
Lecture 14

Real-Time Scheduling

Daniel Kästner

AbsInt GmbH

2013

2

Deadline Monotonic Scheduling

 Let each process have a unique priority Pi based on its relative

deadline di.

 We assume that the shorter the deadline, the higher the priority,

ie di < dj  Pi > Pj.

 Same as rate monotonic, if each task’s relative deadline equals
its period.

 Example schedule: T1 with 1= d1=3 and c1=0.5, T2 with 2=4,

d2=2 and c2=1 and T3 with 3=d3=6 and c3=2.

T1

T2

T3

3

Schedulability Analysis

 The rate monotonic schedulability test can be applied also to
deadline monotonic scheduling, by reducing periods to relative
deadlines:

 However, this test significantly overestimates the workload on
the processor.

 Observations:

 The worst-case processor demand occurs when all tasks are
released at their critical instants.

 For each task Ti the sum of its processing time and the

interference (preemption) imposed by higher priority tasks must be

less than or equal to its deadline di.

)12(

1

1




N

N

i i

i N
d

c

4

Schedulability Analysis

 Assume that tasks are ordered by increasing relative deadlines:

i<j  di<dj  Pi>Pj.

 Then a task set = { Ti }i=1..N is schedulable if the following condition is

satisfied:

 where Ii is a measure of the interference of Ti, which can be computed

as the sum of the processing times of all higher-priority tasks released

before di:

iii dIcNi  :1

j

i

j j

i

i c
d

I
1

1




 














Tk

Ti

di

5

Schedulability Analysis

 Note that this test is sufficient but not necessary.

 Ii is calculated by assuming that each higher-priority task exactly

interferes times during the execution time of Ti. However,

since Ti may terminate earlier, the actual interference may be

smaller.

 A sufficient and necessary schedulability test for DM must take
the exact interleaving of higher-priority tasks into account for
each process.

Tk

Ti

di













j

id



6

Response Time Analysis

 The longest response time Ri of a periodic task Ti is computed

as the sum of its computation time and the interference due to
preemption by higher-priority tasks at the critical instant.

where

such that

The worst-case response time is the smallest value of Ri that

satisfies Eq.(*).

iii IcR 

j

i

j j

i

i c
R

I
1

1




 














(*)
1

1

j

i

j j

i

ii c
R

cR 


 














7

Response Time Analysis

 Solution: Fixed point iteration.

 Let Ri
(k) be the k-th value of Ri and let Ii

(k) be the interference on

task Ti in the interval [0, Ri
(k)]:

 Let Ri
(0) be the first point in time that Ti could possibly

complete:

For k > 0 repeatedly compute Ri
(k+1) until Ri

(k+1) = Ri
(k).

j

i

j j

k

ik

i c
R

I
1

1

)(

)(


 


















i

j

ji cR
1

)0(

ij

i

j j

k

i

i

k

i

k

i cc
R

cIR 











 





) (
1

1

)(

)()1(



8

Response Time Analysis

 The task set is schedulable if Ri di holds for the fixed point Ri .

 RTA is necessary and sufficient.

 Let N be the number of tasks and m the number of iterations of

the fixed point algorithm. Then the complexity of the RTA

algorithm is O(Nm).

9

Response Time Analysis – Example

 Consider the task set on the right side.

 Assume T1-T3 have been shown to
be schedulable. Is also the task set
with T4 schedulable?

Process Period  WCET c Deadline d

T1 4 1 3

T2 5 1 4

T3 6 2 5

T4 11 1 10

10142312
6

10
1

5

10
1

4

10
) (

10142312
6

9
1

5

9
1

4

9
) (

9142212
6

7
1

5

7
1

4

7
) (

7122212
6

6
1

5

6
1

4

6
) (

6121212
6

5
1

5

5
1

4

5
) (

51211

1

1

)4(

)5(

4

1

1

)3(

)4(

4

1

1

)2(

)3(

4

1

1

)1(

)2(

4

43

3

)0(

4
2

2

)0(

4
1

1

)0(

4
1

1

)0(

)1(

4

4

1

)0(

4













































































































































































































































































ij

i

j j

i

ij

i

j j

i

ij

i

j j

i

ij

i

j j

i

ij

i

j j

i

j

j

cc
R

R

cc
R

R

cc
R

R

cc
R

R

cc
R

c
R

c
R

cc
R

R

cR











10

Earliest Deadline First

 Earliest Deadline First (EDF) is a dynamic scheduling scheme that
selects tasks according to their absolute deadline. Tasks with earlier
deadlines will be executed at higher priorities.

 So far: di relative deadline, ie the time between Ti becoming available

and the time until which Ti has to finish execution.

 Let Ti,j denote the j-th instance of task Ti.

 Let ri,j be the release time of the j-th instance of task Ti .

 Let i denote the phase of task Ti, ie the release time of its first

instance (i = ri,1).

 di,j denotes the absolute deadline of the j-th instance of task Ti which

is given by di,j= i +(j –1) i + di

 EDF assumes tasks are preemptive; tasks can be periodic or aperiodic.

11

Earliest Deadline First

 Theorem: A set of periodic tasks is schedulable with EDF if and only if

 Proof:

 “” Same as before.

 “”

 Assume that U1 and the task set is not schedulable.

 Let t2 be the instant where the deadline violation occurs.

 Let [t1,t2] be the longest interval of continuous utilization before the overflow,

 such that only instances with deadline t2 are executed in [t1,t2] .

1
1




N

i i

ic
U



Ti

Tk

Tov

Tm

idle

t1 t2

Time

overflow

12

Earliest Deadline First

 Let Cp(t1,t2) be the total computation time demanded by periodic tasks in

[t1,t2]. Then

 Since a deadline is missed at t2, Cp(t1,t2) must be greater than the available

processor time t2 – t1 . Thus

Ti

Tk

Tov

Tm

idle

t1 t2

Time

overflow

Uttc
tt

c
tt

cttC i

N

i i

i

N

i itdtr

kp

kk

)(),(12

1

12

1

12

,

21

21











 
 

 

1)(),(122112  UUttttCtt p

13

EDF vs. RM

 Fixed-priority scheduling is easier to implement since priorities
are static.

 Dynamic schemes require a more complex run-time system
which will have higher overhead.

 It is easier to incorporate processes without deadlines into RM;
giving a process an arbitrary deadline is more artificial.

14

EDF vs. RM

 During overload situations

 RM is more predictable. Low priority processes miss their deadlines
first.

 EDF is unpredictable; a domino effect can occur in which a large
number of processes miss deadlines.

 To counter this detrimental domino effect, many on-line schemes have
two mechanisms:

 an admissions control module that limits the number of processes that are
allowed to compete for the processors, and

 an EDF dispatching routine for those processes that are admitted

 An ideal admissions algorithm prevents the processors getting
 overloaded so that the EDF routine works effectively

15

Resource Access Protocols

 Resources: data structures, files, devices, ...

 private resource: dedicated to particular task

 shared resource: available to more than one task

 To ensure consistency of shared resources, tasks must be granted
exclusive access  mutually exclusive resources. Program sections
during which exclusive access to a resource is required are called
critical sections. A task waiting for a mutually exclusive resource is
called blocked on that resource.

 Any task which needs to enter a critical section must wait until no
other task is holding the resource. Otherwise the task enters the
critical section and hold the resource. When the task leaves the critical
section, the resource becomes free again.

16

Resource Access Protocols

 Classical approach: Each mutually exclusive resource Ri is protected by

a semaphore Si. Each critical section on Ri must begin with wait(Si)

and end with signal(Si) – the only operations supported on

semaphores.

 Task state graph:

 Problem: Priority Inversion.

Ready Running

Waiting

activation

dispatching, according

to priority

termination

preemption

wait
signal

17

Priority Inversion

 Let two tasks T1 and T2 with priorities P1> P2 be given that share a

mutually exclusive resource Rk.

 T2 is activated first, enters the critical section and locks the

semaphore. When T1 is released, it preempts T2 since its priority is

higher. However, when attempting to enter its critical section at t1, T1

is blocked on the semaphore, so T2 resumes – although its priority is

lower. In [t1,t2] a priority inversion occurs.

T1

T2

t1 t2

T1 blocked

Critical section

Normal executing

18

Priority Inversion

 Naive solution: Disallow preemption during execution of critical
sections.

 May cause unnecessary blocking for a long period of time.

 Example: Assume P1>P2>P3. T1 is blocked for a long time although

it does not use any resource.

 Better solutions required.

T1

T2

T1 blocked

T3

t1 t2

19

Priority Inheritance Protocol (PIP)

 Idea: modify the priority of the blocking tasks.

 Let Ji denotes a job, ie a generic instance of task Ti.

 When a job Ji blocks one or more higher-priority tasks, it temporarily

inherits the highest priority of the blocked tasks. This prevents

medium-priority tasks from preempting Ji.

 Let = {Ti} be a set of periodic tasks cooperating through M shared

resources R1,...,RM.

 Each resource Ri is guarded by a distinct semaphore Si.

 Assume di = i for all tasks Ti.

 The protocol can modify the priority of tasks. Thus:

 nominal priority Pi

 active priority pi (pi  Pi), which is dynamic and initially set to Pi.

20

Priority Inheritance Protocol (PIP)

 Only one job at a time an be within the critical section corresponding

to a particular semaphore Si.

 Let zi,j denote the jth critical section of job Ji. The Si,j is the semaphore

guarding zi,j and Ri,j is the resource associated with zi,j.

 Let ui,j denote the duration of zi,j, ie the time needed by Ji to execute

zi,j without interruption.

 We assume priority ordering for jobs J1, J2,..., Jn wrt nominal priorities

such that P1  P2  ...  Pn.

 Critical sections are perfectly nested, ie either zi,j  zi,k or zi,k  zi,j, or

zi,j  zi,jk=.

21

Definition of Priority Inheritance Protocol

 Jobs are scheduled based on active priorities.

 Jobs with the same priority are executed first come first served.

 When a job Ji tries to enter a critical section zi,j and resource Ri,j is
already held by a lower-priority job, Ji will be blocked. Otherwise Ji
enters zi,j.

 When a job Ji is blocked on a semaphore, it transmits its active priority
to the job Jk that holds that semaphore. Then Jk resumes and executes
the rest of its critical section with the inherited priority pk=pi.

 When Jk exits a critical section, it unlocks the semaphore and the

highest-priority job blocked on that semaphore is awakened. The
active priority of Jk is updated as follows: if no other jobs are blocked
by Jk, pk is set to its nominal priority Pk, otherwise it is set to the
highest priority of the jobs blocked by Jk.

 Priority inheritance is transitive.

22

Priority Inheritance Protocol – Example

 Direct blocking: a high-priority job tries to acquire a resource held by a
lower-priority job. Necessary to ensure consistency of shared
resources.

 Push-through blocking: a medium-priority job is blocked by a lower-
priority job that has inherited a higher priority from a job it directly
blocks. Necessary to avoid unbounded priority inversion.

J1

J2

direct blocking

Critical section

Normal executing

push-through blocking

J3

P3

P1
P3

23

Priority Inheritance Protocol – Properties

 Lemma: If there are n lower-priority jobs that can block a job Ji, then

Ji can be blocked for at most the duration of n critical sections (one for

each of the n lower-priority jobs), regardless of the number of

semaphores used by Ji.

 Proof:

 A job Ji can be blocked by a lower-priority job Jk only if Jk has been

preempted within a critical section zk,j and is still suspended in the moment

when Ji is initiated.

 Once Jk exits zk,j, it can be preempted by Ji; thus Ji cannot be blocked by

Jk again.

 The same situation may happen for each of the n lower-priority jobs;

therefore Ji can be blocked at most n times.

24

Priority Inheritance Protocol – Properties

 Lemma: If there are m distinct semaphores that can block a job Ji,

then Ji can be blocked for at most the duration of m critical sections,

one for each of the m semaphores.

 Proof:

 Since semaphores are binary, only one of the lower-priority jobs Jk can be

within a blocking critical section corresponding to a particular semaphore

Si.

 Once Si is unlocked, Jk can be preempted and can no longer block Ji. If all

m semaphores that can block Ji are locked by m lower-priority jobs, then Ji

can be blocked at most m times.

25

Priority Inheritance Protocol – Properties

 Theorem (Sha-Rajkumar-Lehoczky):

Under the Priority Inheritance Protocol, a job J can be blocked for at

most the duration of min(n,m) critical sections, where n is the number

of low-priority jobs that could block J and m is the number of distinct

semaphores that can be used to block J.

 Proof: immediately follows from the two previous lemmas.

26

PIP – Schedulability Analysis

 Liu/Layland:

 Let Bi be the maximum blocking time, due to lower-priority jobs, that a

job Ji may experience.

 Theorem: A set of n periodic tasks using the Priority Inheritance

Protocol can be scheduled by the Rate-Monotonic algorithm if

 Proof:

If the criterion holds then a job Ji has enough time even if it lasted for

ci+Bi, taking into account the preemption ck/k from higher priority

jobs.

(*))12(

1

1




N

N

i i

i N
c



)12(:1

1

1

 


i

i

i
i

k k

k i
Bc

ni


27

PIP – Response Time Analysis

 To take resources into account, the blocking factor Bi must be added

to the computation time of each task. This gives the following
response time equation

 The corresponding recurrence equation is:

1

1

j

i

j j

i

iiiiii c
R

BcIBcR 


 














) (
1

1

)(

)1(

j

i

j j

k

i

ii

k

i c
R

BcR 





















28

PIP – Computing the Blocking Time

 Let the ceiling C(Sk) of a semaphore Sk be defined as

 Let Di,k denote the duration of the longest critical section of task Ti

among those guarded by semaphore Sk.

 Let a set of N periodic tasks that use M binary semaphores be given.

Then the maximum blocking time Bi for each task Ti can be

determined as follows:

 } uses job|max{)(kiik SJPSC 

 }{ max i

1

P)|C(SDB kj,k

N

ij
k

l

i  


 }{ max i

1

P)|C(SDB kj,k

M

k
ij

s

i 




),min(s

i

l

ii BBB 

29

PIP – Example

 Let a set of four tasks with three semaphores be given. The table

shows the values Di,k for a job Ji and a semaphore Sk. The semaphore

ceilings are given in parentheses.

 Then the blocking factors for job J1 are computed as follows:

Di,k S1(P1) S2(P1) S3(P2)

J1 1 2 0

J2 0 9 3

J3 8 7 0

J4 6 5 4

 23689}{ max 1

4

11

1  


P)|C(SDB kj,k

j
k

l

 17

1798}{ max

1

1

1
1

1








B

P)|C(SDB kj,k

M

k
j

s

30

PIP – Chained Blocking

 In the worst case, if J1 accesses m distinct semaphores that have been

locked by m lower-priority jobs, then J1 will be blocked for the duration

of m critical sections.

J1

J2
Critical section

Normal executing

J3
a a

a

b

b

b

31

PIP – Deadlocks

 t1: J2 locks Sb.

 t2: J2 is preempted by the higher-priority job J1.

 t3: J1 locks Sa.

 t4: J1 is blocked on Sb. J2 resumes and continues execution at the

priority of J1.

 t5: J2 attempts to lock Sa. => Deadlock!

 Note: deadlock is caused by erroneous use of semaphores.

J1

J2

Critical section

Normal executing

a

b b

blocked on Sb

blocked on Sa

t2 t3 t4 t5 t1

32

The Priority Ceiling Protocol

 Each semaphore Sk is assigned a priority ceiling C(Sk), equal to priority of the

highest-priority task that can lock it. Note that C(Sk) is a static value that can

be computed offline.

 When a task Ti wants to lock a semaphore Sk, let Hi be the set of semaphores

held by tasks different from Ti and P* = max{C(S’) | S’Hi}.

 Task Ti gets the lock Sk only if Pi>P*.

 Note that P* is independent from the semaphore Sk.

 When a job Ji is blocked on a semaphore it transmits its priority to the job Jk

that holds the semaphore. Hence, Jk resumes and executes the rest of its

critical section with the priority of Ji. Jk is said to inherit the priority of Ji.

 When Jk exits a critical section, it unlocks the semaphore and the highest-

priority job, if any, blocked on that semaphore is awakened. The active priority

of Jk is set to the normal priority Jk if no other jobs are blocked by Jk,

otherwise it is set to the highest priority of the jobs blocked by Jk.

33

The Priority Ceiling Protocol – Example

J1

J2

ceiling blocking

Critical section

Normal executing
J3

P3

P1

S3 S3 S3

S3

S2 S2

S2 S1

 Let three jobs J1, J2, and J3 having decreasing priorities be given.

 J1 sequentially accesses two critical sections guarded by semaphores S1 and

S2.

 J2 only accesses a critical section guarded by S3.

 J3 uses semaphore S3 and then makes a nested access to S2.

 This gives the following priority ceilings: C(S1)=P1, C(S2)= P1, C(S3)= P2.

P3

34

The Priority Ceiling Protocol - Properties

 A high-priority process can be blocked at most once during its
execution by any lower-priority process.

 Deadlocks are prevented.

 Transitive blocking is prevented.

35

Model-based Software Development

Esterel SCADE

- SCADE language

- SyncCharts

Lustre programs

Esterel programs
C Code

Binary Code

aiT WCET Analyzer

- Timing Validation

SymTA/S

- System-level Scheduling &

 Schedulability Analysis

Generator Compiler

Compiler










