Lexical Analysis

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de
and
Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il

2. November 2007
Subjects

- Role of lexical analysis
- Regular languages, regular expressions
- Finite automata
- From regular expressions to finite automata
- A language for specifying lexical analysis
- The generation of a scanner
- Flex
“Standard” Structure

source(text) → lexical analysis (7) → tokenized-program → syntax analysis (8) → syntax-tree → semantic-analysis (9) → decorated syntax-tree → optimizations (10) → intermediate rep.

finite automata → pushdown automata → attribute grammar evaluators → abstract interpretation + transformations...

Lexical Analysis
“Standard” Structure cont’d

intermediate rep. → code-generation(11, 12) → machine-program → tree automata + dynamic programming + ...
Lexical Analysis (Scanning)

- **Functionality**
 - **Input:** program as sequence of characters
 - **Output:** program as sequence of symbols (tokens)

- **Produce listing**

- **Report errors, symbols illegal in the programming language**

- **Screening subtask:**
 - Identify language keywords and standard identifiers
 - Eliminate “white-space”, e.g., consecutive blanks and newlines
 - Count line numbers
 - Construct table of all symbols occurring
Automatic Generation of Lexical Analyzers

- The symbols of programming languages can be specified by regular expressions.

- Examples:
 - program as a sequence of characters.
 - (alpha (alpha | digit)*) for Pascal identifiers
 - “(‘*‘ until ‘‘*‘‘)‘‘ for Pascal comments

- The recognition of input strings can be performed by a finite automaton.

- A table representation or a program for the automaton is automatically generated from a regular expression.
Automatic Generation of Lexical Analyzers cont’d
Notations

A language, \(L \), is a set of words, \(x \), over an alphabet, \(\Sigma \).

- \(a_1 a_2 \ldots a_n \) \quad A word over \(\Sigma \)
- \(a_i \in \Sigma \)
- \(\varepsilon \) \quad The empty word
- \(\Sigma^n \) \quad The words of length \(n \) over \(\Sigma \)
- \(\Sigma^* \) \quad The finite words over \(\Sigma \)
- \(\Sigma^+ \) \quad The non-empty finite words over \(\Sigma \)
- \(x.y \) \quad The concatenation of \(x \) and \(y \)

Language Operations

\[
\begin{align*}
L_1 \cup L_2 & \quad \text{Union} \\
L_1 L_2 & = \{x.y|x \in L_1, y \in L_2\} \quad \text{Concatenation} \\
\overline{L} & = \Sigma^* - L \quad \text{Complement} \\
L^n & = \{x_1 \ldots x_n|x_i \in L, 1 \leq i \leq n\} \\
L^* & = \bigcup_{n \geq 0} L^n \quad \text{Closure} \\
L^+ & = \bigcup_{n \geq 1} L^n
\end{align*}
\]
Regular Languages

Defined inductively

- \(\emptyset \) is a regular language over \(\Sigma \)
- \(\{ \varepsilon \} \) is a regular language over \(\Sigma \)
- For all \(a \in \Sigma \), \(\{ a \} \) is a regular language over \(\Sigma \)
- If \(R_1 \) and \(R_2 \) are regular languages over \(\Sigma \), then so are:
 - \(R_1 \cup R_2 \),
 - \(R_1 R_2 \), and
 - \(R_1^* \)
Regular Expressions and the Denoted Regular Languages

Defined inductively

- \emptyset is a regular expression over Σ denoting \emptyset,
- ε is a regular expression over Σ denoting $\{\varepsilon\}$,
- For all $a \in \Sigma$, a is a regular expression over Σ denoting $\{a\}$,
- If r_1 and r_2 are regular expressions over Σ denoting R_1 and R_2, resp., then so are:
 - $(r_1|r_2)$, which denotes $R_1 \cup R_2$,
 - $(r_1r_2)^{-1}$, which denotes R_1R_2, and
 - $(r_1)^*$, which denotes R_1^*.
- Metacharacters, $\emptyset, \varepsilon, (, |,*$ don’t really exist, are replaced by their non-underlined versions.
 Attention: Clash between characters in Σ and metacharacters $\{(, |,*\}$
Example

<table>
<thead>
<tr>
<th>Expression</th>
<th>Language</th>
<th>Example Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>${a, b}$</td>
<td>a, b</td>
</tr>
<tr>
<td>ab^*a</td>
<td>${a}{b}^*{a}$</td>
<td>$aa, aba, abba, abbba, \ldots$</td>
</tr>
<tr>
<td>$(ab)^*$</td>
<td>${ab}^*$</td>
<td>$\varepsilon, ab, abab, \ldots$</td>
</tr>
<tr>
<td>$abba$</td>
<td>${abba}$</td>
<td>$abba$</td>
</tr>
</tbody>
</table>
Regular Expressions for Symbols (Tokens)

Alphabet for the symbol classes listed below:

\[\Sigma = \]

- integer-constant
- real-constant
- identifier
- string
- comments
- matching-parentheses?
Finite Automaton

Input Tape

Actual State

Control
A Non-Deterministic Finite Automaton (NFA)

\[M = \langle \Sigma, Q, \Delta, q_0, F \rangle \] where:

- \(\Sigma \) — finite alphabet
- \(Q \) — finite set of states
- \(q_0 \in Q \) — initial state
- \(F \subseteq Q \) — final states
- \(\Delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q \) — transition relation

May be represented as a transition diagram

- Nodes — States
- \(q_0 \) has a special “entry” mark
- final states doubly encircled
- An edge from \(p \) into \(q \) labeled by \(a \) if \((p, a, q) \in \Delta \)
Example: Integer and Real Constants

<table>
<thead>
<tr>
<th></th>
<th>$D_i \in {0, 1, \ldots, 9}$</th>
<th>E</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{1,2}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>1</td>
<td>{1}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{3}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>{4}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>{4}</td>
<td>\emptyset</td>
<td>{5}</td>
</tr>
<tr>
<td>5</td>
<td>{6}</td>
<td>\emptyset</td>
<td>{7}</td>
</tr>
<tr>
<td>6</td>
<td>{7}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>7</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

$q_0 = 0$

$F = \{1, 7\}$
Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

- first input character of the scanner — first “non-consumed” character,
- final state and transition under the next character: make transition and remember position,
- final state and no transition under the next character: Symbol found,
- actual state not final and no transition under the next character: backtrack to last passed final state
 - There is none: Illegal string
 - Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic runtime: Example: \((a|a^*;\)
Other Example Automata

- integer-constant
- real-constant
- identifier
- string
- comments
The Language Accepted by an Automaton

- $M = \langle \Sigma, Q, \Delta, q_0, F \rangle$
- For $q \in Q$, $w \in \Sigma^*$, (q, w) is a configuration
- The step binary relation on configurations is defined by:

\[(q, aw) \vdash_M (p, w)\]

if $(q, a, p) \in \Delta$
- The reflexive transitive closure of \vdash_M is denoted by \vdash^*_M
- The language accepted by M

\[L(M) = \{ w \mid w \in \Sigma^* \mid \exists q_f \in F : (q_0, w) \vdash^*_M (q_f, \varepsilon) \}\]
From Regular Expressions to Finite Automata

Theorem

(i) For every regular language R, there exists an NFA M, such that $L(M) = R$.

(ii) For every regular expression r, there exists an NFA that accepts the regular language defined by r.
A Constructive Proof for (ii) (Algorithm)

- A regular language is defined by a regular expression r
- Construct an “NFA” with one final state, q_f, and the transition $q_0 \xrightarrow{r} q_f$

- Decompose r and develop the NFA according to the following rules

\[q \xrightarrow{r_1 r_2} p \quad \Rightarrow \quad q \xrightarrow{r_1} q_1 \xrightarrow{r_2} p \]

\[q \xrightarrow{r_1 r_2} p \quad \Rightarrow \quad q \xrightarrow{r_1} q_1 \xrightarrow{r_2} p \]

\[q \xrightarrow{r^*} p \quad \Rightarrow \quad q \xrightarrow{\varepsilon} q_1 \xrightarrow{r} q_2 \xrightarrow{\varepsilon} q_1 \xrightarrow{r} q_2 \xrightarrow{\varepsilon} p \]

until only transitions under single characters and ε remain.
Examples

- $a(a|0)^*$ over $\Sigma = \{a, 0\}$

- Identifier

- String
Nondeterminism

- Several transitions may be possible under the same character in a given state
- ε-moves (next character is not read) may “compete” with non-ε-moves.
- Deterministic simulation requires “backtracking”
Deterministic Finite Automaton (DFA)

- No ε-transitions
- At most one transition from every state under a given character, i.e. for every $q \in Q, \ a \in \Sigma$,

$$|\{q' \mid (q, a, q') \in \Delta\}| \leq 1$$
From Non-Deterministic to Deterministic Automata

Theorem
For every NFA, $M = \langle \Sigma, Q, \Delta, q_0, F \rangle$ there exists a DFA, $M' = \langle \Sigma, Q', \delta, q_0', F' \rangle$ such that $L(M) = L(M')$.

A Scheme of a Constructive Proof (Algorithm)
Construct a DFA whose states are sets of states of the NFA. New state $S = \{q_1, \ldots, q_n\}$, if there is a word w such that $(q_0, w) \vdash^*_M (q_i, \varepsilon)$ for exactly the q_1, \ldots, q_n
The Construction Algorithm

- Used in the construction: ε-$SS(q) = \{ p \mid (q, \varepsilon) \vdash_M^* (p, \varepsilon) \}$
- A DFA state in Q' — a set of NFA original states $S \subseteq Q$
- Starts with $q'_0 = \varepsilon$-$SS(q_0)$ as the initial DFA state.
- Iteratively creates more states and more transitions.
- For every DFA state $S \subseteq Q$ and character $a \in \Sigma$,

$$
\delta(S, a) = \bigcup_{q \in S} \bigcup_{(q, a, p) \in \Delta} \varepsilon$-$SS(p)
$$

This may create a new state $\delta(S, a)$

- A DFA state S is accepting (in F') if there exists $q \in S$ such that $q \in F$
Example: $a(a|0)^*$
DFA minimization

DFA need not have minimal size, i.e. minimal number of states and transitions.
q and p are undistinguishable iff for all words w $(q,w) \vdash^*_M$ and $(p,w) \vdash^*_M$ lead into either F' or $Q' - F'$. Undistinguishable states can be merged.
DFA minimization algorithm

- Input a DFA $M = \langle \Sigma, Q, \delta, q_0, F \rangle$
- Iteratively refine a partition of the set of states, where each set in the partition consists of states so far undistinguishable.
- Start with the partition $\Pi = \{F, Q - F\}$
- Refine the current Π by splitting sets $S \in \Pi$ if there exist $q_1, q_2 \in S$ and $a \in \Sigma$ such that
 - $\delta(q_1, a) \in S_1$ and $\delta(q_2, a) \in S_2$ and $S_1 \neq S_2$
- Merge sets of undistinguishable states into a single state.
Example: $a(a|0)^*$
A Language for specifying lexical analyzers

\[(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^* \]
\[(\varepsilon).(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^* \]
\[(\varepsilon|E(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9))) \]
Descriptional Comfort

Character Classes:
Identical meaning for the DFA (exceptions!), e.g.,
\[le = a \ - \ z \ A \ - \ Z \]
\[di = 0 \ - \ 9 \]
Efficient implementation: Addressing the transitions indirectly through an array indexed by the character codes.

Symbol Classes:
Identical meaning for the parser, e.g.,
Identifiers
Comparison operators
Strings
Descriptional Comfort cont’d

Sequences of regular definitions:

\[A_1 = R_1 \]
\[A_2 = R_2 \]
\[\ldots \]
\[A_n = R_n \]
Sequences of Regular Definitions

Goal: Separate final states for each definition

1. Substitute right sides for left sides
2. Create an NFA for every regular expression separately;
3. Merge all the NFAs using ε transitions from the start state;
4. Construct a DFA;
5. Minimize starting with partition

\[\{F_1, F_2, \ldots, F_n, Q - \bigcup_{i=1}^{n} F_i\} \]
Lexical Analysis

Flex Specification

Definitions
%%

Rules
%%

C-Routines
%{
extern int line_number;
extern float atof(char *);
%}
DIG [0-9]
LET [a-zA-Z]
%
[=<>+-*] { return(*yytext); }
({DIG}+) { yylval.intc = atoi(yytext); return(301); }
({DIG})*\.({DIG}+)(E(\+|-)?{DIG}+)?
 { yylval.realc = atof(yytext); return(302); }
"(\\.|[^\\\\])" { strcpy(yylval.strc, yytext);
 return(303); }
"<=" { return(304); }
:= { return(305); }
\./. { return(306); }
Lexical Analysis

Flex Example cont’d

```
ARRAY { return(307); }
BOOLEAN { return(308); }
DECLARE { return(309); }
{LET}({LET}|{DIG})* { yylval.symb = look_up(yytext);
    return(310); }
[ \t]+ { /* White space */ }
\n { line_number++; }
. { fprintf(stderr,
    "WARNING: Symbol '%c' is illegal, ignored!\n", *yytext); }
```