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Deadline Monotonic Scheduling 

 Let each process have a unique priority Pi based on its relative 

deadline di.  

 We assume that the shorter the deadline, the higher the priority, 

ie di < dj   Pi > Pj. 

 Same as rate monotonic, if each task’s relative deadline equals 
its period. 

 Example schedule: T1 with 1= d1=3 and c1=0.5, T2 with 2=4, 

d2=2 and c2=1 and T3 with 3=d3=6 and c3=2. 
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Schedulability Analysis 

 The rate monotonic schedulability test can be applied also to 
deadline monotonic scheduling, by reducing periods to relative 
deadlines: 

 

 

 However, this test significantly overestimates the workload on 
the processor. 

 Observations: 

 The worst-case processor demand occurs when all tasks are 
released at their critical instants. 

 For each task Ti  the sum of its processing time and the 

interference (preemption) imposed by higher priority tasks must be 

less than or equal to its deadline di. 
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Schedulability Analysis 

 Assume that tasks are ordered by increasing relative deadlines:  

i<j  di<dj  Pi>Pj. 

 Then a task set = { Ti }i=1..N is schedulable if the following condition is 

satisfied: 

 

 where Ii is a measure of the interference of Ti, which can be computed 

as the sum of the processing times of all higher-priority tasks released 

before di: 
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Schedulability Analysis 

 Note that this test is sufficient but not necessary. 

 Ii is calculated by assuming that each higher-priority task exactly 

interferes       times during the execution time of Ti. However, 

since Ti may terminate earlier, the actual interference may be 

smaller. 

 A sufficient and necessary schedulability test for DM must take 
the exact interleaving of higher-priority tasks into account for 
each process. 
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Response Time Analysis 

 The longest response time Ri of a periodic task Ti is computed 

as the sum of its computation time and the interference due to 
preemption by higher-priority tasks at the critical instant. 
 
where 

 

 
such that 
 
 
 

The worst-case response time is the smallest value of Ri that 

satisfies Eq.(*). 
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Response Time Analysis 

 Solution: Fixed point iteration. 

 Let Ri
(k) be the k-th value of Ri and let Ii

(k) be the interference on 

task Ti in the interval [0, Ri
(k)]: 

 

 

 

 Let Ri
(0) be the first point in time that Ti could possibly 

complete: 
 

For k > 0 repeatedly compute Ri
(k+1) until Ri

(k+1) = Ri
(k). 

 

j

i

j j

k

ik

i c
R

I  
1

1

)(

)( 


 


















i

j

ji cR
1

)0(

ij

i

j j

k

i

i

k

i

k

i cc
R

cIR 











 





 ) (
1

1

)(

)()1(





8 

Response Time Analysis 

 The task set is schedulable if Ri di holds for the fixed point Ri .  

 

 RTA is necessary and sufficient. 

 

 Let N be the number of tasks and m the number of iterations of 

the fixed point algorithm. Then the complexity of the RTA 

algorithm is O(Nm). 
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Response Time Analysis – Example 

 Consider the task set on the right side. 

 Assume T1-T3 have been shown to  
be schedulable. Is also the task set  
with T4 schedulable? 

Process Period  WCET c Deadline d 

T1 4 1 3 

T2 5 1 4 

T3 6 2 5 

T4 11 1 10 
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Earliest Deadline First 

 Earliest Deadline First (EDF) is a dynamic scheduling scheme that 
selects tasks according to their absolute deadline. Tasks with earlier 
deadlines will be executed at higher priorities. 

 So far: di relative deadline, ie the time between Ti becoming available 

and the time until which Ti has to finish execution. 

 Let Ti,j denote the j-th instance of task Ti. 

 Let ri,j be the release time of the j-th instance of task Ti . 

 Let i denote the phase of task Ti, ie the release time of its first 

instance (i = ri,1). 

 di,j denotes the absolute deadline of the j-th instance of task Ti which 

is given by di,j= i +( j –1 ) i + di 

 EDF assumes tasks are preemptive; tasks can be periodic or aperiodic. 
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Earliest Deadline First 

 Theorem: A set of periodic tasks is schedulable with EDF if and only if 

 

 Proof: 

 “” Same as before. 

 “” 
 
 
 
 
 

 

 

 Assume that U1 and the task set is not schedulable. 

 Let t2 be the instant where the deadline violation occurs. 

 Let [t1,t2] be the longest interval of continuous utilization before the overflow,  

   such that only instances with deadline t2 are executed in [t1,t2] . 
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Earliest Deadline First 

 Let Cp(t1,t2) be the total computation time demanded by periodic tasks in 

[t1,t2]. Then 

 
 
 

 Since a deadline is missed at t2, Cp(t1,t2) must be greater than the available 

processor time t2 – t1  . Thus 
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EDF vs. RM 

 Fixed-priority scheduling is easier to implement since priorities 
are static.  

 

 Dynamic schemes require a more complex run-time system 
which will have higher overhead. 

 

 It is easier to incorporate processes without deadlines into RM; 
giving a process an arbitrary deadline is more artificial. 
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EDF vs. RM 

 During overload situations 

 RM is more predictable. Low priority processes miss their deadlines 
first. 

 EDF is unpredictable; a domino effect can occur in which a large 
number of processes miss deadlines. 

 To counter this detrimental domino effect, many on-line schemes have 
two mechanisms: 

 an admissions control module that limits the number of processes that are 
allowed to compete for the processors, and 

 an EDF dispatching routine for those processes that are admitted 

 An ideal admissions algorithm prevents the processors getting 
     overloaded so that the EDF routine works effectively 
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Resource Access Protocols 

 Resources: data structures, files, devices, ... 

 private resource: dedicated to particular task 

 shared resource: available to more than one task 

 

 To ensure consistency of shared resources, tasks must be granted 
exclusive access  mutually exclusive resources. Program sections 
during which exclusive access to a resource is required are called 
critical sections. A task waiting for a mutually exclusive resource is 
called blocked on that resource.  

 

 Any task which needs to enter a critical section must wait until no 
other task is holding the resource. Otherwise the task enters the 
critical section and hold the resource. When the task leaves the critical 
section, the resource becomes free again. 
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Resource Access Protocols 

 Classical approach: Each mutually exclusive resource Ri is protected by 

a semaphore Si. Each critical section on Ri must begin with wait(Si) 

and end with signal(Si) – the only operations supported on 

semaphores. 

 Task state graph: 
 
 
 
 
 
 
 

 

 Problem: Priority Inversion. 

 

Ready Running 

Waiting 

activation 

dispatching, according 

to priority 

termination 

preemption 

wait 
signal 
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Priority Inversion 

 Let two tasks T1 and T2 with priorities P1> P2 be given that share a 

mutually exclusive resource Rk. 

 
 
 
 
 
 
 

 T2 is activated first, enters the critical section and locks the 

semaphore. When T1 is released, it preempts T2 since its priority is 

higher. However, when attempting to enter its critical section at t1, T1 

is blocked on the semaphore, so T2 resumes – although its priority is 

lower. In [t1,t2] a priority inversion occurs. 

T1 

T2 

t1 t2 

T1 blocked 

Critical section 

Normal executing 
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Priority Inversion 

 Naive solution: Disallow preemption during execution of critical 
sections. 

 May cause unnecessary blocking for a long period of time. 

 Example: Assume P1>P2>P3. T1 is blocked for a long time although 

it does not use any resource. 

 

 

 

 

 

 

 

 Better solutions required. 

 

T1 

T2 

T1  blocked 

T3 

t1 t2 
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Priority Inheritance Protocol (PIP) 

 Idea: modify the priority of the blocking tasks.  

 Let Ji denotes a job, ie a generic instance of task Ti. 

 When a job Ji blocks one or more higher-priority tasks, it temporarily 

inherits the highest priority of the blocked tasks. This prevents 

medium-priority tasks from preempting Ji. 

 Let = {Ti} be a set of periodic tasks cooperating through M shared 

resources R1,...,RM.  

 Each resource Ri is guarded by a distinct semaphore Si.  

 Assume di = i  for all tasks Ti. 

 The protocol can modify the priority of tasks. Thus: 

 nominal priority Pi 

 active priority pi (pi  Pi), which is dynamic and initially set to Pi. 
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Priority Inheritance Protocol (PIP) 

 Only one job at a time an be within the critical section corresponding 

to a particular semaphore Si. 

 Let zi,j denote the jth critical section of job Ji. The Si,j is the semaphore 

guarding zi,j and Ri,j is the resource associated with zi,j.  

 Let ui,j denote the duration of zi,j, ie the time needed by Ji to execute 

zi,j without interruption. 

 We assume priority ordering for jobs J1, J2,..., Jn wrt nominal priorities 

such that P1  P2  ...  Pn. 

 Critical sections are perfectly nested, ie either zi,j  zi,k or zi,k  zi,j, or 

zi,j  zi,jk=. 
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Definition of Priority Inheritance Protocol 

 Jobs are scheduled based on active priorities.  

 Jobs with the same priority are executed first come first served. 

 When a job Ji tries to enter a critical section zi,j and resource Ri,j is 
already held by a lower-priority job, Ji will be blocked. Otherwise Ji 
enters zi,j. 

 When a job Ji is blocked on a semaphore, it transmits its active priority 
to the job Jk that holds that semaphore. Then Jk resumes and executes 
the rest of its critical section with the inherited priority pk=pi. 

 When Jk exits a critical section, it unlocks the semaphore and the 

highest-priority job blocked on that semaphore is awakened. The 
active priority of Jk is updated as follows: if no other jobs are blocked 
by Jk, pk is set to its nominal priority Pk, otherwise it is set to the 
highest priority of the jobs blocked by Jk. 

 Priority inheritance is transitive. 
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Priority Inheritance Protocol – Example 

 Direct blocking: a high-priority job tries to acquire a resource held by a 
lower-priority job. Necessary to ensure consistency of shared 
resources. 

 Push-through blocking: a medium-priority job is blocked by a lower-
priority job that has inherited a higher priority from a job it directly 
blocks. Necessary to avoid unbounded priority inversion. 

J1 

J2 

direct blocking 

Critical section 

Normal executing 

push-through blocking 

J3 

P3 

P1 
P3 
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Priority Inheritance Protocol – Properties 

 Lemma: If there are n lower-priority jobs that can block a job Ji, then 

Ji can be blocked for at most the duration of n critical sections (one for 

each of the n lower-priority jobs), regardless of the number of 

semaphores used by Ji. 

 

 Proof: 

 A job Ji can be blocked by a lower-priority job Jk only if Jk has been 

preempted within a critical section zk,j and is still suspended in the moment 

when Ji is initiated. 

 Once Jk exits zk,j, it can be preempted by Ji; thus Ji cannot be blocked by 

Jk again.  

 The same situation may happen for each of the n lower-priority jobs; 

therefore Ji can be blocked at most n times. 
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Priority Inheritance Protocol – Properties 

 Lemma: If there are m distinct semaphores that can block a job Ji, 

then Ji can be blocked for at most the duration of m critical sections, 

one for each of the m semaphores. 

 

 Proof: 

 Since semaphores are binary, only one of the lower-priority jobs Jk can be 

within a blocking critical section corresponding to a particular semaphore 

Si.  

 Once Si is unlocked, Jk can be preempted and can no longer block Ji. If all 

m semaphores that can block Ji are locked by m lower-priority jobs, then Ji 

can be blocked at most m times. 
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Priority Inheritance Protocol – Properties 

 Theorem (Sha-Rajkumar-Lehoczky):  

Under the Priority Inheritance Protocol, a job J can be blocked for at 

most the duration of min(n,m) critical sections, where n is the number 

of low-priority jobs that could block J and m is the number of distinct 

semaphores that can be used to block J. 

 

 Proof: immediately follows from the two previous lemmas. 
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PIP – Schedulability Analysis 

 Liu/Layland:  

 

 Let Bi be the maximum blocking time, due to lower-priority jobs, that a 

job Ji may experience. 

 

 Theorem: A set of n periodic tasks using the Priority Inheritance 

Protocol can be scheduled by the Rate-Monotonic algorithm if  

 

 

 Proof:  

If the criterion holds then a job Ji has enough time even if it lasted for 

ci+Bi, taking into account the preemption ck/k from higher priority 

jobs. 
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PIP – Response Time Analysis 

 To take resources into account, the blocking factor Bi must be added 

to the computation time of each task. This gives the following 
response time equation 

 

 

 

 

 The corresponding recurrence equation is: 
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PIP – Computing the Blocking Time 

 Let the ceiling C(Sk) of a semaphore Sk be defined as 

 

 

 Let Di,k denote the duration of the longest critical section of task Ti 

among those guarded by semaphore Sk. 

 Let a set of N periodic tasks that use M binary semaphores be given. 

Then the maximum blocking time Bi for each task Ti can be 

determined as follows: 
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PIP – Example 

 Let a set of four tasks with three semaphores be given. The table 

shows the values Di,k for a job Ji and a semaphore Sk. The semaphore 

ceilings are given in parentheses. 

 

 

 

 

 

 Then the blocking factors for job J1 are computed as follows: 

Di,k S1(P1) S2(P1) S3(P2) 

J1 1 2 0 

J2 0 9 3 

J3 8 7 0 

J4 6 5 4 
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PIP – Chained Blocking 

 In the worst case, if J1 accesses m distinct semaphores that have been 

locked by m lower-priority jobs, then J1 will be blocked for the duration 

of m critical sections. 

 

J1 

J2 
Critical section 

Normal executing 

J3 
a a 
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b 

b 
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PIP – Deadlocks 

 t1: J2 locks Sb. 

 t2: J2 is preempted by the higher-priority job J1. 

 t3: J1 locks Sa. 

 t4: J1 is blocked on Sb. J2 resumes and continues execution at the 

priority of J1. 

 t5: J2 attempts to lock Sa. => Deadlock! 

 Note: deadlock is caused by erroneous use of semaphores. 

J1 

J2 

Critical section 

Normal executing 

a 

b b 

blocked on Sb 

blocked on Sa 

t2 t3 t4 t5 t1 
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The Priority Ceiling Protocol 

 Each semaphore Sk is assigned a priority ceiling C(Sk), equal to priority of the 

highest-priority task that can lock it. Note that C(Sk) is a static value that can 

be computed offline.  

 When a task Ti wants to lock a semaphore Sk, let Hi be the set of semaphores 

held by tasks different from Ti and P* = max{C(S’) | S’Hi}. 

 Task Ti gets the lock Sk only if Pi>P*.  

 Note that P* is independent from the semaphore Sk. 

 When a job Ji is blocked on a semaphore it transmits its priority to the job Jk 

that holds the semaphore. Hence, Jk resumes and executes the rest of its 

critical section with the priority of Ji. Jk is said to inherit the priority of Ji. 

 When Jk exits a critical section, it unlocks the semaphore and the highest-

priority job, if any, blocked on that semaphore is awakened. The active priority 

of Jk is set to the normal priority Jk if no other jobs are blocked by Jk, 

otherwise it is set to the highest priority of the jobs blocked by Jk. 
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The Priority Ceiling Protocol – Example  

J1 

J2 

ceiling blocking 

Critical section 

Normal executing 
J3 

P3 

P1 

S3 S3 S3 

S3 

S2 S2 

S2 S1 

 Let three jobs J1, J2, and J3 having decreasing priorities be given. 

 J1 sequentially accesses two critical sections guarded by semaphores S1 and 

S2. 

 J2 only accesses a critical section guarded by S3. 

 J3 uses semaphore S3 and then makes a nested access to S2. 

 This gives the following priority ceilings: C(S1)=P1, C(S2)= P1, C(S3)= P2. 

P3 
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The Priority Ceiling Protocol - Properties 

 A high-priority process can be blocked at most once during its 
execution by any lower-priority process. 

 

 Deadlocks are prevented. 

 

 Transitive blocking is prevented. 



35 

Model-based Software Development 

Esterel SCADE 

- SCADE language 

- SyncCharts 

Lustre programs 

Esterel programs 
C Code 

Binary Code 

aiT WCET Analyzer 

- Timing Validation 

SymTA/S 

- System-level Scheduling & 

  Schedulability Analysis 

Generator Compiler 

Compiler 
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