Lecture 13

Real-Time Scheduling

Daniel Kästner
AbsInt GmbH
2013
Model-based Software Development

SCADE Suite

Application Model in SCADE (data flow + SSM)

Generator

Astrée

System Model (tasks, interrupts, buses, …)

SymTA/S

System-level Schedulability Analysis

C-Code

Compiler

Runtime Error Analysis

SCADE Suite

Generator

Astrée

System Model (tasks, interrupts, buses, …)

SymTA/S

System-level Schedulability Analysis

C-Code

Compiler

Runtime Error Analysis

Worst-Case Execution Time Analysis

Stack Usage Analysis
Setting the scene

- Hard real-time systems can be designed as a set of cooperating sequential processes (tasks).

Questions:
- In which order to execute tasks?
- How to deal with shared resources?
- How to guarantee timely execution?
The Endless Loop

Do forever
 request input device;
 fetch input value;
 do computation;
 request output device;
 write output;
End
The Basic Cyclic Executive

- Let three procedures A, B, and C be given.

```
Do forever
  call A;
  call B;
  call C;
End
```
The Time-Driven Cyclic Executive

- Let three procedures A, B, and C be given.

```
Do forever
    wait for timer interrupt;
    call A;
    call B;
    call C;
End
```

- The rate of hardware timer interrupts is the rate at which the procedures (tasks) must execute.
Multi-Rate Cyclic Executive

- Let the following task system be given:

 \[
 \text{Do forever} \quad \text{// The major cycle} \\
 \quad \text{wait for timer interrupt;} \quad \text{//1st minor cycle} \\
 \quad \text{A; B; C;} \\
 \quad \text{wait for timer interrupt;} \quad \text{//2nd minor cycle} \\
 \quad \text{A; B; D; E;} \\
 \quad \text{wait for timer interrupt;} \quad \text{//3rd minor cycle} \\
 \quad \text{A; B; C;} \\
 \quad \text{wait for timer interrupt;} \quad \text{//4th minor cycle} \\
 \quad \text{A; B; D;} \\
 \text{End}
 \]

- Procedures are mapped onto a set of minor cycles that together constitute the complete schedule (or major cycle).

<table>
<thead>
<tr>
<th>Task</th>
<th>Period</th>
<th>WCET</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>60</td>
<td>1</td>
</tr>
</tbody>
</table>
The Cyclic Executive

- **Naive, but common** way to implement concurrent hard real-time systems.
- **No actual processes** exist at run-time; each minor cycle is just a sequence of procedure calls.
- Procedures share a **common address space** and can thus pass data between themselves. Concurrent access is not possible, thus no protection (e.g. semaphores) required.
- All process periods must be a **multiple of the minor cycle time**.
The Cyclic Executive

- Simple process modell:
 - Application consists of fixed set of processes
 - All processes are periodic
 - All processes are independent from each other
 - Context-switching times and other overhead is ignored
 - All processes have a deadline equal to their period
 - All processes have known worst-case execution time
The Cyclic Executive - Problems

- System is deterministic, but only fully so for the first task (at begin of major/minor cycle). All later tasks start to run whenever the preceding ones have ended.
- Hardware devices are polled. If they are not polled frequently enough, important events might be missed. If they are polled too frequently, processing power is wasted.
- Difficult to incorporate processes with long periods.
- If procedures are split up to form tasks with lower execution times, finding the right granularity of “processes” is difficult.
- Code for logically independent tasks is interleaved.
- Sporadic activities cannot be incorporated.
- Difficult to construct (NP complete) and difficult to maintain.
The Scheduling Problem: Classification

- Scheduling problems usually are classified according to a set of criteria:
 - the **cost function**
 - **hard** deadlines vs. **soft** deadlines
 - **periodic** vs. **aperiodic** vs. **sporadic** events
 - **preemptive** vs. **non-preemptive**
 - **static** vs. **dynamic**
 - **online** vs. **offline**
The Scheduling Problem: Classification

- Tasks which must be executed once every p units of time are called **periodic**, and p is called their **period**. Each execution of a periodic task is called a **job**.
- Tasks which are not periodic are called **aperiodic**.
- Aperiodic tasks requesting the processor at unpredictable times are called **sporadic**, if there is a minimum separation between the times at which they request the processor.

- A **preemptive** scheduler can arbitrarily suspend a process’s execution and restart it later without affecting the functional behavior of the process. Preemption typically occurs when a higher priority process becomes runnable. **Non-preemptive** schedulers do not suspend processes in this way.
The Scheduling Problem: Classification

- An **offline** scheduling algorithm makes all scheduling decisions prior to the running of the system. **Online** scheduling algorithms schedule tasks at run-time; they can be either **static** or **dynamic**.

- In a **static** scheduling algorithm calculating the schedules is based on a process’s characteristics available before the system is run. It requires little runtime overhead.

- A **dynamic** method schedules at run-time, taking into account both process characteristics and the current state of the system. It has higher run-time cost but can deal with non-predicted events and can give greater processor utilization.
The Task Model

- Let $\Gamma = \{ T_i \}$ be a set of tasks. Then let
 - r_i be the release time (or arrival time) which is the time at which T_i is ready for processing
 - c_i be the worst-case execution time of T_i
 - d_i be the deadline interval, i.e., the time between T_i becoming available and the time until which T_i has to finish execution
 - $l_i = d_i - c_i$ be the laxity or slack of T_i.
 - In $\{ T_i \}$ precedence constraints among tasks may be defined. $T_i \rightarrow T_j$ means that the processing of T_i must be completed before T_j can be started.

![Diagram of task release and execution](image)
Task Model

- The following parameters can be calculated from a given schedule:
 - Completion Time C_i
 - Response Time $R_i = C_i - r_i$
 - Lateness $L_i = C_i - d_i$
 - Tardiness $D_i = \max\{C_i - d_i, 0\}$

- Some performance measures / goal functions:
 - Schedule Length (makespan) $C_{max} = \max\{C_i\}$
 - Maximum Lateness $L_{max} = \max\{L_i\}$

- Critical instant: That time at which the release of a task will produce the largest response time.

- Scheduling to minimize the makespan with release times and deadlines is NP hard.
Overview

- Static-Priority Scheduling (Fixed-priority Scheduling)
- Dynamic-Priority Scheduling
- Schedulability and Response Time Analysis

Further reading:
Fixed-Priority Scheduling

- Under fixed-priority scheduling, different jobs of a task are assigned the same priority.

- A fixed-priority scheduling scheme S is optimal if the following criterion is satisfied:
 If any process can be scheduled with some fixed-priority assignment scheme,
 then the given process can also be scheduled with scheme S.
Rate Monotonic Scheduling

- Let each process have a unique priority P_i based on its period π_i.
- We assume that the shorter the period, the higher the priority, i.e., $\pi_i < \pi_j \Leftrightarrow P_i > P_j$.
- Further assume $d_i = \pi_i$ for all tasks T_i.
- Example schedule: T_1 with $\pi_1=3$ and $c_1=0.5$, T_2 with $\pi_2=4$ and $c_2=1$ and T_3 with $\pi_3=6$ and $c_3=2$.

![Diagram of task schedules](image-url)
Rate Monotonic Scheduling

- The priority of a process is derived from its temporal requirements, not its importance to the system, nor its integrity.
- Note: priority 1 is lowest (least) priority.

<table>
<thead>
<tr>
<th>Task</th>
<th>Period π</th>
<th>Priority P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>35</td>
<td>3</td>
</tr>
</tbody>
</table>

- The schedulability depends on the period and the maximal computational requirements of each process.
Processor Utilization

- Let $\Gamma = \{T_i\}$ be a set of tasks. The utilization U of a task set is defined as $U = \sum_{i=1}^{N} \frac{C_i}{\pi_i}$

- Corollary: If the utilization factor of a task set $\Gamma = \{ T_i \}_{i=1..N}$ is greater than one, the task set cannot be scheduled by any algorithm.

- PROOF: Let $\Pi = \pi_1 \pi_2 ... \pi_N$ be the product of all periods. If $U > 1$, then also $U \Pi > \Pi$, which can be written as:

$$\sum_{i=1}^{N} \frac{\Pi}{\pi_i} c_i > \Pi$$

- Π/π_i is the number of times task T_i is executed in the interval Π.
- $(\Pi/\pi_i)c_i$ is the total computation time requested by T_i in the interval Π.

- Thus: if the total demand in computation time is higher than the available processor time, there can be no feasible schedule for the task set. ■
Processor Utilization

- There exists a maximum value of U below which Γ is schedulable and above which Γ is not schedulable. This limit depends on:
 - the task set, i.e. the relations among task's periods
 - and on the algorithm used to schedule the tasks.

- Let $U_{ub}(\Gamma, A)$ be this upper bound of the processor utilization factor for a task set Γ under an algorithm A.

- When $U = U_{ub}(\Gamma, A)$, Γ fully utilizes the processor. Then Γ is schedulable but an increase in computation time in any of the tasks will make the set infeasible.

- For a given algorithm A, the least upper bound $U_{lub}(A)$ is the minimum of the utilization factors over all task sets that fully utilize the processor:
 $$U_{lub}(A) = \min_{\Gamma} U_{ub}(\Gamma, A)$$

- Any task set whose processor utilization factor is below $U_{lub}(A)$ is schedulable by $A \implies$ With U_{lub} schedulability can be easily verified!
Rate Monotonic Scheduling

- Theorem [Liu and Layland]: A system of N independent, preemptable periodic tasks T_i with $d_i = \pi_i$ can be feasibly scheduled on a processor according to the rate monotonic algorithm if its total utilization U is at most

$$U_{RM} = N(2^N - 1)$$

- Note: U_{RM} asymptotically approaches $ln2$ (69.3%).

<table>
<thead>
<tr>
<th>N</th>
<th>$U_{RM}(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.828</td>
</tr>
<tr>
<td>3</td>
<td>0.779</td>
</tr>
<tr>
<td>4</td>
<td>0.756</td>
</tr>
<tr>
<td>5</td>
<td>0.743</td>
</tr>
<tr>
<td>6</td>
<td>0.734</td>
</tr>
</tbody>
</table>
Example: Process Set A

The combined utilization is $U = \frac{12}{50} + \frac{10}{40} + \frac{10}{30} = 0.823$.

Since this is above the threshold for three processes ($U_{RM}(3) = 0.78$), this process set fails the utilization test.

<table>
<thead>
<tr>
<th>Process</th>
<th>Period π</th>
<th>WCET c</th>
<th>Priority P</th>
<th>Utilization U</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>50</td>
<td>12</td>
<td>1</td>
<td>0.240</td>
</tr>
<tr>
<td>T2</td>
<td>40</td>
<td>10</td>
<td>2</td>
<td>0.250</td>
</tr>
<tr>
<td>T3</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Example: Process Set B

<table>
<thead>
<tr>
<th>Process</th>
<th>Period π</th>
<th>WCET c</th>
<th>Priority P</th>
<th>Utilization U</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>80</td>
<td>32</td>
<td>1</td>
<td>0.400</td>
</tr>
<tr>
<td>T2</td>
<td>40</td>
<td>5</td>
<td>2</td>
<td>0.125</td>
</tr>
<tr>
<td>T3</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>0.250</td>
</tr>
</tbody>
</table>

- The combined utilization is $U = \frac{32}{80} + \frac{5}{40} + \frac{5}{20} = 0.775$.
- Since this is below the threshold for three processes ($U_{RM}(3)=0.78$), this process set will meet all its deadlines.
Example: Process Set C

The combined utilization is 1.0.

Since this is **above** the threshold for three processes \(U_{RM}(3)=0.78\), this process set **fails** the utilization test. Nevertheless the process set will **meet all its deadlines**.

<table>
<thead>
<tr>
<th>Process</th>
<th>Period (\pi)</th>
<th>WCET (c)</th>
<th>Priority (P)</th>
<th>Utilization (U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
<td>40</td>
<td>1</td>
<td>0.500</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>10</td>
<td>2</td>
<td>0.250</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td>0.250</td>
</tr>
</tbody>
</table>
Critical Instants

- **Corollary:** A critical instant for a task occurs whenever the task is released simultaneously with all higher-priority tasks.

- Let $\Gamma = \{ T_i \}_{i=1..N}$ be a set of periodic tasks, ordered by increasing periods, i.e. $\pi_1 < \pi_2 < ... < \pi_n$ and, thus $P_1 > P_2 > ... > P_N$ and let $n > i$.

 ![Diagram](image)

 Intuition:
 - The response time of task T_n is delayed by the interference of a task T_i with higher priority.
 - Advancing the release time of T_i may increase the completion time of T_n.
Optimality of Rate Monotonic Scheduling

- Observation: If all tasks are feasible at their critical instants, then the task set is schedulable in any other condition.
- Theorem: If a task set is schedulable by an arbitrary fixed priority assignment, then it is also schedulable by RM.

PROOF:
- Let T_1 and T_2 be two periodic tasks with $\pi_1 < \pi_2$. Assume that their priorities are not assigned according to RM, i.e., $P_2 > P_1$.
- At a critical instant, the schedule is feasible if the following inequality is satisfied: $c_1 + c_2 \leq \pi_1$ (Eq. 1)
Optimality of Rate Monotonic Scheduling

Now we want to show that T_1 and T_2 are also schedulable with the RM priority scheme, ie when $P_1 > P_2$.

Let $m = \left\lfloor \frac{\pi_2}{\pi_1} \right\rfloor$ be the number of periods of T_1 entirely contained in π_2.

Then two cases have to be distinguished:

- **Case 1**: The computation time c_1 is short enough that all requests of T_1 within the critical time zone of T_2 are completed before the second request of T_2. That is: $c_1 \leq \pi_2 - m\pi_1$
Then the task set is schedulable if

\[(m + 1)c_1 + c_2 \leq \pi_2 \quad (Eq. 2)\]

We have to show that Eq. 1 \(\Rightarrow\) Eq. 2.

\[c_1 + c_2 \leq \pi_1 \quad (Eq. 1)\]

\[\Leftrightarrow mc_1 + mc_2 \leq m\pi_1\]

\[\Leftrightarrow mc_1 + c_2 \leq mc_1 + mc_2 \leq m\pi_1, \text{ since } m \geq 1\]

\[\Leftrightarrow (m + 1)c_1 + c_2 \leq m\pi_1 + c_1\]

\[\Leftrightarrow (m + 1)c_1 + c_2 \leq m\pi_1 + c_1 \leq \pi_2, \text{ since } c_1 \leq \pi_2 - m\pi_1\]
Case 2: The execution of the last request of T_1 in the critical time zone of T_2 overlaps the second request of T_2. That is:

$$c_1 > \pi_2 - m\pi_1$$

Then the task set obviously is schedulable, if

$$mc_1 + c_2 \leq m\pi_1 \quad (Eq. 3)$$

We have to show that Eq.1 \Rightarrow Eq.3.
Consider again Eq. 1.

\[c_1 + c_2 \leq \pi_1 \quad \text{(Eq. 1)} \]

\[\iff mc_1 + mc_2 \leq m\pi_1 \]

\[\iff mc_1 + c_2 \leq mc_1 + mc_2 \leq m\pi_1, \text{ since } m \geq 1 \]

This directly shows

\[mc_1 + c_2 \leq m\pi_1 \quad \text{(Eq. 3)} \]
Deadline Monotonic Scheduling

- Let each process have a unique priority P_i based on its relative deadline d_i.
- Same as rate monotonic, if each task’s relative deadline equals its period.
- We assume that the shorter the deadline, the higher the priority, i.e. $d_i < d_j \iff P_i > P_j$.
- Example schedule: T_1 with $\pi_1 = d_1 = 3$ and $c_1 = 0.5$, T_2 with $\pi_2 = 4$, $d_2 = 2$ and $c_2 = 1$ and T_3 with $\pi_3 = d_3 = 6$ and $c_3 = 2$.

![Diagram of T1, T2, T3 with scheduling intervals]
Schedulability Analysis

- The rate monotonic schedulability test can be applied also to deadline monotonic scheduling, by reducing periods to relative deadlines:

\[\sum_{i=1}^{N} \frac{c_i}{d_i} \leq N \left(\frac{1}{2^N} - 1 \right) \]

- However, this test significantly overestimates the workload on the processor.

Observations:
- The worst-case processor demand occurs when all tasks are released at their critical instants.
- For each task \(T_i \), the sum of its processing time and the interference (preemption) imposed by higher priority tasks must be less than or equal to its deadline \(d_i \).
Schedulability Analysis

- Assume that tasks are ordered by increasing relative deadlines: $i < j \iff d_i < d_j \iff P_i > P_j$.

- Then a task set $\Gamma = \{ T_i \}_{i=1..N}$ is schedulable if the following condition is satisfied:
 $$\forall 1 \leq i \leq N : c_i + I_i \leq d_i$$

- where I_i is a measure of the interference of T_i, which can be computed as the sum of the processing times of all higher-priority tasks released before d_i:
 $$I_i = \sum_{j=1}^{i-1} \left\lceil \frac{d_i}{\pi_j} \right\rceil c_j$$
Schedulability Analysis

- Note that this test is **sufficient but not necessary**.
- \(I_i \) is calculated by assuming that each higher-priority task exactly interferes \(\left\lfloor \frac{d_i}{\pi_j} \right\rfloor \) times during the execution time of \(T_i \). However, since \(T_i \) may terminate earlier, the **actual interference** may be smaller.
- A sufficient and necessary schedulability test for DM must take the **exact** interleaving of higher-priority tasks into account for each process.