1 LR(0) and SLR(1)

a) The following two derivations violate the LR(0) property:

\[S' \Rightarrow^* rm \ bBb \Rightarrow_{rm} bcb \]
\[S' \Rightarrow_{rm} bC \Rightarrow_{rm} bc \]

and \(0 : b = 0 : \varepsilon \leftrightarrow \varepsilon = \varepsilon \), but \(B \neq C \).

b) LR-DFA(\(G \)):
where the states S_0 to S_{12} are defined as follows:

$$S_0 = \{ \{ S' \rightarrow .S \} , \{ S \rightarrow .bA \} , \{ S \rightarrow .c \} \}$$

$$S_1 = \{ \{ S' \rightarrow S \} \}$$

$$S_2 = \{ \{ S \rightarrow .b.A \} , \{ A \rightarrow .Bb \} , \{ A \rightarrow .abS \} , \{ A \rightarrow .C \} , \{ B \rightarrow .b \} , \{ B \rightarrow .c \} , \{ C \rightarrow .c \} \}$$

$$S_3 = \{ \{ S \rightarrow .c. \} \}$$

$$S_4 = \{ \{ A \rightarrow a.bS \} \}$$

$$S_5 = \{ \{ B \rightarrow .b \} \}$$

$$S_6 = \{ \{ B \rightarrow .c. \} , \{ C \rightarrow .c. \} \}$$

$$S_7 = \{ \{ S \rightarrow b.A. \} \}$$

$$S_8 = \{ \{ A \rightarrow B.b \} \}$$

$$S_9 = \{ \{ A \rightarrow C. \} \}$$

$$S_{10} = \{ \{ S' \rightarrow S. \} \}$$

$$S_{11} = \{ \{ A \rightarrow abS. \} \}$$

$$S_{12} = \{ \{ A \rightarrow Bb. \} \}$$

c) State S_6 is the inadequate state of the LR-DFA(G). The SLR(1) lookahead sets for each complete item of $[X \rightarrow \alpha.]$ of the state S_6 are computed as follows:

$$FOLLOW_1(S') = \{ \# \}$$

$$FOLLOW_1(S) = FOLLOW_1(S') \cup FOLLOW_1(A)$$

$$FOLLOW_1(A) = FOLLOW_1(S)$$

$$FOLLOW_1(B) = \{ b \}$$

$$FOLLOW_1(C) = FOLLOW_1(A)$$

Fixpoint iteration provides the SLR(1) lookahead sets:

$$S' \quad S \quad A \quad B \quad C$$

\{\#\} \quad \emptyset \quad \emptyset \quad \{ b \} \quad \emptyset
\{\#\} \quad \{\#\} \quad \{\#\} \quad \{ b \} \quad \{\#\}
\{\#\} \quad \{\#\} \quad \{\#\} \quad \{ b \} \quad \{\#\}

After adding the lookahead sets, the state S_6 contains the items:

$$S_6 = \{ \{ B \rightarrow .c. , \{ b \} \} , \{ C \rightarrow .c. , \{\#\} \} \}$$

All conflicts are resolved, because $\{ b \} \cap \{\#\} = \emptyset$.

2 LR(0) Grammars

a) Assume all regular languages are LR(0). Then also $L = \{ a, aa \}$ must LR(0) and there must be a LR(0) grammar G producing L and a corresponding parser. However after the consumption of the first a such a parser either shifts (to read the next a) or reduces (to finish parsing). Since
there is no lookahead, the parser can not decide which action to take and can not resolve the shift-reduce conflict. Therefore, the assumption is wrong and there are regular languages which are not LR(0).

b) The language \(L = \{ a^n b^n | n > 0 \} \) is LR(0) since it is produced by the following LR(0) grammar:

\[
S' \rightarrow S \\
S \rightarrow AB | ASB \\
A \rightarrow a \\
B \rightarrow b
\]

As shown in the previous exercise, \(L \) is not regular. Therefore not all LR(0) languages are regular.

3 Attribute Grammars

a) Dependency graph for the word \textit{abb}:

\[
\begin{align*}
S & \rightarrow \phi(s) \\
A_1 & \rightarrow \phi(A_1.s) \\
A_2 & \rightarrow A_2.s \\
B_2 & \rightarrow B_2.s \\
A_3 & \rightarrow A_3.s \\
B_3 & \rightarrow B_3.s
\end{align*}
\]

b) Equation system:

\[
\begin{align*}
A_1.i &= \phi(A_1.s) & A_1.s &= A_2.s \\
A_2.i &= B_2.s & A_2.s &= A_3.s \\
B_2.i &= A_1.i & B_2.s &= B_2.i \\
A_3.i &= B_3.s & A_3.s &= A_3.i \\
B_3.i &= A_2.i & B_3.s &= B_3.i \\
\end{align*}
\]

Thus \(A_1.i = \phi(A_1.i) \).

c) The system has exactly one solution for \(\phi(x) = c \) for any \(c \in \mathbb{N} \). The equation system has infinitely many solution for \(\phi(x) = x \).