land \quad \forall x \in Vars : (\rho x) \triangle (D x)
\]

The abstract evaluation of expressions is defined analogously to constant propagation. We have:

\[
([e] \rho) \triangle ([e]^{\sharp} D) \quad \text{whenever} \quad \rho \triangle D
\]
The Effects of Edges:

\[
\begin{align*}
[;]^\# D &= D \\
[x = e;]^\# D &= D \oplus \{x \mapsto [e]^\# D\} \\
[x = M[e];]^\# D &= D \oplus \{x \mapsto \top\} \\
[M[e_1] = e_2;]^\# D &= D \\
[\text{true } (e)]^\# D &= \begin{cases}
\bot & \text{if definitely false} \\
D & \text{otherwise possibly true}
\end{cases} \\
[\text{false } (e)]^\# D &= \begin{cases}
D & \text{possibly false} \\
\bot & \text{definitely true}
\end{cases}
\end{align*}
\]

... given that \(D \neq \bot \)
Better Exploitation of Conditions:

\[
[\text{Pos}(e)]^\# D = \begin{cases}
\bot & \text{if } \text{false} = [e]^\# D \\
D_1 & \text{otherwise}
\end{cases}
\]

where:

\[
D_1 = \begin{cases}
D \oplus \{x \mapsto (D x) \cap ([e_1]^\# D)\} & \text{if } e \equiv x = e_1 \\
D \oplus \{x \mapsto (D x) \cap [-\infty, u]\} & \text{if } e \equiv x \leq e_1, [e_1]^\# D = [_, u] \\
D \oplus \{x \mapsto (D x) \cap [l, \infty]\} & \text{if } e \equiv x \geq e_1, [e_1]^\# D = [l, _]
\end{cases}
\]
Better Exploitation of Conditions (cont.):

\[
\lbrack \text{Neg}(e) \rbrack \# D = \begin{cases}
\bot & \text{if } \text{false} \not\sqsubseteq \lbrack e \rbrack \# D \\
D_1 & \text{otherwise}
\end{cases}
\]

where:

\[
D_1 = \begin{cases}
D \oplus \{x \mapsto (D_x) \cap \lbrack \lbrack e_1 \rbrack \# D \rbrack \} & \text{if } e \equiv x \neq e_1 \\
D \oplus \{x \mapsto (D_x) \cap [\infty, u] \} & \text{if } e \equiv x > e_1, \lbrack e_1 \rbrack \# D = [_, u] \\
D \oplus \{x \mapsto (D_x) \cap [l, \infty] \} & \text{if } e \equiv x < e_1, \lbrack e_1 \rbrack \# D = [l, _] \end{cases}
\]
Example:

\[i = 0; \]

\[i = i + 1; \]

\[M[A_1] = i; \]

\[A_1 = A + i; \]

\[
\begin{array}{c|cc|c|c}
 i & l & u \\
\hline
 0 & -\infty & +\infty \\
 1 & 0 & 42 \\
 2 & 0 & 41 \\
 3 & 0 & 41 \\
 4 & 0 & 41 \\
 5 & 0 & 41 \\
 6 & 1 & 42 \\
 7 & + & 42 \\
 8 & 42 & 42 \\
\end{array}
\]
Problem:

→ The solution can be computed with RR-iteration — after about 42 rounds.

→ On some programs, iteration may never terminate.

Idea: Widening

Accelerate the iteration — at the cost of precision
Formalization of the Approach:

Let \(x_i \sqsubseteq f_i (x_1, \ldots, x_n) \), \(i = 1, \ldots, n \) denote a system of constraints over \(\mathbb{D} \)

Define an accumulating iteration:

\[
x_i = x_i \sqcup f_i (x_1, \ldots, x_n), \quad i = 1, \ldots, n
\]

We obviously have:

(a) \(x \) is a solution of (1) iff \(x \) is a solution of (2).

(b) The function \(G : \mathbb{D}^n \to \mathbb{D}^n \) with

\[
G (x_1, \ldots, x_n) = (y_1, \ldots, y_n), \quad y_i = x_i \sqcup f_i (x_1, \ldots, x_n)
\]

is increasing, i.e., \(x \sqsubseteq G x \) for all \(x \in \mathbb{D}^n \).
(c) The sequence $G^k \perp$, $k \geq 0$, is an ascending chain:

\[
\perp \subseteq G \perp \subseteq \ldots \subseteq G^k \perp \subseteq \ldots
\]

(d) If $G^k \perp = G^{k+1} \perp = y$, then y is a solution of (1).

(e) If \mathbb{D} has infinite strictly ascending chains, then (d) is not yet sufficient ...

but: we could consider the modified system of equations:

\[
x_i = x_i \sqcup f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n
\] \hspace{1cm} (3)

for a binary operation **widening**:

\[
\sqcup : \mathbb{D}^2 \rightarrow \mathbb{D} \quad \text{with} \quad v_1 \sqcup v_2 \subseteq v_1 \sqcup v_2
\]

(RR)-iteration for (3) still will compute a solution of (1)
... for Interval Analysis:

- The complete lattice is: \(\mathbb{D}_I = (\text{Vars} \rightarrow \mathbb{I})_\perp \)
- the widening \(\sqcup \) is defined by:

\[
\perp \sqcup D = D \sqcup \perp = D
\]

and for \(D_1 \neq \perp \neq D_2 \):

\[
(D_1 \sqcup D_2) x = (D_1 x) \sqcup (D_2 x)
\]

where

\[
[l_1, u_1] \sqcup [l_2, u_2] = [l, u]
\]

with

\[
l = \begin{cases}
 l_1 & \text{if } l_1 \leq l_2 \\
 -\infty & \text{otherwise}
\end{cases}
\]

\[
u = \begin{cases}
 u_1 & \text{if } u_1 \geq u_2 \\
 +\infty & \text{otherwise}
\end{cases}
\]

\(\Rightarrow \) \(\sqcup \) is not commutative !!!
Example:

\[
[0, 2] \sqcup [1, 2] = [0, 2] \\
[1, 2] \sqcup [0, 2] = \left[-\infty, 2 \right] \\
[1, 5] \sqcup [3, 7] = [1, +\infty]
\]

→ Widening returns larger values more quickly.

→ It should be constructed in such a way that termination of iteration is guaranteed.

→ For interval analysis, widening bounds the number of iterations by:

\[
\#points \cdot (1 + 2 \cdot \#Vars)
\]
Conclusion:

- In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3).

- Caveat: The construction of suitable widenings is a dark art !!!

 Often ⊔ is chosen dynamically during iteration such that
 → the abstract values do not get too complicated;
 → the number of updates remains bounded ...
Our Example:

\[
i = 0; \\
\text{Neg}(i < 42) \\
\text{Neg}(0 \leq i < 42) \\
\text{Pos}(i < 42) \\
\text{Pos}(0 \leq i < 42) \\
\]

\[
A_1 = A + i; \\
M[A_1] = i; \\
i = i + 1;
\]

\[
\begin{array}{|c|c|c|}
\hline
l & u \\
\hline
0 & -\infty & +\infty \\
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 0 & 0 \\
4 & 0 & 0 \\
5 & 0 & 0 \\
6 & 1 & 1 \\
7 & \perp \\
8 & \perp \\
\hline
\end{array}
\]
Our Example:

- Neg\(i < 42\) \(\implies\) Pos\(i < 42\)
- Neg\(0 \leq i < 42\) \(\implies\) Pos\(0 \leq i < 42\)

\[
i = 0;
\]

\[
M[A_1] = i;
\]

\[
i = i + 1;
\]

\[
A_1 = A + i;
\]

\[
l \quad u
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{l} & \text{u} & \text{l} & \text{u} \\
\hline
0 & -\infty & -\infty & +\infty \\
1 & 0 & 0 & +\infty \\
2 & 0 & 0 & +\infty \\
3 & 0 & 0 & +\infty \\
4 & 0 & 0 & +\infty \\
5 & 0 & 0 & +\infty \\
6 & 1 & 1 & +\infty \\
7 & \perp & 42 & +\infty \\
8 & \perp & 42 & +\infty \\
\hline
\end{array}
\]
7 Removing superfluous computations

A computation may be superfluous because

- the result is already available, → available-expression analysis, or
- the result is not needed → live-variable analysis.
7.1 Redundant computations

Idea:

If an expression at a program point is guaranteed to be computed to the value it had before, then

→ store this value after the first computation;

→ replace every further computation through a look-up

Question to be answered by static analysis: Is an expression available?
Problem: Identify sources of redundant computations!

Example:

\[
\begin{align*}
z &= 1; \\
y &= M[17]; \\
A: \quad x_1 &= y + z; \\
\quad \ldots \\
B: \quad x_2 &= y + z;
\end{align*}
\]

\textit{B} is a \textbf{redundant} computation of the value of \(y + z\), if

(1) \(A\) is always executed before \(B\); and

(2) \(y\) and \(z\) at \(B\) have the same values as at \(A\)
Situation: The value of \(x + y \) is computed at program point \(u \)

\[
\begin{array}{c}
\text{x+y} \\
u \xrightarrow{\pi} v
\end{array}
\]

and a computation along path \(\pi \) reaches \(v \) where it evaluates again \(x + y \)

....

If \(x \) and \(y \) have not been modified in \(\pi \), then evaluation of \(x + y \) at \(v \) returns the same value as evaluation at \(u \).

This property can be checked at every edge in \(\pi \).
Situation: The value of $x + y$ is computed at program point u

and a computation along path π reaches v where it evaluates again $x + y$

... If x and y have not been modified in π, then evaluation of $x + y$ at v is known to return the same value as evaluation at u

This property can be checked at every edge in π.

More efficient: Do this check for all expressions occurring in the program in parallel.

Assume that the expressions $A = \{e_1, \ldots, e_r\}$ are available at u.

.
Situation: The value of \(x + y \) is computed at program point \(u \)

\[
x + y
\]

\[u \xrightarrow{\pi} v \]

and a computation along path \(\pi \) reaches \(v \) where it evaluates again \(x + y \)

.... If \(x \) and \(y \) have not been modified in \(\pi \), then evaluation of \(x + y \) at \(v \)

must return the same value as evaluation at \(u \).

This property can be checked at every edge in \(\pi \).

More efficient: Do this check for all expressions occurring in the program in parallel.

Assume that the expressions \(A = \{ e_1, \ldots, e_r \} \) are available at \(u \).

Every edge \(k \) transforms this set into a set \([[k]]^\# A \) of expressions whose values are available after execution of \(k \).

\([[k]]^\# A \) is the (abstract) edge effect associated with \(k \).
These edge effects can be composed to the effect of a path $\pi = k_1 \ldots k_r$:

$$[\pi]^\# = [k_r]^\# \circ \ldots \circ [k_1]^\#$$
These edge effects can be composed to the effect of a path \(\pi = k_1 \ldots k_r \):

\[
[\pi]^{\#} = [k_r]^{\#} \circ \ldots \circ [k_1]^{\#}
\]

The effect \([k]^{\#}\) of an edge \(k = (u, \text{lab}, v)\) only depends on the label \(\text{lab}\), i.e.,

\[
[k]^{\#} = [\text{lab}]^{\#}
\]
These edge effects can be composed to the effect of a path $\pi = k_1 \ldots k_r$:

$$[\pi]^{\#} = [k_r]^{\#} \circ \ldots \circ [k_1]^{\#}$$

The effect $[k]^{\#}$ of an edge $k = (u, lab, v)$ only depends on the label lab, i.e., $[k]^{\#} = [lab]^{\#}$ where:

$$[;]^{\#} A = A$$

$$[Pos(e)]^{\#} A = [Neg(e)]^{\#} A = A \cup \{e\}$$

$$[x = e;]^{\#} A = (A \cup \{e\}) \setminus \text{Expr}_x$$

where Expr_x all expressions that contain x

$$[x = M[e];]^{\#} A = (A \cup \{e\}) \setminus \text{Expr}_x$$

$$[M[e_1] = e_2;]^{\#} A = A \cup \{e_1, e_2\}$$
→ An expression is available at v if it is available along all paths π to v.

→ For every such path π, the analysis determines the set of expressions that are available along π.

→ Initially at program start, nothing is available.

→ The analysis computes the intersection of the availability sets as safe information.

$\implies \implies$ For each node v, we need the set:

$$ \mathcal{A}[v] = \bigcap \{ [[\pi]]^\# \emptyset \mid \pi : \text{start} \rightarrow^* v \} $$
How does a compiler exploit this information?

Transformation UT (unique temporaries):

We provide a novel register T_e as storage for the values of e:

```
\begin{align*}
  u & \quad x = e; \\
  v & \\
  u & \quad T_e = e; \\
  v & \quad x = T_e;
\end{align*}
```
Transformation UT (unique temporaries):

We provide novel registers T_e as storage for the value of e:

... analogously for $R = M[e]$; and $M[e_1] = e_2;$.
Transformation AEE (available expression elimination):

If e is available at program point u, then e need not be re-evaluated:

We replace the assignment with Nop.
Example:

\[
x = y + 3;
x = 7;
z = y + 3;
\]
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]
Example:

\[x = y + 3; \]
\[x = 7; \]
\[z = y + 3; \]

\[T = y + 3; \]
\[x = T; \]
\[\{y + 3\} \]

\[T = y + 3; \]
\[x = 7; \]
\[\{y + 3\} \]

\[T = y + 3; \]
\[\{y + 3\} \]

\[z = T; \]
\[\{y + 3\} \]
Example:

\[
x = y + 3;
\]
\[
x = 7;
\]
\[
z = y + 3;
\]
\[
T = y + 3;
\]
\[
\{y + 3\}
\]
Warning:

Transformation UT is only meaningful for assignments $x = e$; where:

$\rightarrow x \not\in \text{Vars}(e)$; why?

$\rightarrow e \not\in \text{Vars}$; why?

\rightarrow the evaluation of e is non-trivial; why?
Warning:

Transformation UT is only meaningful for assignments $x = e$; where:

$\rightarrow x \not\in Vars(e)$; otherwise e is not available afterwards.

$\rightarrow e \not\in Vars$; otherwise values are shuffled around

\rightarrow the evaluation of e is non-trivial; otherwise the efficiency of the code is decreased.

Open question ...
Question:

How do we compute $\mathcal{A}[u]$ for every program point u?
Question:

How can we compute $\mathcal{A}[u]$ for every program point? u

We collect all constraints on the values of $\mathcal{A}[u]$ into a system of constraints:

\begin{align*}
\mathcal{A}[\text{start}] & \subseteq \emptyset \\
\mathcal{A}[v] & \subseteq [k]^\#(\mathcal{A}[u]) \quad k = (u, -, v) \text{ edge}
\end{align*}

Why \subseteq?
Question:

How can we compute $A[u]$ for every program point? u

Idea:

We collect all constraints on the values of $A[u]$ into a system of constraints:

$$
\begin{align*}
A[start] & \subseteq \emptyset \\
A[v] & \subseteq \llbracket k \rrbracket^\#(A[u]) & k = (u, _, v) \text{\ edge}
\end{align*}
$$

Why \subseteq?

Then combine all constraints for each variable v by applying the least-upper-bound operator \longrightarrow

$$
A[v] \subseteq \bigcap\{\llbracket k \rrbracket^\#(A[u]) \mid k = (u, _, v) \text{\ edge}\}
$$
Wanted:

- a **greatest** solution (why greatest?)
- an algorithm that computes this solution

Example:
Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

\[
\begin{align*}
\text{Neg}(x > 1) & \quad \text{Pos}(x > 1) \\
5 & \quad 2 \\
0 & \quad 1 \\
& \quad y = x \ast y; \\
& \quad x = x - 1; \\
& \quad \mathcal{A}[0] \subseteq \emptyset
\end{align*}
\]
Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

\[A[0] \subseteq \emptyset \]
\[A[1] \subseteq (A[0] \cup \{1\}) \backslash \text{Expr}_y \]
Wanted:

- a greatest solution \((why\ greatest?)\)
- an algorithm that computes this solution

Example:

\[
\begin{align*}
A[0] & \subseteq \emptyset \\
A[1] & \subseteq (A[0] \cup \{1\}) \setminus Expr_y \\
\end{align*}
\]
Wanted:

- a **greatest** solution (why greatest?)
- an algorithm that computes this solution

Example:
Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

\[A[0] \subseteq \emptyset \]
\[A[1] \subseteq (A[0] \cup \{1\}) \setminus Expr_y \]
\[A[2] \subseteq A[1] \cup \{x > 1\} \]
\[A[3] \subseteq (A[2] \cup \{x \times y\}) \setminus Expr_y \]
Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

\[
\begin{align*}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq (\mathcal{A}[0] \cup \{1\}) \backslash \text{Expr}_y \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup \{x > 1\} \\
\mathcal{A}[3] & \subseteq (\mathcal{A}[2] \cup \{x \cdot y\}) \backslash \text{Expr}_y \\
\mathcal{A}[4] & \subseteq (\mathcal{A}[3] \cup \{x - 1\}) \backslash \text{Expr}_x \\
\mathcal{A}[5] & \subseteq \mathcal{A}[1] \cup \{x > 1\}
\end{align*}
\]
Wanted:

- a greatest solution,
- an algorithm that computes this solution.

Example:

Solution:

\[
\begin{align*}
A[0] &= \emptyset \\
A[1] &= \{1\} \\
A[2] &= \{1, x > 1\} \\
A[3] &= \{1, x > 1\} \\
A[4] &= \{1\} \\
A[5] &= \{1, x > 1\}
\end{align*}
\]
Observation:

- Again, the possible values for $\mathcal{A}[u]$ form a complete lattice:
 \[\mathbb{D} = 2^\text{Expr} \text{ with } B_1 \subseteq B_2 \text{ iff } B_1 \supseteq B_2 \]

- The order on the lattice elements indicates what is better information,
 more available expressions may allow more optimizations
Observation:

- Again, the possible values for $A[u]$ form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \subseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

- The order on the lattice elements indicates what is better information, more available expressions may allow more optimizations.

- The functions $\lbrack k \rbrack^\# : \mathbb{D} \to \mathbb{D}$ have the form $f_i x = a_i \cap x \cup b_i$. They are called *gen/kill* functions—\cap kills, \cup generates.

- They are monotonic, i.e.,

$$\lbrack k \rbrack^\#(B_1) \subseteq \lbrack k \rbrack^\#(B_2) \quad \text{iff} \quad B_1 \subseteq B_2$$
The operations “◦”, “⊔” and “⊓” can be explicitly defined by:

\[(f_2 \circ f_1)x = a_1 \cap a_2 \cap x \cup a_2 \cap b_1 \cup b_2\]

\[(f_1 \sqcup f_2)x = (a_1 \cup a_2) \cap x \cup b_1 \cup b_2\]

\[(f_1 \sqcap f_2)x = (a_1 \cup b_1) \cap (a_2 \cup b_2) \cap x \cup b_1 \cap b_2\]
7.2 Removing Assignments to Dead Variables

Example:

1: \(x = y + 2; \)
2: \(y = 5; \)
3: \(x = y + 3; \)

The value of \(x \) at program points 1, 2 is overwritten before it can be used.

Therefore, we call the variable \(x \) dead at these program points.
Note:

→ Assignments to dead variables can be removed.
→ Such inefficiencies may originate from other transformations.
Note:

→ Assignments to dead variables can be removed.
→ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along a path π starting at u if π can be decomposed into $\pi = \pi_1 k \pi_2$ such that:

- k is a use of x and
- π_1 does not contain a definition of x.
Thereby, the set of all defined or used variables at an edge $k = (_-, lab, _-)$ is defined by

<table>
<thead>
<tr>
<th>lab</th>
<th>used</th>
<th>defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos(e)</td>
<td>$\mathit{Vars}(e)$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Neg(e)</td>
<td>$\mathit{Vars}(e)$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$x = e;$</td>
<td>$\mathit{Vars}(e)$</td>
<td>${x}$</td>
</tr>
<tr>
<td>$x = M[e]$;</td>
<td>$\mathit{Vars}(e)$</td>
<td>${x}$</td>
</tr>
<tr>
<td>$M[e_1] = e_2;$</td>
<td>$\mathit{Vars}(e_1) \cup \mathit{Vars}(e_2)$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
A variable x which is not live at u along π is called dead at u along π.

Example:

\[x = y + 2; \quad y = 5; \quad x = y + 3; \]

Then we observe:

<table>
<thead>
<tr>
<th></th>
<th>live</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${y}$</td>
<td>${x}$</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>${x, y}$</td>
</tr>
<tr>
<td>2</td>
<td>${y}$</td>
<td>${x}$</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>${x, y}$</td>
</tr>
</tbody>
</table>
The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.
The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.

Question:

How can the sets of all dead/live variables be computed for every u?
The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.

Question:

How can the sets of all dead/live variables be computed for every u?

Idea:

For every edge $k = (u, _, v)$, define a function $[k]^\dagger$ which transforms the set of variables that are live at v into the set of variables that are live at u.

Note: Edge transformers go "backwards"!
Let $L = 2^{\text{Vars}}$.

For $k = (_, \text{lab}, _)$, define $[k]^\# = [\text{lab}]^\#$ by:

$$
\begin{align*}
[_]^\# L &= L \\
[\text{Pos}(e)]^\# L &= [\text{Neg}(e)]^\# L = L \cup \text{Vars}(e) \\
[x = e;]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e];]^\# L &= (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2;]^\# L &= L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
$$
Let \(\mathbb{L} = 2^{\text{Vars}} \).

For \(k = (_, \text{lab}, _) \), define \([k]^\# = [\text{lab}]^\# \) by:

\[
\begin{align*}
[;]^\# L & = L \\
[\text{Pos}(e)]^\# L & = [\text{Neg}(e)]^\# L = L \cup \text{Vars}(e) \\
[x = e;]^\# L & = (L \setminus \{x\}) \cup \text{Vars}(e) \\
[x = M[e];]^\# L & = (L \setminus \{x\}) \cup \text{Vars}(e) \\
[M[e_1] = e_2;]^\# L & = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]

\([k]^\# \) can again be composed to the effects of \([\pi]^\# \) of paths
\(\pi = k_1 \ldots k_r \) by:

\[
[\pi]^\# = [k_1]^\# \circ \ldots \circ [k_r]^\#
\]
We verify that these definitions are meaningful

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]
We verify that these definitions are meaningful.

\[M[y] = x; \]

\[y = 5; \]

\[x = y + 2; \]

\[x = y + 2; \]

\[1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \]

\(\emptyset \)
We verify that these definitions are meaningful

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]

\[\emptyset \{x, y\} \]
We verify that these definitions are meaningful.
We verify that these definitions are meaningful
We verify that these definitions are meaningful

\[x = y + 2; \quad y = 5; \quad x = y + 2; \quad M[y] = x; \]

1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5

\{y\} \quad \emptyset \quad \{y\} \quad \{x, y\} \quad \emptyset
A variable is live at a program point u if there is at least one path from u to program exit on which it is live.

The set of variables which are live at u therefore is given by:

$$\mathcal{L}^*[u] = \bigcup \{ [[\pi]] \#\emptyset \mid \pi : u \rightarrow^* \text{stop} \}$$

No variables are assumed to be live at program exit.

As partial order for \mathbb{L} we use $\sqsubseteq = \subseteq$. why?

So, the least upper bound is \bigcup. why?
Transformation DE (Dead assignment Elimination):

\[x = e; \quad x \not\in L^\ast[v] \]

\[x = M[e]; \quad x \not\in L^\ast[v] \]
Correctness Proof:

\[\rightarrow \text{Correctness of the effects of edges: If } L \text{ is the set of variables which are live at the exit of the path } \pi, \text{ then } \lbrack \pi \rbrack^\# L \text{ is the set of variables which are live at the beginning of } \pi \]

\[\rightarrow \text{Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant} \]

\[\rightarrow \text{Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values} \]
Computation of the sets $L^*[u]$:

(1) Collecting constraints:

\[L[\text{stop}] \supseteq \emptyset \]
\[L[u] \supseteq [k]^\#(L[v]) \quad k = (u, _, v) \quad \text{edge} \]

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate.

(3) If the exit is (formally) reachable from every program point, then the least solution L of the constraint system equals L^* since all $[k]^\#$ are distributive
Computation of the sets $\mathcal{L}^*[u]$:

(1) Collecting constraints:

$$
\begin{align*}
\mathcal{L}[\text{stop}] & \supseteq \emptyset \\
\mathcal{L}[u] & \supseteq [k]^\#(\mathcal{L}[v])\quad k = (u, _, v) \text{ edge}
\end{align*}
$$

(2) Solving the constraint system by means of RR iteration.

Since \mathcal{L} is finite, the iteration will terminate.

(3) If the exit is (formally) reachable from every program point, then the least solution \mathcal{L} of the constraint system equals \mathcal{L}^* since all $[k]^\#$ are distributive.

Note: The information is propagated backwards!
Example:

\[x = M[I]; \]
\[y = 1; \]
\[M[R] = y; \]
\[x = x - 1; \]
\[y = x \cdot y; \]
\[\text{Neg}(x > 1) \]
\[\text{Pos}(x > 1) \]

\[\mathcal{L}[0] \supset (\mathcal{L}[1]\{x\}) \cup \{I\} \]
\[\mathcal{L}[1] \supset \mathcal{L}[2]\{y\} \]
\[\mathcal{L}[2] \supset (\mathcal{L}[6] \cup \{x\}) \cup (\mathcal{L}[3] \cup \{x\}) \]
\[\mathcal{L}[3] \supset (\mathcal{L}[4]\{y\}) \cup \{x, y\} \]
\[\mathcal{L}[4] \supset (\mathcal{L}[5]\{x\}) \cup \{x\} \]
\[\mathcal{L}[5] \supset \mathcal{L}[2] \]
\[\mathcal{L}[6] \supset \mathcal{L}[7] \cup \{y, R\} \]
\[\mathcal{L}[7] \supset \emptyset \]
Example:

$$x = M[I];$$

$$y = 1;$$

Neg($$x > 1$$)

$$M[R] = y;$$

Pos($$x > 1$$)

$$y = x \times y;$$

$$x = x - 1;$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>${y, R}$</td>
<td>dito</td>
</tr>
<tr>
<td>2</td>
<td>${x, y, R}$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>${x, y, R}$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>${x, y, R}$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>${x, y, R}$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>${x, R}$</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>${I, R}$</td>
<td></td>
</tr>
</tbody>
</table>
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:

\[
x = y + 1;
\]

\[
z = 2 \times x;
\]

\[
M[R] = y;
\]

\[
\emptyset
\]
The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

\[x = y + 1; \]
\[z = 2 \times x; \]
\[M[R] = y; \]
\[\emptyset \]
The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:

1. \(y, R \)

 \(x = y + 1; \)

2. \(x, y, R \)

 \(z = 2 \times x; \)

3. \(y, R \)

 \(M[R] = y; \)

4. \(\emptyset \)
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:

\[
\begin{align*}
1 & : y, R \\
2 & : x = y + 1; x, y, R \\
3 & : z = 2 \times x; y, R \\
4 & : M[R] = y; \emptyset
\end{align*}
\]

\[
\begin{align*}
1 & : x = y + 1; \\
2 & : ; \\
3 & : y, R \\
4 & : M[R] = y;
\end{align*}
\]
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:
The left-hand side of no assignment is **dead**

Caveat:

Removal of assignments to dead variables may kill further variables:

\[
\begin{align*}
1 & : y, R \\
2 & : x = y + 1; \\
3 & : x, y, R \\
4 & : z = 2 \times x; \\
5 & : y, R \\
6 & : M[R] = y; \\
7 & : \emptyset
\end{align*}
\]

\[
\begin{align*}
1 & : y, R \\
2 & : x = y + 1; \\
3 & : y, R \\
4 & : M[R] = y; \\
5 & : \emptyset
\end{align*}
\]
Re-analyzing the program is inconvenient

Idea: Analyze **true** liveness!

x is called **truly live** at u along a path π, either if π can be decomposed into $\pi = \pi_1 \ k \ \pi_2$ such that:

- k is a **true** use of x;
- π_1 does not contain any **definition** of x.
The set of truly used variables at an edge $k = (_ , \text{lab}, v)$ is defined as:

<table>
<thead>
<tr>
<th>lab</th>
<th>truly used</th>
</tr>
</thead>
<tbody>
<tr>
<td>;</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Pos (e)</td>
<td>$\text{Vars} (e)$</td>
</tr>
<tr>
<td>Neg (e)</td>
<td>$\text{Vars} (e)$</td>
</tr>
<tr>
<td>$x = e;$</td>
<td>$\text{Vars} (e)$ (\ast)</td>
</tr>
<tr>
<td>$x = M[e];$</td>
<td>$\text{Vars} (e)$ (\ast)</td>
</tr>
<tr>
<td>$M[e_1] = e_2;$</td>
<td>$\text{Vars}(e_1) \cup \text{Vars}(e_2)$</td>
</tr>
</tbody>
</table>

(\ast) – given that x is truly live at v
Example:

\[x = y + 1; \]
\[z = 2 \ast x; \]
\[M[R] = y; \]
\[\emptyset \]
Example:

\[x = y + 1; \]
\[z = 2 \times x; \]
\[y, R \]
\[M[R] = y; \]
\[\emptyset \]
Example:

\[x = y + 1; \]

\[y, R \]

\[z = 2 \ast x; \]

\[y, R \]

\[M[R] = y; \]

\[\emptyset \]
Example:

\[
\begin{align*}
1 & : \quad y, R \\
 & \quad x = y + 1; \\
2 & : \quad y, R \\
 & \quad z = 2 \times x; \\
3 & : \quad y, R \\
 & \quad M[R] = y; \\
4 & : \quad \emptyset
\end{align*}
\]
Example:

\[\begin{align*}
1 & \quad y, R \\
2 & \quad x = y + 1; \\
3 & \quad y, R \\
4 & \quad z = 2 \times x; \\
3 & \quad y, R \\
4 & \quad M[R] = y; \\
4 & \quad \emptyset
\end{align*} \]
The Effects of Edges:

\[\text{[;] }^\# L = L\]
\[\text{[Pos}(e)\text{]}^\# L = [\text{Neg}(e)]^\# L = L \cup \text{Vars}(e)\]
\[\text{[x = e;]}^\# L = (L\{x\}) \cup \text{Vars}(e)\]
\[\text{[x = M[e];]}^\# L = (L\{x\}) \cup \text{Vars}(e)\]
\[\text{[M[e_1] = e_2;]}^\# L = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)\]
The Effects of Edges:

\[
\begin{align*}
[;]\#L & = L \\
[\text{Pos}(e)]\#L & = [\text{Neg}(e)]\#L = L \cup \text{Vars}(e) \\
[x = e;]\#L & = (L \setminus \{x\}) \cup (x \in L) ? \text{Vars}(e) : \emptyset \\
[x = M[e];]\#L & = (L \setminus \{x\}) \cup (x \in L) ? \text{Vars}(e) : \emptyset \\
[M[e_1] = e_2;]\#L & = L \cup \text{Vars}(e_1) \cup \text{Vars}(e_2)
\end{align*}
\]
Note:

- The effects of edges for truly live variables are more complicated than for live variables.
- Nonetheless, they are distributive!!
Note:

- The effects of edges for truly live variables are more complicated than for live variables.
- Nonetheless, they are distributive!!

To see this, consider for $\mathbb{D} = 2^U$, $f(y) = (u \in y) ? b : \emptyset$. We verify:

$$f(y_1 \cup y_2) = (u \in y_1 \cup y_2) ? b : \emptyset$$

$$= (u \in y_1 \lor u \in y_2) ? b : \emptyset$$

$$= (u \in y_1) ? b : \emptyset \cup (u \in y_2) ? b : \emptyset$$

$$= f(y_1) \cup f(y_2)$$
Note:

- The effects of edges for truly live variables are more complicated than for live variables.
- Nonetheless, they are distributive!!

To see this, consider for $\mathbb{D} = 2^U$, $f y = (u \in y)? b : \emptyset$ We verify:

$$f (y_1 \cup y_2) = (u \in y_1 \cup y_2)? b : \emptyset$$

$$= (u \in y_1 \lor u \in y_2)? b : \emptyset$$

$$= (u \in y_1)? b : \emptyset \cup (u \in y_2)? b : \emptyset$$

$$= f y_1 \cup f y_2$$

\implies the constraint system yields the MOP.
• True liveness detects more superfluous assignments than repeated liveness !!!

\[x = x - 1; \]
True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

\[
\{x\} \xrightarrow{\phantom{\{}x}} x = x - 1;
\]

\[
\emptyset \xrightarrow{\phantom{\{}x}} x = x - 1;
\]
True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

\[
x = x - 1;
\]